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Abstract

We propose in this article a new relational clustering method that can return a
partial answer (i.e., a set of clusterings) in some cases. Starting from relational
or similarity data, we determine a partial equivalence relation defined on the
set of objects (two objects are linked if they belong to the same cluster): the
key idea is to allow the method to abstain on some pairwise links because they
can not be determined with enough certainty from the data. This cautious
equivalence relation represents a set of possible hard clusterings which can be
obtained by completing the partial relation. This formalization makes it possible
to easily detect ambiguous links and to identify subsets of objects with uncertain
relationship. We illustrate the potential interest of our approach as a tool of
exploratory data analysis using synthetic and real data sets.

Keywords: Partial clustering, relational data, reliable inference.

1. Introduction

Clustering is a challenging issue in machine learning and expert systems (Ünlü
and Xanthopoulos, 2019) which consists in grouping objects of similar kind
into categories. The literature distinguishes between partitioning and hierar-
chical approaches. Hierarchical methods provide a sequence of nested clusters,
whereas hard partitioning methods determine a division of the set of objects
into non-overlapping subsets such that each data object belongs exactly to one
subset. Computing a hard partition of the instances is sometimes difficult;
therefore, a number of works have proposed to compute soft partitions: no-
table examples include probabilistic partitions (Biernacki et al., 2000), fuzzy
partitions (De Oliveira and Pedrycz, 2007; Zhu and Xu, 2018), and credal par-
titions (Masson and Denoeux, 2008).
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Methods differ also in the kind of data used to determine the clustering.
In the case of object data, the input is an explicit description of the individu-
als in the form of a design matrix X containing the descriptions x1, . . . ,xn of
the n individuals according to a set of descriptive variables, and from which a
(geometrical or statistical) model is generally to be estimated. In relational ap-
proaches, the clustering is to be determined from a relational matrix containing
pairwise similarities, or scores, between the n individuals, which are in this case
not explicitly described. This latter approach can be considered as more general
than the former, since a distance matrix can always be derived from a design
matrix, while the converse is generally not possible. The numerical elements
of the relational matrix (whether they are similarities, probabilities, . . . ) can
model relations of very different natures: influences in social networks (Car-
rington et al., 2005), geographic and economical data (Fagiolo and Mastrorillo,
2013), omics data of all kinds (Ben-Dor et al., 1999). Note that such relations
do not have to be symmetrical: for example, migration flux between countries
or influences in social networks are not.

In this paper, we are interested in proposing a new hard partitioning method
dedicated to relational data. Let us recall that, formally, clustering instances
amounts to determining equivalence classes, which is formally equivalent to
provide the adjacency matrix of the equivalence relation R. This matrix is
of general binary term Ri,j (with i, j = 1, . . . , n) which indicates the presence
(Ri,j = 1) or absence (Ri,j = 0) of a relation between a pair of objects xi and xj .
Matrix R actually represents an equivalence relation iff it satisfies the following
properties: it must be reflexive (with diagonal terms Ri,i = 1, for i = 1, . . . , n),
symmetric (Ri,j = Rj,i, for i, j = 1, . . . , n) and satisfy the transitivity constraint
(if Ri,j = Rj,k = 1, then Ri,k = 1 as well). If these conditions are met, R can
be put in the form of a diagonal block matrix by re-arranging its rows and
columns, each block on the diagonal then corresponds to one of the clusters of
the partition.

In the spirit of recent research focused on cautious classification or rank-
ing (Yang et al., 2017; Cheng et al., 2012), we introduce in this article a new
form of cautious clustering. The originality of our approach lies in the fact that
in the corresponding output relation matrix R, we can abstain to determine
some relations Ri,j when information about those are too uncertain, that is
we left the value Ri,j unknown. The idea is to provide partial yet more reli-
able information, which can eventually be completed by additional information
(possibly provided by an expert). The final result is a cautious, partial rela-
tion representing a set of possible hard clusterings. We think our approach has
several interesting aspects, such as the following ones:

• as already said, relational approaches can handle both object and rela-
tional data, and therefore are quite versatile;

• we do not need to specify on advance the number k of clusters to determine,
and on the contrary allow in principle the user to choose between multiple
solutions;
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• we provide a partial answer without adding complex uncertainty mod-
els on top of the binary relation, therefore facilitating the result reading
compared to probabilistic, fuzzy or evidential relational approaches (Long
et al., 2007; Denoeux and Masson, 2004; Masson and Denoeux, 2009).

To our knowledge, there are no proposals in the literature whose goal is to make
the relational matrix imprecise, so as to keep only those most reliable links.
There are however approaches that can result in other kinds of imprecise clus-
terings Masson and Denoeux (2008); Lingras (2001), and we detail the interest
of choosing the relational view as an alternative representation in Section 2.3.

In a nutshell, our approach to obtain an incomplete relation from an input
score matrix consists in thresholding the input relational data, up to the point
where it becomes consistent with a hard clustering and beyond. The paper is
organized as follows. Section 2 describes the setting, and briefly discusses the
interest of focusing on relational information rather than on a design matrix.
Section 3 explains how a score matrix S accepted as input can be transformed
into a partial equivalence relation via simple operations, in order to obtain a
partial clustering of the instances; it also discusses the problem of enumerating
the possible (hard and complete) clusterings which can be derived from a partial
clustering of the instances. Section 4 presents some preliminary experiments on
various synthetic and real clustering problems, so as to illustrate how scoring
matrices can be obtained and highlight the potential interest of our approach.
Eventually, Section 5 concludes the paper.

2. Setting

In this section, we start by introducing notations used in the remaining of
the paper, before introducing the problem addressed.

2.1. Notations
We consider a set X = {x1, . . . ,xn} of objects, of which we want to compute

a partition P = (ω1, . . . , ωK) ⊆ X ; that is,
⋃

k ωk = X and ωk ∩ ω` = ∅ for any
k 6= `. We will denote by P the set of possible partitions P . In order to
simplify notations, and since our approach is not based upon any geometrical
or statistical model, we will refer to the objects by their index.

As said in the introduction, a partition is formally the same as specifying an
adjacency matrix R of the corresponding equivalence relation, that is encored
Ri,j = 1 if iR j, and Ri,j = 0 if i¬R j. Being an equivalence relation, this
matrix should satisfy the following conditions:

• it should be symmetric (Ri,j = Rj,i, for all i, j ∈ {1, . . . , n}),

• it should be reflexive, that is its diagonal elements should be non-zero
(Ri,i = 1, for all i ∈ {1, . . . , n});

• it should be transitive, that is for all i, j, k ∈ {1, . . . , n} we should have
Ri,j = Rj,k = 1⇒ Ri,k = 1, for any i, j, k ∈ {1, . . . , n}.
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
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


1

3

2

4


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


Figure 1: Adjacency matrix and associated graph; derived block matrix.

We will denote by RA,B the sub-matrix consisting of the lines i ∈ A ⊆ {1, . . . , n}
and columns j ∈ B ⊆ {1, . . . , n}. Equivalently, a clustering can be represented
by a undirected graph G = (V,E), where the vertices V correspond to the
objects and the edges are such that (i, j) ∈ E iff Ri,j = 1.
Example 1. Consider the set of individuals {1, 2, 3, 4} partitioned into two clus-
ters ω1 = {1, 3} and ω2 = {2, 4}. Figure 1 displays the corresponding matrix R
and graph G. The matrix R is block: its second and third lines and columns
can be switched in order to write it as a block-diagonal matrix.

2.2. Inconsistent and partial matrices
Let us now consider a adjacency matrix corresponding to a general relation

R (not necessarily an equivalence one). If such a matrix does not satisfy the 3
properties of an equivalence relation (symmetry, reflexivity, transitivity), then
it will be referred to as inconsistent. Note that, algorithmically, checking those
properties is rather easy: symmetry and reflexivity are straightforward, and
transitivity simply amounts to check that R = R2.

In this paper, we will deal with non-fully specified adjacency matrices. A
matrix R is complete if Ri,j ∈ {0, 1} for all i = 1, . . . , n, j = 1, . . . , n. Whenever
some elements Ri,j are unknown (which will be written Ri,j = ?©), the matrix
will be referred to as partial. A partial matrix is consistent if each of its unknown
elements can be replaced by either 0 or 1 so that the resulting complete matrix
is consistent; it will be qualified as inconsistent otherwise (i.e., missing elements
cannot be replaced so that the resulting complete matrix can be rearranged into
a block-diagonal matrix). Since Ri,i = 1 for all i = 1, . . . , n, inconsistency arises
whenever either transitivity or symmetry is violated. We remark here that a
partial matrix corresponds to a partially specified graph (hereafter referred to
as partial graph), where (k, l) ∈ E if Rk,l = 1, (k, l) /∈ E if Rk,l = 0, and we do
not know whether (k, l) ∈ E or (k, l) 6∈ E if Rk,l = ?©. We will represent such
missing edges by dotted lines throughout the paper.
Example 2. Figure 2 provides the illustration of an adjacency matrix for a set
O = {x1, . . . ,x4} of four objects. It violates symmetry (we have R2,1 6= R1,2) as
well as transitivity (whileR2,4 = R4,2 satisfy symmetry, we haveR4,2 = R2,1 = 1
but R4,1 = 0). It is relaxed into a partial consistent relation matrix shown in
Figure 2.

The various completions provided by the figures correspond to the partitions

P1 =
{
{1}, {2, 3}, {4}

}
, P2 =

{
{1, 2, 3}, {4}

}
, P3 =

{
{1}, {2, 3, 4}

}
.
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
1 0 1 0
1 1 1 1
0 1 1 1
0 1 0 1


Inconsistent matrix


1 ?© ?© 0
?© 1 1 ?©
?© 1 1 ?©
0 ?© ?© 1


Consistent partial matrix

relax


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1




1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1




1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1



possible completions

Figure 2: An inconsistent matrix, and a possible relaxed consistent partial matrix with its
completions.

2.3. Partial assignments vs partial relations
The idea of providing partial clusterings is not new to the literature. The

closest idea to ours that we have found in the literature consists in providing
upper and lower approximations of clusters, originally proposed in the rough
set field (Lingras, 2001). This idea consists in specifying, for each cluster ωk,
a subset of objects ωk that necessarily belongs to it, and a subset of objects
(including the first) ωk that potentially belong to it, which only informs us that
ωk ⊆ ωk ⊆ ωk. Alternatively, given K clusters ω1, . . . , ωK , partially clustering
the instances may also be seen as identifying the set of plausible clusters for
each instance xi, i.e. to predict a subset κi ⊆ {ω1, . . . , ωK} of clusters to which
it may belong. This is essentially the strategy behind approaches providing a
soft partition of a set of instances (Masson and Denoeux, 2008).

However, such approaches to get partial clusterings are not equivalent to the
one explored in this paper. First, it should be stressed out that determining the
plausible clusters for a set of instances generally requires to specify the number
of clusters to consider. When processing relational data, the information at
hand does not make any assumption regarding this number, which can instead
be inferred from the relation matrix obtained as output.

As an illustration, consider again the clustering problem in Example 2, and
let κi stand for the set of possible clusters to be determined for the ith individual.
The consistent partial matrix gives three pieces of information: (a) 2 and 3
should be together; (b) they may either be in the same cluster as 1, or 4; (c) 1
and 4 must be in two separate clusters.

Let us first assume that we are looking for a partition into K = 2 clusters.
The only way to satisfy constraint (c) is then to assign 1 and 4 to single clusters:
for instance, κ1 = {ω1} and κ4 = {ω2}. However, satisfying both (a) and (b)
amounts to set κ2 = κ3 = {ω1, ω2}: then, the information that 2 and 3 should
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remain in the same cluster has been lost. In the case of a partition into K = 3
clusters, satisfying (a) leads to κ2 = κ3 = {ω2}; (b) translates into κ1 = {ω1, ω2}
and κ4 = {ω2, ω3}, which violates (c): even if objects 1 and 4 could be related
to (2,3), they cannot be at the same time.

3. Processing score matrices

In this work, we assume our input information to be a n × n matrix S of
graded scores Si,j . We interpret Si,j as an information about the relation Ri,j

between two objects. We assume that these scores are within an interval [a, b]:
the closer a score Si,j is to a (respectively, b), the higher is the belief that
objects i and j are disconnected (resp., related) to each other. In addition,
we will assume a “neutral” element c ∈ [a, b], according to which uncertain
relations can be identified: in other words, scores Si,j ∈ [a, c) (respectively,
∈ [c, b]) support the conclusion Ri,j = 0 (resp., Ri,j = 1), and this support is
considered to be weak if the score is close to c. Apart from this, we do not
assume that scores Si,j satisfy any specific property in general. In practice, we
will often choose c = (a+b)/2. For example, probabilistic predictors would provide
a score Si,j ∈ [0, 1], with 0.5 as the neutral element; other techniques may give
real-valued scores Si,j ∈ (−∞,+∞), with 0 acting as a neutral element. Note
that this neutral element may alternatively be computed from the data so as
to exhibit specific properties (such as, e.g., the median in a set of scores), or
specified by a user.

Obviously, we can easily transform S into a binary matrix R by setting
Ri,j = 0 if Si,j < c, and Ri,j = 1 otherwise. However, the resulting matrix R
will likely be inconsistent if the scores Si,j are estimated independently from
each other. We thus propose to consider partial adjacency matrices, whose
partiality is induced by the scores Si,j and by how close they are to c.

We thus propose to distinguish between scores according to their degree of
support in favor of a relation or absence of relation. To this end, we propose
to define a partial matrix Rε such that Rε

i,j = 0 if Si,j < c − ε, Rε
i,j = 1 if

Si,j ≥ c + ε, and Rε
i,j = ?© otherwise, for some ε ≥ 0. This amounts to assess

that Rε
i,j = ?© whenever c ∈ [Si,j−ε, Si,j +ε]∩ [a, b]. The parameter ε obviously

plays a crucial role in our procedure, since its value will impact the number of
missing relations in the partial matrix obtained.
Example 3. Figure 3 displays a score matrix (Si,j ∈ [0; 1] for all i, j ∈ {1, . . . , n});
thresholding this matrix with respect to the typical neutral element c = 0.5
leads to an inconsistent relation matrix R: it can be easily checked that both
symmetry and transitivity are violated.

Discounting the matrix using a value ε = 0.1 leads to a discounted (interval-
valued) score matrix. An interval should be interpreted as the set of plausible
values for the actual score Si,j : it can thus be considered as symmetric whenever
two intervals corresponding to the same score have a nonempty intersection.

The discounted score matrix can in turn be thresholded using the same neu-
tral element c = 0.5: the resulting relation matrix is now partial but consistent.
Note that it is the same as the one obtained in Example 2.
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 1 0.45 0.55 0.2
0.55 1 0.7 0.55
0.42 0.9 1 0.57
0.3 0.52 0.45 1


Score matrix

1 0 1 0
1 1 1 1
0 1 1 1
0 1 0 1


Inconsistent relation matrix

thresholding (c = 0.5)

 1 [0.35, 0.55] [0.45, 0.65] [0.1, 0.3]
[0.45, 0.65] 1 [0.6, 0.8] [0.45, 0.65]
[0.32, 0.52] [0.8, 1] 1 [0.47, 0.67]
[0.2, 0.4] [0.42, 0.62] [0.35, 0.55] 1


Discounted score matrix

ε =

0.1

 1 ?© ?© 0
?© 1 1 ?©
?© 1 1 ?©
0 ?© ?© 1


Partial consistent relation matrix

thresholding (c = 0.5)

Figure 3: Input score matrix S with associated inconsistent relational matrix R; discounted
score matrix (ε = 0.1) leading to a partial consistent matrix Rε.

Our strategy consists first in computing the smallest value of ε resulting in a
consistent matrix Rε, so as to ensure that the original scores Si,j are altered as
little as possible in the process. The minimal value satisfying this property will
hereafter be written ε∗, and R∗ will stand for the corresponding partial con-
sistent relational matrix. Computing ε∗ and R∗ is one of the main algorithmic
concerns of this paper. Note that we may also imagine that imprecise scores are
available from the start, and our approach is versatile in this respect, since the
methods can easily be applied to these cases (or to combinations of them).

3.1. Checking and obtaining consistency
As explained above, the main concern of this paper is to compute a minimal

value ε∗ leading to a partial but consistent matrix R∗. A consistent relational
matrix satisfies reflexivity, symmetry and transitivity. As suggested previously,
checking for the two former is straightforward; for the latter, our strategy relies
on the fact that the graph G = (V,E) corresponding to a proper partition is a set
of disjoint cliques: that is, every connected component Di is fully connected1.

Proposition 1. A partial matrix R is consistent if and only if every connected
component Di of the corresponding graph can be completed into a fully connected
graph (a clique), i.e. 0 6∈ RDi,Di

.

Proof. If : Assume that 0 6∈ RDi,Di
for any connected component. First note

that we cannot have Rk,l = 1 if vertices k and l are not in the same connected

1Recall that a subset Di ⊆ V of nodes is a connected component if there exists a path
between each pair of nodes k, l ∈ Di; it is fully connected if (k, l) ∈ E for all k, l ∈ Di. The
same holds for partial graphs, where (fully) connected components are identified from known
links.
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component. Therefore, for any k ∈ Di, l ∈ Dj with j 6= i, we have Rk,l ∈ { ?©, 0}.
Since the set of connected components forms a partition (i.e. Di ∩Dj = ∅ for
all i 6= j, and ∪iDi = V ), we can always take the following completion for any
Rk,l = ?©, k ∈ Di, l ∈ Dj :

Rk,l =

{
1 if i = j

0 else
(1)

That is, if each pair of connected components remains unconnected and forms
a clique, then the matrix is consistent as it has at least one completion into a
partition.

Only if : assume we have Rk,l = 0 ∈ RDi,Di for some k, l ∈ Di. Since Di is
a connected component, then there is a path from vertex k to vertex l, and by
transitivity we should have Rk,l = 1, showing that R is not consistent.

Algorithm 1 describes a simple method for checking consistency, derived
from Proposition 1; it makes use of any existing efficient method to extract
connected components (see, e.g., (He et al., 2017)).

Algorithm 1: Check consistency of R
Input: partial matrix R
Output: assessment Cons (Cons=0: inconsistent, Cons=1: consistent)
Cons=1;
Extract connected components D1, . . . , DL;
foreach component Di do

if ∃k, ` ∈ D2
i with Rk,` = 0 then set Cons=0 and stop;

return Cons

Then, the optimal value ε∗ can be obtained either by starting with ε = 0 and
increasing its value until Rε is consistent, or by a dichotomic search between 0
and ε (with ε necessarily leading to a partial consistent relation matrix, typically
ε = maxi,j |Ri,j−c|). Algorithm 2 describes this latter procedure: a lower bound
ε∗ and an upper bound ε∗ on ε are updated so as to converge to each other (with
ε∗ always leads to a partial consistent matrix), and the procedure stops when
the current value ε is in a δ-neighborhood of ε∗. The parameter δ is chosen by
the user.

3.2. Deducing values in partial consistent matrices
Given a generic consistent partial matrix R, it may be possible to deduce

some missing values by exploiting the symmetry and transitivity properties. For
instance, if Ri,j is known and Rj,i = ?©, we can immediately deduce the value
of the latter by symmetry — the same result may be achieved by exploiting
transitivity, for instance if Ri,j = 1 and Ri,k = 1 while Rj,k = ?©.
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Algorithm 2: Obtain minimal discounting parameter ε∗

Input: score matrix S, precision δ, ε
Output: ε∗
ε∗ ← 0;
ε∗ ← ε;
ε← (ε∗+ε∗)/2;
while |ε∗ − ε| ≥ δ do

Cons(ε)← output of Algorithm 1 for Rε ;
if Cons(ε) = 1 then ε∗ ← ε else ε∗ ← ε;
ε← (ε∗+ε∗)/2;

In this section, we show how such missing relations can be identified from
a given consistent partial matrix R. Once these necessary replacements2 are
made, the remaining missing relations Ri,j = ?© are impossible to deduce with-
out adding further information: they could in principle be replaced either by
1 or 0 (provided that such unnecessary replacements are consistent with each
other).

Our approach to proceeding with necessary replacements in a partial matrix
R consists in two successive steps:

• for each connected component Di of the graph given by R (obtained by
Algorithm 1), we have RDi,Di

= 1|Di|, which follows from transitivity:
this means that any ?© ∈ RDi,Di

must be replaced by 1.

• Then, if for any pair of distinct components Di, Dj with i 6= j, we observe
0 ∈ RDi,Dj (and thus 0 ∈ RDj ,Di due to symmetry), R cannot be com-
pleted so that RDi∪Dj ,Di∪Dj forms a unit matrix (i.e., components Di and
Dj cannot be aggregated into a fully connected component): therefore, all
remaining missing elements ?© must be replaced by 0.

Once the partial matrix has been processed through these two steps, all remain-
ing pairs of disjoint connected components Di, Dj such that RDi,Dj and RDj ,Di

contain missing elements can either be linked or separated, by replacing the
missing relations between their elements either with ones or zeros.

An illustration of this procedure is provided in Figure 4, where we identify
first all mandatory relations ( ?© in R to be replaced by 1), and then all manda-
tory separations ( ?© in R to be replaced by 0). The end result is still imprecise,
as it still contains some ?© elements. It is clear that the result of our procedure
corresponds to a unique clustering if and only if the completed matrix is con-
sistent and no longer contains any ?© elements. In such a case, our procedure
may be seen as “repairing” the initial inconsistent matrix.

2Necessary replacements are constrained by identified relations in the matrix: the missing
value must be uncovered using the available information.
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
1 ?© 0 0
0 1 1 ?©
?© ?© 1 ?©
?© ?© ?© 1


Partial relation matrix


1 ?© 0 0
0 1 1 ?©
?© 1 1 ?©
?© ?© ?© 1


Filling the ones


1 0 0 0
0 1 1 ?©
0 1 1 ?©
0 ?© ?© 1


Filling the zeros

Figure 4: Deducing matrix elements.

3.3. Computing completions: a discussion
A partial clustering such as provided by the procedure described in Sec-

tion 3.2 can deliver cautious inference to the user. Indeed, it makes it possible
to identify relations strongly supported by data, and to abstain to predict on
those where we have insufficient or ambiguous information. Such abstention
could provide a basis for performing active learning of clustering relationships.

In this part, we discuss the problem of obtaining completed matrices from
partial consistent ones. We will keep the discussion rather general, as our pri-
mary goal in this work is to keep partiality in order to exploit it, and not
especially to suppress it in some preprocessing. Nevertheless, having methods
such as the ones presented here to scan among completions of partial matrices
could be useful, e.g., to present some of them to users.

Guessing the number of clusters. In some contexts, it is natural to estimate how
many different completions could be made and how many clusters could result
from such completions, since our approach does not require to fix the number
K of clusters in advance. This latter question can be addressed by providing
lower and upper bounds (K,K) to the number of clusters.

Determining an exact upper bound is actually easy, since replacing every ?©
by zeros separates completely connected components from each other whenever
possible: as a consequence, if D1, . . . , DL are the connected components of R,
then K = L.

Determining a lower bound K, however, cannot be achieved by simply re-
placing missing values with 1, since it may result in an inconsistent matrix.
To determine K, let us consider the graph G′ = (V, F ) encoding the identi-
fied absences of relations, where the vertices are the objects and (i, j) ∈ F iff
Ri,j = 0. It is clear that each cluster corresponds to a set of objects which
are not connected in G′, and that any pair of connected objects should belong
to different clusters in any possible completion of G′. The minimal amount of
clusters satisfying the identified absences of relations can be obtained by solving
the coloring problem in G′, and by taking K = C, with C the number of colors
required so that every connected vertices of G′ have different colors.

Enumerating the set of full relation matrices consistent with the data. A more
complex issue is that of computing the set of possible completions of a partial
consistent matrix R obtained from the data, as was done in Example 2. A
simple procedure for determining this set consists in using a recursive strategy
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such as described by Algorithm 3: missing values are progressively replaced by
1 and then 0, before the matrix is completed and the procedure called again,
stopping when a full matrix is obtained.

Algorithm 3: Compute the set R of full relation matrices consistent
with R
Input: relation matrix R
Output: set R of complete consistent matrices
if R is complete then

return R ← R
else

Pick up a missing relation Ri,j ;

Define R+1 by replacing Ri,j by 1, and complete it (see Section 3.2);
Call recursively Algorithm 3 on R+1 and add the output to R;

Define R+0 by replacing Ri,j by 0, and complete it (see Section 3.2);
Call recursively Algorithm 3 on R+0 and add the output to R;

return R

If the amount of missing relations is judged too important for Algorithm 3 to
be used, the random strategy described in Algorithm 4 can be used alternatively.
It is basically a Monte-Carlo approach for retrieving a set of desired size of
full consistent relation matrices from R: the strategy repeats replacing missing
relations at random by 0/1 numbers and completing the matrix.

Note that Algorithm 3 makes it possible to retrieve the full set R of matri-
ces consistent with R by considering all replacements of missing values in this
latter. The size of this set is obviously bounded above by 2| ?©|/2, where | ?©|
is the number of missing elements — this will usually be a conservative upper
bound, since additional missing relations can be deduced using transitivity each
time a replacement is made. Algorithm 4 is in principle computationally less
expensive, since it only computes a subset R̂ of desired cardinality T of full
matrices consistent with R — although there is a chance of sampling the same
matrix several times, hence delaying the computation of R̂. The probability
p of replacing missing values by 1 will directly influence the average number
of clusters, a high p being likely to induce a low number of clusters and con-
versely — in particular, a value p = 0 will lead to systematically separating
the groups already identified, thus retrieving the solution with K = K clusters.
Note that any value p ∈ (0, 1) will, in theory, finish by sampling every possible
completions, yet it is unclear in practice how fast it will obtain the full set R .

Computing a clustering using additional information. Eventually, we may con-
sider the problem of determining a specific completion satisfying some proper-
ties. There are several ways to reach this objective, such as fixing the number
K∗ of desired clusters, or choosing the completion which minimizes some dis-
crepancy between the hard partition matrix R and the score matrix S.
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Algorithm 4: Compute a subset R̂ of full relation matrices consistent
with R
Input: relation matrix R, desired cardinality T for R̂, probability p of

drawing ones, maximal number N of iterations
Output: set R̂ of complete consistent matrices deriving from R
R̂ ← ∅;
n← 0;
while |R̂| < T and n < N do

n← n+ 1;
R̂← R;
while R̂ contains missing values do

Pick up a missing value R̂ij = ?© at random;
Replace R̂ij by sampling from a Bernoulli distribution B(p);
Complete R̂ (see Section 3.2);

if R̂ /∈ R then
Set R̂ ← R̂ ∪ R̂;

return R

Note, however, that if the purpose is to determine a single hard partition
from the data, straightforward approaches (such as, e.g., spectral clustering)
may be better suited than our strategy, which aims at letting a user provide
side knowledge in a cautious, iterative fashion based on intermediate solutions
inferred from the data.

3.4. Choosing ε
From our discussion, it is clear that picking the value ε∗ will result in a

consistent matrix having a minimal number of missing elements. We can even
expect that in a number of cases, deductions of Section 3.2 will make this partial
matrix complete. Experiments of Section 4 will confirm this. In those situations,
our approach corresponds more to repairing an inconsistent matrix than to
providing cautious but reliable partial inferences.

This is why, in practice, one can choose a value of ε higher than ε∗, so as to
only keep those link predictions that are the most certain. Choosing such a value
is then similar to picking a rejection threshold or cost in classification (Bartlett
and Wegkamp, 2008), and highly depends on how cautious the user is ready to
be in order to ensure inference reliability.

It should be noted that, in practice, not all values of ε will provide different
examples, and there will be intervals of values that will result in the same partial
consistent matrix, and there will be a finite number of such matrices. An obvious
idea is then to display those different matrices of increasing partiality (choosing
a representative ε for each of them), and let the user analyse them. This is the
strategy we will follow in the experiments.
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4. Experiments on clustering problems

This section shows various experiments whose main purposes are to show
how our mehod can be used, and to confirm that the induced partiality indeed
keep the reliable predictions and forget the least certain ones.

The first two experiments, respectively on simulated and real data sets where
data are interval-valued (and hence distances imprecise), show how our method
can be applied to object data, confirming its generality. The third experiment
provides results on two relational data sets for which the number of sought
clusters is unknown, and for which there is no information about the objects
themselves. Finally, the last experiment demonstrates that our approach per-
forms as expected, in the sense that those forgotten links are those that degrade
the most the clustering quality.

4.1. Synthetic Gaussian data
As a first illustration of our approach, we created a synthetic two-dimensional

data set from a bivariate Gaussian distribution with g = 4 components, each of
them counting nk = 25 instances, with common covariance matrix Σk = 1/4 Id2

(hereafter, Idp stands for the identity matrix of dimension p) and expectations

µ1 =

(
0
0

)
, µ2 =

(
1.75

0

)
, µ3 =

(
0

1.75

)
, µ4 =

(
1.75
1.75

)
.

The data are represented in Figure 5a. They are purposely kept very simple to
allow for a visualization of the different steps of the method.

The clustering is performed using MIXMOD, a software package for model-
based supervised and unsupervised classification using mixture models, available
at http://www.mixmod.org/. The experiment is conducted in the following
way: we sample with replacement in the whole data set; we then estimate the
parameters of a Gaussian mixture model and we use them to compute estimates
p̂ij of the co-association probabilities that each pair of instances in the initial
data set is in the same cluster:

p̂ij =

K∑
k=1

P̂ (ωk | xi)P̂ (ωk | xj),

P̂ (ωk | x) =
π̂kf(x; θ̂k)∑K
`=1 π̂`f(x; θ̂`)

,

where f(·; θk) stands here for the pdf of a multivariate Gaussian distribution
with parameters θk = (µk,Σk) and πk is the proportion of component k.

In the experiments, we repeated nb = 20 times the procedure of estimating
a mixture of K = 4 Gaussians with equal proportions and equal covariance ma-
trices, and averaged the co-association matrices thus obtained. Using a neutral
element c = 0.5, our strategy provided a minimal discounting value ε∗ = 0.09,
meaning that the averaged co-association matrix is not consistent (otherwise
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(a) Synthetic Gaussian data (b) Representation of Rε∗

(c) Completion of Rε∗ with ones (d) Completion of Rε∗ with zeros

Figure 5: Illustrative example: synthetic Gaussian data with 4 classes. Blue solid lines repre-
sent known associations (Ri,j = 1) and red dashed lines missing relations ?©.
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Figure 6: Representation of the Cars data set

we would have obtained ε∗ = 0). The representation of Rε∗ is given in Fig-
ure 5b: blue solid lines represent known associations (Ri,j = 1 in the partial
matrix), and red dashed lines missing relations (Ri,j = ?©). The completions
with ones and zeros are given in Figure 5c and 5d, respectively. It can be seen
that after proceeding with completing the matrix, the four clusters are correctly
recovered, except for a point (object n. 61) which remains isolated, since it is
never associated with a high confidence with any other instance in any of the
nb clusterings.

This simple synthetic example shows that R∗, resulting from a minimal
correction of the initial inconsistent scores, will often be completed into a unique,
non-partial clustering: as such, using ε∗ can be seen as a “repairing” tool, as
said in Section 3.4. For this purpose, we may explore such partial solutions by
arbitrarily picking values ε ∈ [ε∗; 0.5]: the intuition is that by increasing the
discounting level ε, only the most certain pairwise relations will be kept in the
resulting matrix Rε, and thus the most robust information based on which a
clustering may be determined. This strategy can be seen as an iterative learning
procedure for computing more and more robust clusterings of the data. We may
imagine introducing another step where information is actively provided by an
user after visualizing the partial clusterings thus obtained.

4.2. Interval-valued data
We now illustrate the approach in the particular case of interval-valued data.

We use the Cars data set (Carvalho et al., 2006) which consists in 33 car models
described by 8 interval-valued features (price, engine capacity, top speed, accel-
eration, step, length, width and height). These cars are a priori classified into
four categories : Utilitarian, Berlina, Sporting and Luxury.
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(a) Clustering with minimal correction (b) Partial clustering obtained with ε = 0.25

Figure 7: Clustering of the Cars data into four clusters.

A 2D representation of the data is obtained using principal component anal-
ysis (PCA) for interval-valued data (Cazes et al., 1997). This simple method
consists in performing a standard PCA on the centers of the intervals and pro-
jecting the rectangles on the axes thus obtained. The projection onto the two
first principal axes is displayed in Figure 6. Note that the data have been stan-
dardized according to the means and standard deviations of the centers of the
intervals.

As previously, our method is applied based on average co-association ma-
trices estimated by resampling in the original data. More specifically, precise
samples are repeatedly drawn at random in the initial interval-valued data and
then clustered into K = 4 clusters using a standard fuzzy C-means algorithm
(Bezdek, 1981). This process is repeated nb = 20 times and the co-association
matrices obtained from each clustering are averaged. Using a neutral element
c = 0.5, we find that ε∗ = 0 meaning that the averaged co-association matrix is
found to be consistent. The partition obtained is represented in Figure 7a. For
the sake of clarity, we did not represent the transitive closure of the objects in
each cluster as before. Instead, an object was arbitrarily chosen in each cluster
and used to represent intra-cluster and inter-cluster relations. The partition is
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consistent with the results provided by other authors (see e.g. (Carvalho and
Lechevallier, 2009b,a)).

So, in this case, the main interest of our method is to explore values ε > ε∗,
and to see if the made cautious inferences are meaningful. In this case, we
only display the least partial clustering, corresponding to the first non-complete
matrix Rε as ε increases. A representative value for this is ε = 0.25: choosing
this value and completing the resulting matrix with 1 and 0 gives the imprecise
clustering represented in Figure 7b. This partial clustering isolates the instances
6-B and 1-U (indicated in red bold in Figure 6), which were previously misclas-
sified, and identifies each of them as a potential member of two clusters, among
which is the right one.

4.3. Relational data
We now present some results obtained on two relational datasets. The Muta-

tion data (Fitch and Margoliash, 1967) consist in dissimilarity measures between
20 species. More specifically, it is based on the Cytochrome C protein molecule,
which is highly conserved across animals, plants, and many unicellular organ-
isms, and whose structure varies according to the species. Due to its wide spread
and small size, it has been used to construct phylogenetic trees, based on the
numbers of positions with different acids in the Cytochrome C amino-acid chain
for each pair of species. The Airports data consist in geodesic distances between
airports located in various countries worldwide. Note that none of these two
datasets have any class information.

In both cases, the dissimilarities are first normalized with respect to the
highest observed dissimilarity in the data. We then obtain the score matrix
by taking, for each pair of elements, the complement to one of the normalized
dissimilarity: if dij is the dissimilarity between elements xi and xj , then we
have Si,j = 1− dij .

Mutation data
A 2D representation of the species described in the Mutation data, obtained

by classical multidimensional scaling, is given in Figure 8. The representation
in the first factorial plane corresponds to 69.66% of the variance corresponding
to the positive eigenvalues.

As it turns out, the score matrix derived from the Mutation dissimilarity
data is inconsistent: our procedure gives a minimal value ε∗ = 0.07 in order
to obtain a partial consistent matrix. The corresponding clustering is given in
Figure A.11a (see Appendix A). As can be seen, the minimally relaxed relation
matrix can lead to two different clusterings, whether “Bread yeast” and “Skin
fungus” species are grouped into the same cluster or not.

We have also computed three different partial clusterings for this problem,
for the increasing values ε ∈ {0.20, 0.25, 0.30} (these are representative values
of increasingly partial matrices). All results are illustrated in Figures A.11b to
A.11d (Appendix A). The results for ε = 0.25 are displayed in larger in Figure 9.
For ε = 0.20, the pairwise links between “Tuna”, “Screwworm fly, Moth” and
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Figure 8: Representation of the Mutation data.

the main cluster have been relaxed into uncertain links, “Screwworm fly, Moth”
being still considered as a cluster. Setting ε = 0.25 further leads to consider the
link between “Rattlesnake” and the main cluster as uncertain. With ε = 0.30,
the link between “Screwworm fly” and “Moth” also becomes uncertain, as is a
potential link between “Baker’s mould” and “Bread yeast, skin fungus”, which
was previously considered as impossible.

Airports data
Similarly to the mutation data set, we obtained a 2D representation of the

airports obtained by classical multidimensional scaling, in Figure B.12 of Ap-
pendix B. This representation corresponds to 72.83% of the variance corre-
sponding to the positive eigenvalues. As previously, the score matrix derived
from the Airports dissimilarity data is not consistent and requires at least
ε∗ = 0.27 in order to obtain a partial consistent matrix. The associated cluster-
ing consists in a single solution with three clusters — in a nutshell, Australia,
America and Africa-Asia-Europe.

In addition to the clustering obtained with ε∗ = 0.27, we also computed three
partial clusterings for increasing values ε ∈ {0.31, 0.32, 0.33} (again, these are
representative values of increasingly partial matrices), which are represented in
Figures B.13b to B.13d (Appendix Appendix B). For ε = 0.31, the link between
“Los Angeles, San Francisco” and the other american airports has been relaxed,
as well as the absence of link between the australian and american clusters: the
data may thus be clustered into two to four clusters. With ε = 0.32, the link
between the Asia and Africa-Europe clusters become uncertain, the former being
in addition potentially related to the american (and therefore the australian)
airports. The solutions thus range from one to five clusters. Increasing ε to 0.33
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Figure 9: Partial clusterings of the Mutation data for ε = 0.25.

separates “Montreal, New York” from “Caracas, Lima, Buenos Aires”, thereby
leading to a set of solutions ranging from one to six clusters.

4.4. Completeness-correctness tradeoff
As we have argued before, one interest of our approach is to consider different

levels for ε, making the predictions more robust as they become more partial.
An expected behaviour of our approach is therefore that the accuracy of the
remaining links increases as we abstain more, in contrast with simply forgetting
at random, which by principle would not increase on average the accuracy of the
remaining links. The experiments performed in this section aims at confirming
this intuition, and at showing that the expected behaviour is indeed the one
observed. We illustrate this fact on six classical datasets from the UCI Machine
Learning Repository (Lichman, 2013) described in Table 1.

In these experiments, we used the same process than for the synthetic data
set. Bootstrap samples are created by sampling with replacement in the whole
data set. A Gaussian mixture model is then fit to each bootstrap sample using
MIXMOD (with a number of components equal to the known number of classes),
and used to compute the probability for each pair of instances in the initial
dataset to belong to the same cluster. We repeat this process nb = 20 times
and average the co-association matrices.

3Three clusters of very small size have been removed from the original data set.
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Table 1: Datasets description

data set #features #labels #instances
iris 4 3 150
wine 13 3 178
seeds 7 3 210
ecoli3 7 5 327

segment 18 7 2310
optdigits 64 10 3823

Figure 10: Clustering results on segment

Since our approach potentially yields an incomplete clustering, we use two
specific measures to evaluate the results of the experiments. The first one is an
extension of the Rand index (Rand, 1971) which is classically used to measure
the similarity between two partitions. The Rand index computes the proportion
of pairs of instances on which both clusterings agree: either they are classified
in the same subset by the two clusterings, or they are classified in different
clusters in both clusterings. A natural extension for partial clusterings consists
in computing the Rand index only using the pairs (i, j) of objects for which
Rε

i,j 6= ?©. The second criterion, the completeness of the relation, corresponds
to the proportion of pairs (i, j) for which Rε

i,j 6= ?©. A good method for provid-
ing partial clusterings should see the Rand index increase when completeness
decreases. A tradeoff between completeness and correctness can be reached by
setting ε between ε∗ and 0.5, thresholding R and completing the relation with
ones and zeros.

Figure C.14 in Appendix C displays the average completeness and partial
Rand index, computed over ten repetitions of the process described above, for
all data sets. Figure 10 provides the result for the segment data set only, whose
behaviour is similar to that of other data sets. It turns out that the completeness
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is never equal to 1, which means that the initial matrices are never consistent.
This also show that while using ε∗ may lead to precise consistent matrix, this
is not always the case. As expected, abstaining to make a complete clustering
in presence of uncertain relational information leads to improved performances.
For several datasets, the accuracy can be significantly increased at the price of
a reasonable decrease in completeness, as we always reach a Rand index above
0.95, while never going below a completeness of 0.6, meaning that more than
half the links remain.

5. Conclusions

In this paper, we have introduced an approach for computing a partial clus-
tering from relational data, more precisely based on a matrix containing scores
of relations between pairs of items. A score matrix may not be consistent (i.e.
it may not encode a proper equivalence relation): therefore, the first step of
our approach consists in (minimally) relaxing it until it satisfies the required
symmetry, reflexivity and transitivity properties. The corresponding matrix is
then completed by exploiting these properties. If the completed matrix is still
incomplete, the solution is considered to be imprecise, in that several clusterings
can be derived from the data. The main interest of our approach lies in the fact
that in presence of scarce information, it allows for drawing cautious conclusions
from the data, possibly until additional information is provided by an expert.

In the experiments, we show how score matrices can be generated, either by
probabilistic generative models such as mixture of Gaussian distributions, or by
sampling in imprecise data. In both cases, the results point out that allowing
for partial clusterings can be helpful to identify ambiguous items (i.e., which
could belong to several clusters), and increase our confidence in the results
while still providing meaningful clustering outputs. Experiments realized on
real relational datasets show the interest of our approach in an exploratory
data analysis process, since the user can easily be provided with a feedback on
possible solutions induced by the data.

To our knowledge, our proposal is the first to investigate the possibility to
provide partial clusterings in a relational manner. A closely related, yet different
problem is the detection of outliers (Melendez-Melendez et al., 2019; Tellaroli
et al., 2016) in the clustering problem, that can abstain to assign some object
to the clusters. It therefore corresponds to a reject strategy (objects are either
assigned to one cluster, or not at all), a specific case of a partial assignment.
It would be interesting to investigate in the future how our approach can help
to make such a detection. Similarly, it would be interesting to investigate in
which measure our approach can help in other connected problems such as in
active learning (Rendle and Schmidt-Thieme, 2008), where it is essential to
detect which information si unreliable, and should be asked to the experts, or in
signed graph problems (Figueiredo and Frota, 2014), where the goal is to find a
bi-partition despite of noisy and uncertain information about the links between
individuals (typically voters forming coalitions).
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There also remain some limiting aspects of our approach that could be im-
proved. For instance, while the described methods remain tractable even in
presence of a large amount of items, as it involves only polynomial algorithms,
a full visualisation of the results as we gave in the experiments would be infea-
sible. If we were for example tackling active learning problems for such large
data sets, it would be necessary to carefully define and select which part of the
results has to be shown to the experts. Another limitation is that while we al-
low the links between objects to be more or less uncertain, we assume that the
scores Si,j are reliable estimators of this uncertainty, as otherwise the discount
factor ε∗ to get a consistent matrix may be overly high. Solutions to solve this
issue could be to allow a limited number of violations of the equivalence relation
properties, possibly going towards a "soft" version of our methods.
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Appendix A. Mutation data set

(a) Minimal correction (ε = 0.07) (b) ε = 0.20

(c) ε = 0.25 (d) ε = 0.30

Figure A.11: Partial clusterings of the Mutation data.
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Appendix B. Airport data sets

Figure B.12: Representation of the Airports data.
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(a) Minimal correction (ε = 0.27) (b) ε = 0.31

(c) ε = 0.32 (d) ε = 0.33

Figure B.13: Partial clusterings of the Airports data.
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Appendix C. Completeness-correctness tradeoff

Figure C.14: Clustering results on 6 real datasets
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