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LAGRANGIAN CONFIGURATIONS AND SYMPLECTIC CROSS-RATIOS

CHARLES H. CONLEY AND VALENTIN OVSIENKO

ABSTRACT. We consider moduli spaces of cyclic configurations of NV lines in a 2n-dimensional symplectic
vector space, such that every set of n consecutive lines generates a Lagrangian subspace. We study
geometric and combinatorial problems related to these moduli spaces, and prove that they are isomorphic
to quotients of spaces of symmetric linear difference operators with monodromy —1.

The symplectic cross-ratio is an invariant of two pairs of 1-dimensional subspaces of a symplectic
vector space. For N = 2n + 2, the moduli space of Lagrangian configurations is parametrized by n + 1
symplectic cross-ratios. These cross-ratios satisfy a single remarkable relation, related to tridiagonal
determinants and continuants, given by the Pfaffian of a Gram matrix.
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2 CHARLES H. CONLEY AND VALENTIN OVSIENKO

1. INTRODUCTION

Throughout this article, K will denote either R or C. We consider configurations of one-dimensional
subspaces in the standard symplectic space K27, or equivalently, configurations of points in the contact
projective space KP2"~1 modulo the action of the symplectic group Sp(2n, K).

Definition. For N > 2n, define an (n, N)-Lagrangian configuration over K to be a cyclically ordered N-
tuple (X1,..., Xx) of lines through the origin in the symplectic space K" with the following properties
(by cyclically ordered, we mean that the indices are read modulo N):

(i) Every n consecutive lines span a Lagrangian subspace: {(X;i1,..., X;1,) is Lagrangian for all i.

(ii) Every 2n consecutive lines span the entire symplectic space: (X;y1,..., X;1on) = K" for all i.

Equivalently, we may speak of Legendrian configurations of points in the contact projective space
KP2"~1, We have formulated our results in the symplectic setting, but let us mention that Legendrian
configurations in RP? may be viewed as discrete analogs of Legendrian knots. In another direction, one
may consider cyclically ordered N-tuples of Lagrangian subspaces (L1, La,...,Ly) in R?™ such that
every two consecutive subspaces L; and L;; are “maximally non-transversal”. These configurations are
in some sense dual to Lagrangian configurations, and the Maslov index may be applied to study them:;
see [2]. Continuous versions were treated in [16].

Suppose that an arbitrary cyclically ordered N-tuple (X7,..., Xy) of lines through the origin in K"
has Property (i) above. We will see in Lemma 2.2 that then it has Property (ii) if and only if the subspace
(X, X;+n) is not isotropic for any ¢. It turns out that Sp(2n,K) does not act freely on all Lagrangian
configurations, but for N > 2n, it does act freely on configurations in which (X;, X;) is not isotropic
except when forced to be so by Property (i); see Proposition 2.7. We refer to such configurations as
generic:

Definition. An (n, N)-Lagrangian configuration (X1,...,Xn) is generic if (X;, X;) is non-isotropic
whenever the N-cyclic distance between ¢ and j is at least n, that is, |i — j| is not congruent to any of
0,...,n —1 modulo N. We denote the Sp(2n,K)-moduli space of generic (n, N)-configurations over K
by En,N(K).

The space £, n(K) is the main object of our study. We will see that Sp(2n,K) acts freely on generic
configurations, implying that £, n(K) is a variety of dimension n(N — 2n — 1), and moreover, £, n(R)
and £, n(C) are smooth real and complex manifolds of this dimension, respectively. We construct a
collection of symplectic cross-ratios which are Sp(2n, K)-invariants of Lagrangian configurations over K,
and in some cases show that these cross-ratios form a coordinate ring on £, n(K). They satisfy certain
relations, which we calculate explicitly as Pfaffians for N = 2n + 2, the simplest non-trivial case. These
Pfaffians are closely related to the classical determinants of continued fractions known as continuants;
see [3].

Observe that for n = 1 the Lagrangian condition is vacuous, so £ ny(K) is essentially the classical
moduli space Mg n of configurations of N points on the projective line. We regard £, y(K) as a multi-
dimensional symplectic variant of M n. The only previously studied configurations in symplectic space
we know of are triangles and skew lines; see [22] and Section 2.8 of [15]. To the best of our knowledge,
Lagrangian configurations have not been considered before. We believe that they deserve further study;
in particular, it would be interesting to investigate the topology of £, x(K). It seems plausible that the
topological invariants of Legendrian knots, for instance, the Maslov class and the Bennequin invariant, as
well as more general invariants, can be expressed in terms of cross-ratios of a Lagrangian configuration.

Relations to dynamical systems also seem promising. Moduli spaces of cyclic configurations of points
in RP" (without any Legendrian condition) carry a family of discrete integrable systems, including the
pentagram map and its generalizations; see [6, 8, 9, 18, 19, 21]. We believe that £,, x(K) also supports
interesting discrete dynamical systems.
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1.1. Example: hexagons in KP?. Our main geometric result is a description of £, 25,+2. The simplest
case, £1,4(K), is the moduli space of quadrilaterals in KPP!. It has been known since ancient times to be
1-dimensional and parametrized by the classical cross-ratio. Therefore the first new case is L2 6(K), the
Sp(4, K)-moduli space of generic (2, 6)-Lagrangian configurations, i.e., Legendrian hexagons in KP3.

Given any (2,6)-configuration, choosing a non-zero point on each of the six lines gives a hexagon
(20,...,75) in K% Tt turns out to be natural to regard this hexagon as the 6-antiperiodic sequence
(24)iez defined by ;46 := —x;. Then

W(Ti, Tiy3) = W(Tit3, Tite), w(Ti, Tiva) = w(Tiv2, Tive),

where here and throughout the paper w is the standard symplectic form on K" (see Section 2.5). The
sequences (w(xi,ng))iez and (w(mi,ng))ieZ are 6-periodic and 3-periodic, respectively.

The Lagrangian conditions are w(z;,z;+1) = 0 and w(x;, x;4+2) + 0. Thus we may say that we are
considering hexagons whose sides are of “symplectic length zero”, but whose “symplectic subdiameters”
are non-zero. The generic configurations are those with non-zero “symplectic diameters”: w(x;, z;43) % 0.

The three “diametric symplectic cross-ratios”

i W(T4, Tit3) W(Tit1, Tiva)
‘ W(ﬁﬂi,3%‘4-4)L«)(%q-l,fzq-:f.)7
depend only on the original configuration of lines, not the choice of points x;, and are symplectic invariants.

We will see that they form an essentially complete set of invariants parametrizing £5 6(K). As an example,
we illustrate ¢y by the following diagram.

=0,1,2,

o
7 >
Ts X
3

Figure 1. The cross-ratio ¢y = % on Ly 6(K).

Observe that the space of all (2,6)-Lagrangian configurations is 12-dimensional: there are three de-
grees of freedom for each of the six points, and six Lagrangian conditions. As mentioned earlier, the
10-dimensional group Sp(4,K) acts freely on the generic configurations, so L3 (K) is 2-dimensional.
Therefore the three cross-ratios cannot be independent. In fact, they satisfy the relation

1 1 1
(1.1) — =4+ — =1
¢ € C2
For K = C this analysis can be reformulated as follows. By rescaling, the x; can be normalized so
that the symplectic subdiameters w(x;, z;12) are all 1. Then the symplectic diameters a; := w(z;, z;43)

become, up to an overall choice of sign, symplectic invariants. Indeed, here ¢; = a;a;41, so (1.1) becomes
(12) apa1a2 = ag + a1 + as.

For K = R, it may happen that only complex rescalings can bring all subdiameters to 1. However, the
required scale factors are always either real or pure imaginary. There are four possibilities: the normalized
x; with ¢ even are either all real or all pure imaginary, and similarly for ¢ odd. If the normalized x; are all
real or all imaginary, then the a; are all real, while if the normalized x; are half real and half imaginary,
then the a; are all imaginary.

Let us remark that up to permutation, (cg,c1,c2) = (2,3,6) is the only Egyptian fraction solution
of (1.1). Tt arises from (ag, a1, a2) = (1,2, 3), the only positive integer solution of (1.2). Integer solutions
of the multi-dimensional analogs of these relations are discussed in [3, 17].
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1.2. Example: the Gauss relations. In the final section of this article we make some initial remarks
on the relations between the symplectic cross-ratios of £,, 2,,+3. Historically, the earliest examples of rela-
tions between cross-ratios arose in Gauss’ pentagramma mirificum 7], which is My 5(K), or equivalently,
L1 5(K), the moduli space of pentagons in KP!.

As we did for Legendrian hexagons, given five points in KP!, lift them to non-zero points g, - - - , ¥4 in
K? and extend to a 5-antiperiodic sequence (;)iez via ;45 := —z;. Gauss discovered that the 5-periodic
p q + p
sequence of cross-ratios d; := w(x;—3, x;)w(Ti—2, Ti—1)/w(x;—3, Ti—2)w(x;—1,x;) satisfy the relations
(1.3) didiy1 = dirs + 1.

These five Gauss relations completely determine the varietal structure of Mg 5. They can be rewritten
in the remarkable form

(5 ) )E D E0)-(0 5)

This relates the topic to two classical subjects: the theory of continued fractions and the theory of linear
difference equations. The Gauss relations were the main motivation for Coxeter [4] to develop the notion
of frieze patterns, relating projective geometry to combinatorics. Friezes provide a special parametrization
of Mg n; see [13] and the appendix of [14].

We regard the relations between the symplectic cross-ratios of £,, v as multi-dimensional analogs of
the Gauss relations. Building on preliminary versions of this article, Morier-Genoud [12] has studied the
combinatorial aspects of L2 x(C), the moduli space of Legendrian N-gons in CP?. Her work indicates
that in general, £, y(K) has a rich combinatorial structure related to friezes.

1.3. Outline of results. It is natural to ask for a coordinate system on the moduli space £, n(K) of
(n, N)-Lagrangian configurations. In this article we show that this question is vacuous when N is 2n or
2n + 1, and answer it when NV is 2n + 2. Our coordinates are given by the symplectic cross-ratio, a direct
analog of the classical cross-ratio: we show that £, 2,+2(K) is parametrized by symplectic cross-ratios
and determine its structure as an algebraic variety. We expect that symplectic cross-ratios parametrize
L, n(K) for all N. The exposition is organized as follows.

In Section 2 we define symplectic cross-ratios and show that they provide continuous invariants on
(n, N)-Lagrangian configurations for N > 2n + 2. We also deduce the dimension of £,, x(K) and define
opposite configurations and equivalence classes, which over R are distinguished by sign invariants.

Section 3 contains our main geometric results, which we summarize here:

e (n,2n)-configurations are all generic and equivalent over both C and R.

e (n,2n + 1)-configurations are all generic. Over C they are all equivalent, and over R there are
two equivalence classes, which are opposite.

e (n,2n + 2)-configurations admit n + 1 diametric symplectic cross-ratios co, ..., ¢y:

W(Ti, Titnt1) W(Tit1, Tiyni2)
W(Tis Titn+2) W(Tit1s Titns1)
the x; being arbitrary non-zero points on the lines of the configuration.

Over C, generic (n,2n + 2)-configurations are equivalent if and only if they have the same
diametric cross-ratios. Over R, generic (n,2n + 2)-configurations with the same cross-ratios are
either equivalent or in opposite equivalence classes.

The moduli space Ly, 2,+2(K) is n-dimensional. The n+1 cross-ratios satisfy the relation (3.2),
and any collection of non-zero K-scalars (co,...,c,) satisfying (3.2) is the set of cross-ratios of
an (n, 2n + 2)-configuration over K. Thus the cross-ratios are coordinates describing £,, 25, +2(K)
as an algebraic hypersurface in K”*!. These results are presented in Theorem 1.

(1.4) ¢ =

For (n,2n + 2)-configurations the proof has several components and is given in Section 4.
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In Section 5 we present certain normalized choices of the x; generalizing Section 1.1. For n even there
is an essentially unique choice such that the symplectic subdiameters w(z;,2;1,) are all 1. This nor-
malization provides an alternate coordinate system on £, 2n+2(K): the symplectic diameters ao, ..., ap,
where a; := w(z;, Xiyn+1). These diameters are determined up to an overall choice of sign, and for K = R
they are either all real or all pure imaginary. In this coordinate system the relation (3.2) can be written
in terms of the celebrated classical determinants called continuants. This connection is emphasized in
Section 3.3; see Theorem 2.

For n odd, one cannot in general choose the points x; so that the symplectic subdiameters are all 1,
but one can choose them so that the subdiameters alternate between a scalar 1 and its reciprocal, and
the two alternating products of diameters are equal: agas---a,—1 = ajas---a,. Here pu is determined
up to a (2n + 2)" root of unity, and the a; are determined up to an overall (n + 1)** root of unity.

An old idea of projective differential geometry consists in representing geometric objects such as
curves or configurations of points via differential or difference operators. Following this approach, in
Section 6 we realize the moduli space of Lagrangian configurations as the quotient by rescaling of the
space of symmetric linear difference equations with periodic coefficients and antiperiodic solutions; see
Theorem 3.

We conclude in Section 7 with a preliminary discussion of L, 2,43, including a general result on
normalizations in the case that N/ GCD(n, N) is odd, and relations on cross-ratios for L4 7 and L3 9, the
moduli spaces of generic Legendrian heptagons in KP? and Legendrian nonagons in KP®.

2. LAGRANGIAN CONFIGURATIONS AND THEIR MODULI SPACES

In this section we collect some basic properties of Lagrangian configurations and the action of Sp(2n, K)
on them. We prove that the action is free on generic configurations and introduce two types of invariants:
continuous invariants known as symplectic cross-ratios, and certain discrete sign invariants.

2.1. Symplectic cross-ratios. Consider two pairs of points in (K?",w), (z1,22) and (y1,y2), such that
w(z1,y2) and w(za,y1) are non-zero. We define their symplectic cross-ratio to be

w(wy,y1) w(z, y2)
w(z, y2) w(za, yl).

The symplectic cross-ratio is obviously invariant with respect to both the action of the symplectic
group Sp(2n,K) and rescalings z; — A\;x; and y; — p;y;. Therefore it is in fact a symplectic invariant of
two pairs of one-dimensional subspaces in K", or equivalently, of two pairs of points in KP2"~!. Observe
the symmetries

(2.1) [$1,$2§y1»y2] =

(2.2) [22, 71391, y2] = [T1, 225 Y1, ¥2] 7, (Y1, y2; 1, 22| = [21, T2; Y1, Y2

Remark. For n > 1, (2.1) is not the only symplectic invariant of a quadruple (Kz1, Kzo, Ky, Kya) of
lines in K2". However, it s the only such invariant if

o (x1,x9) and {y1,y2) are isotropic, i.e., w(x1,x2) and w(y1, y2) are 0, and

o (x1,x2,y1,y2) is generic under this condition.

In the one-dimensional case, (2.1) is nothing but the classical cross-ratio of 4 points on the projective
line. In affine coordinates, it is given by the usual formula:
(1 —y1) (2 — y2)
(z1 = y2) (w2 — 1)

[ilfl,xz;yl,yz] =

It is the unique PSL(2, K)-invariant of (z1,z2,y1,y2). Different partitions of the points into two pairs
give six different cross-ratios, but any one of them determines the others.
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Remark. The cross-ratio plays a fundamental role in many areas, from projective geometry to math-
ematical physics; for an overview, see [11]. It is the discrete version of the Schwarzian derivative; see,
e.g., [20]. Different versions of multi-dimensional symplectic cross-ratios have been considered. One is
an invariant of a quadruples of Lagrangian planes related to the Maslov index; again, see [20] for a
survey. Another is a unitary group invariant defined in the complex setting; see [5]. The symplectic
cross-ratio (2.1) is the most straightforward generalization of the one-dimensional cross-ratio. It has been
used to construct symplectic projective invariants in other settings; see, e.g., [15] (p. 367) and [22].

2.2. Gram matrices. Given a collection z1,. ..,z of vectors in K", we define their w-Gram matriz
Q(z1,...,2m) to be the m x m matrix whose entries are their inner products:
Q((El, . ,l'm)ij = w(xi,acj).

We will use the following standard lemma throughout the paper. Its proof is elementary and is omitted.

Lemma 2.1. Suppose that x1,..., 2, and 2}, ..., 2", are two collections of m vectors in K>".
(1) Qx1,...,Tm) s of rank at most 2n.
(i) Q(x1,...,2m) is of rank 2n if and only if {x1, ..., Tm)y = K>,
(iii) If Qx1,...,2m) and Qh, ..., 2,) are equal and of rank 2n, then there is a unique symplectic
transformation T such that T(x;) = x} for all i.
Lemma 2.2. Fir N > 2n and let (z1,...,2n) be an N-tuple of points in K?". Define (v;)iez via
TigN = —x;, and assume that (Xiy1,...,Ti1ny 18 Lagrangian for all i. Then (Kxq,...,Kxy) is an

(n, N)-Lagrangian configuration if and only if w(x;, zivn) £ 0 for all i.

Proof. We must show that (x;i1,...,T10ny = K?" for all i if and only if w(x;,7i1n) F 0 for all 4.
Consider the w-Gram matrix Q° := Q(z;41,...,%i12,). By Lemma 2.1(ii), det(Q?) # 0 if and only if
Titl,-- ., Titon form a basis of K2". The Lagrangian condition implies that the block 2 x 2 form of ¢ is

(_gT ‘3), where A is upper triangular with diagonal entries w(Zitr, Titrin), 1 <7 < n. O

2.3. Continuous invariants. Given an (n, N)-Lagrangian configuration (Xi,..., Xy), fix representa-
tives: non-zero points z; on the lines X;. As in Section 1.1, extend the N-tuple (x1,...,xzyx) to an
N-antiperiodic sequence

(23) (Ii)iez, Ti+ N ‘= —T5.

Write w;; for w(z;, x;), and observe that

(2.4) WitN,j = Wji = —Wij,  Wji+N = Wij-

Of course the w;; depend on the choice of the x;, but the symplectic cross-ratios of the configuration

do not. Define projective symplectic invariants
Wiy j1 Wigja

(25) C; 92517 = [SCZ s 'Ij I’j ] =

1227172 19 29 1 2 wiljz (,Uizjl
Note that ¢;, 4,5, 5, has the symmetries (2.2) and in addition is invariant under the addition of N to any of
the four indices. Due to the Lagrangian condition many of the c;,4,j,, vanish or are not well defined. To
be precise, define the N-cyclic distance |i — j|n between any two integers i and j to be their “separation
modulo N”:

li — j|n := min{]i — j + qN|: g € Z}.

The Lagrangian condition is w;; = 0 for |i — j|xy < n. Therefore ¢;,;,j,;, is either zero or undefined
unless |i., — j6j|N > n for ¢; and € either 1 or 2. Moreover, if either i; = iz or ji1 = j2, then ¢; 4,54,
is 1 if defined. It follows that there are no non-trivial cross-ratios when N is 2n or 2n + 1, and the only
cross-ratios of configurations with N = 2n + 2 taking values other than 0 and 1 are the ¢; of (1.4):

2.6 B Wit n41 Wit i+n+2
( . ) Ci = Cii+litn+1l,i+n+2 = .
Wi—n,i Wit1,i+n+1
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Observe that for N = 2n + 2 these cross-ratios are (n + 1)-periodic. Lemma 2.2 shows that in this case
they are also always well defined.

We conjecture that in general, (2.5) is a coordinate ring on £, n(K) with polynomial relations. This
is confirmed only for N < 2n + 2. It would be interesting to find minimal cyclically invariant subsets
of (2.5) providing such coordinate rings.

2.4. Opposite configurations and sign invariants. Note that the negation of a symplectic form is
also a symplectic form; in particular, —w is a symplectic form on K2". This leads to the notion of
opposite Lagrangian configurations. To be concrete, observe that the 2n x 2n matrix Q = (151 fid) has
the property w(Qx, Qy) = —w(x,y) for all x and y in K?".

In light of the fact that conjugation by @ preserves Sp(2n,K), the following lemma is clear.

Lemma 2.3. (i) If (X1,...,XnN) is a Lagrangian configuration, then so is (QX1,...,QXn). We
refer to them as opposites.
(ii) Opposite configurations have the same cross-ratios, and if one is generic, then so is the other.
(iii) If two Lagrangian configurations are equivalent, then their opposites are also equivalent.

Therefore we may speak of opposite equivalence classes in £, n(K). Because @Q is not symplectic, a
configuration is not a priori equivalent to its opposite. In order to resolve the situation we define the
sign invariants. Let us write sgn for the sign function:

sgn : R\{0} — {+1}.

Let (Rzq,...,Rzy) be a real (n, N)-Lagrangian configuration, and suppose that jo, ji, ..., j, are any
integers such that jo = j, modulo N. If w; ;. = 0 for all s, consider the product [ [} w;, , ;.. Suppose
we rescale each x; by some )\;. Because the \; are by definition IN-periodic, Aj, = A;,, so the product
rescales by the positive quantity [} )\5 This gives the following lemma.

Jrs

Lemma 2.4. Let (Rzq,...,Raxy) be a real (n, N)-Lagrangian configuration. If jo,...,J. are integers
such that jo = j. modulo N and w;,_, ;. £ 0 for all s, then sgn(l_[; szfl,js) is an invariant of the
configuration.

The next proposition elucidates equivalence and inequivalence of opposite configurations. We write
GCD for the greatest common divisor function.

Proposition 2.5. (i) Opposite complex configurations are equivalent.
(ii) Opposite real (n, N)-configurations are inequivalent if N/ GCD(n, N) is odd.

(iii) Opposite real generic (n, N)-configurations are inequivalent for N > 2n.

Proof. Let (Kz1,...Kxy) be a configuration. For (i), note that i@ is symplectic and iQCz; = QCx;.
N/GCD(n.N) |
s=1

For (ii), note that the sign invariant sgn (]|
resentatives Qx; of the opposite configuration.
In the setting of (iii), it is always possible to find a sequence jo, ..., j, with r odd, jo = j, modulo N,
and |js — js—1|n = n, whence the invariant sgn(l_ﬂ stfhjs) distinguishes between the configuration and
its opposite. O

(S,l)n’sn) negates under passage to the rep-

2.5. Dimensions and standard configurations. We now discuss the dimension of £,, n, which deter-
mines the number of independent relations which must be satisfied by any coordinate ring of symplectic
invariants of configurations. It turns out that for NV > 2n + 2, this dimension is always strictly less than
the number of non-trivial symplectic cross-ratios. As stated in Section 1.3, at N = 2n + 2 the dimension
is n and there are n + 1 invariants ¢;, so there must be one relation. It is given in Theorem 1.

Let us begin by defining a convenient normal form for sets of representatives of configurations.
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Definition. Throughout this paper we write {e1,...,en, f1,..., fn} for the standard basis of K", and
w for the standard symplectic form on it. Thus for 1 < 7,5 < n,

w(eiaej) = 07 w(euf_]) = 51_% w(flaf]) =0.

We define the group Sp(2n,K) with respect to w.
Let (Kzq,...,Kzy) be an (n, N)-Lagrangian configuration. The representatives x1,...zy are said
to be standard if x1,...,x2, may be written in terms of the standard basis as follows: for some vectors

gi € {f1,..., fi—1), we have

T1=e, Ta=e€, ..., Tp=E€n, Tpy1 = f1, Tny2=fo+ g2, ..., Zon = fnt gn

Lemma 2.6. (i) Ewvery (n, N)-Lagrangian configuration is symplectically equivalent to a configura-
tion with standard representatives.

(ii) In a configuration with standard representatives, w(e;,g;) =0 for j <i+2n — N.

(iii) In a generic configuration with standard representatives, w(ej,g;) £ 0 fori+2n— N < j <.

Proof. Given an (n, N)-configuration (Kz1,...,Kzy), consider the Gram matrix Q(x1, ..., x2,). Because
it has the form noted in the proof of Lemma 2.2, Lemma 2.1(iii) shows that there is a symplectic
transformation mapping z; to e; and x,; to a multiple of f; + g; for 1 < i < n, g; being zero and
92, - - -, gn, having the desired form. To complete the proof, rescale the representatives. For (ii) and (iii),
refer to the definitions of Lagrangian and generic. O

Proposition 2.7. For N > 2n, the variety of (n,N)-Lagrangian configurations is nN -dimensional.
Sp(2n,K) acts freely on generic configurations, and so L, n(K) is n(N — 2n — 1)-dimensional.

Proof. Consider the process of constructing an (n, N)-configuration by choosing first X, then X, and
so on to Xy. Count the number of degrees of freedom available in choosing each X; as follows. There are
2n — 1 degrees of freedom for X5, as it is simply an arbitrary line. There are 2n — 2 degrees of freedom
for Xo, as (X1, X2) must be isotropic, and 2n — 3 for X3, as (X1, X9, X3) must be isotropic. Continuing,
for i < n we find that there are 2n — ¢ degrees for X;. For n <i < N —n + 1 there are n degrees for X;,
as the only constraints arise from the requirement that (X;_,41,..., X;) be isotropic.

There are n — 1 degrees for Xy _, 12, as in addition to the above isotropy requirement, {(Xy_p+2, X1)
must be isotropic. Continuing, for N —n + 1 < i < N there are N + 1 — 4 degrees for X;. In particular,
all of the X; can be chosen, and there are a total of nIN degrees of freedom in choosing the configuration.

To complete the proof, it suffices to prove that any symplectic transformation T' stabilizing a generic
standard configuration (Kz1,...,Kzy) is the identitity Id. Keeping in mind that T" must stabilize Kz;
but not necessarily x;, we find that it must be of the form (’03 D(ll ) for some diagonal matrix D. Because
N > 2n, w(e;—1,9;) + 0, forcing D to be scalar. Finally, genericity implies that w(e,,z2,+1) and
w(f1,x2n+1) are both non-zero. Hence the condition that T stabilize Kxza,, 11 forces D = Id. O

Corollary 2.8. £, n(R) and L, n(C) are smooth manifolds.

2.6. The case N > 2n + 2. We conclude this section with a few remarks on configurations with N >
2n + 2. We begin with a corollary of Lemma 2.2. Let us single out the symplectic cross-ratios

Wij Witn,j+n
2.7 = Ciggngign = L imgEn
27) i AR Wi i+n Wj,j+n
Corollary 2.9. Let (Kz1,...,Kzy) be an (n, N)-Lagrangian configuration. Then ~y;; is defined for all i
and j, and it is O for |i — j|y <n and 1 for |i — j|y = n. The configuration is generic if and only if v;;
is non-zero whenever |i — j|y = n.
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Observe that v;+n; = 755 = Vi;. For N = 2n + 2, all non-trivial symplectic cross-ratios are ;;’s, as
Ci = Yit+1,i—n- This is not true for N > 2n + 2: for example, for (2, 7)-configurations, ¢1,2 45 is not a 7;;.
However, we do have the relation

o ) ] ] _ Tiagr Vizg
Civigj1ja Cirnyiz+n,jr+n,jetn = — -
711]2 7742]1

3. THE MAIN RESULTS

In this section we describe the moduli space £,, n(K) of generic (n, N)-configurations over K = R or C
for N equal to 2n, 2n+1, and 2n+2. In the first two cases it is trivial and is described in Proposition 3.1.
Let us mention that a related result is proven in [15] for three lines in K2".

The first non-trivial case, £, 2n+2(K), is described in Theorem 1: there are n + 1 cross-ratios, which
satisfy a single relation. In the case that n is even and K = C, Theorem 2 provides a combinatorial
interpretation of this relation.

3.1. The cases N =2n and N = 2n + 1.

Proposition 3.1. (i) For N =2n or 2n+ 1, all (n, N)-Lagrangian configurations are generic.
(i) Ln2n(K) is a single point for K =R or C.

(iil) Ln,2n+1(R) consists of two opposite points, and Ly, 2n+1(C) is a single point.

Proof. Part (i) is clear from Lemma 2.2 and the fact that |i — j|2,+1 never exceeds n. For (ii), Lemma 2.6
shows that all configurations are equivalent to (Keq,...,Ke,,Kfi,...,Kf,).

For (iii), Lemma 2.6 shows that any configuration is equivalent to some (Kz1,...,Kzo,41) with z; = ¢;
and T, = fi + b;fi_1 for 1 < i < n, where b; is a non-zero scalar for ¢ > 1. Define by := 1, apply the
diagonal symplectic transformation e; — e; [} b;l and f; — f; ]} b;, and rescale to deduce that we may
assume b; = 1 for all 4.

Combine the Lagrangian condition with genericity to see that xo,,1 can be rescaled to take the form
fn +bo X (—1)e; for some scalar by + 0. For K = R and by > 0 or K = C, apply the symplectic
transformation e; — bé/zei and f; — bal/zfi and rescale to arrive at xo,11 = fn + Z?(—l)iei. ForK=R
and by < 0, use (—by)'/? in place of b(l)/2 to arrive at xon11 = f, — >3 (—1)%;. By Proposition 2.5, the
two signs of by give opposite real equivalence classes. O

Combining this argument with Section 2.4 yields the following corollary. For e = +1, consider the
(n,2n + 1)-configurations with representatives

31 (eneaen fielfitfo) et fa)oooselfumt+ Fa)e efut (-D'e).

Observe that these representatives have w; ,4; = € for all 7.

Corollary 3.2. (i) The unique element of Ly, 2n,4+1(C) is the class of (3.1) for e = 1.
(ii) The two opposite elements of Ly an+1(R) are the classes of (8.1) for e = £1.
(iii) An arbitrary (n, 2n+1)-Lagrangian configuration (Rxy,...,Rxa,41) over R is equivalent to (3.1)
with € = sgn(]_[?go Win+i)-
3.2. The first non-trivial case: N = 2n + 2. We now give the description of £, 2,+2(K), one of our
main results. Recall that the symplectic cross-ratios ¢; given in (1.4) and (2.6) are (n + 1)-periodic, are

the only non-trivial cross-ratios on (n, 2n + 2)-configurations, and are non-zero on generic configurations.
We use the standard notation |z| for the integer part of a real number z.
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Theorem 1. (i) On Ly 2n+2(K), the n+ 1 symplectic cross-ratios co, ..., c, satisfy the relation
(n+1)/2] "
(3.2) 0= >, (-1 > —
r=0 0<i1<-<in<n, i=1 ‘s

lis—igr|nt1=2 V s=s’
(ii) (co,...,cn) is a coordinate ring on Ly on+2(K): any two generic (n,2n + 2)-equivalence classes
with the same cross-ratios are equal for K = C, and either equal or opposite for K = R.
(iii) (8.2) is the only relation on the cross-ratios: if co,...,c, are arbitrary non-zero scalars in K

satisfying (3.2), then they are the cross-ratios of some generic (n,2n + 2)-configuration over K.

Thus £y, 2n+2(K) may be viewed as a dense open subset of the algebraic hypersurface in K"*! defined
by multiplying (3.2) by ¢g - - - ¢,. We prove Theorem 1 in Section 4.

Examples. (a) For £ 4(K), the relation on the two cross-ratios of quadrilaterals in KP' simply
relates two forms of the classical cross-ratio:
1 1
—+—=1
¢

(b) For L£56(K), the relation on the three cross-ratios cg, c1, and ¢ of Legendrian hexagons in KP3
was given in (1.1).

(c) The moduli space L3 g(K) of Legendrian octagons in KP® is parametrized by the four cross-ratios
co, €1, C2, and cg, subject to the relation

(d) For L410(K), the Legendrian decagons in KP?, the five cross-ratios co, . .., c,s satisfy

1 1 1 1 1 1 1 1 1 1
— -+ttt —— - — ——— =1
Co C1 C2 C3 C4 CpC2 C1C3 CoCy C3Cp CqCq

The following analog of Figure 1 depicts cg in this setting.

Zo
x9 Z1
Ts T2
T T3
Ze T4
Is
Figure 2. The cross-ratio ¢y = % on L4 10.

3.3. The cyclic continuant. In Section 5 we will describe certain normalized choices of representatives
of (n,2n + 2)-Lagrangian configurations. The nature of the normalizations depends on the field K and
the parity of n. The situation is simplest for n even and K = C, the case generalizing the hexagonal
example in Section 1.1. At this point we state the relevant normalization, Proposition 3.3, along with the
corresponding specialization of Theorem 1, Theorem 2. A notable feature of this specialization is that
the relation (3.2) is expressed in terms of continuants. The proofs will be given in Section 5.1.
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The classical continuant is the tridiagonal determinant
al 1
1 a9 1

(3.3) Ky(ay,...,a,) =

1 An—1 1

1 an

This remarkable polynomial has a long history. It arises in the theory of continued fractions and many
other areas; see for example [3] and references therein.
The main topic of [3] is the cyclic continuant, defined as

(34) Rn+1(a07 [N ,an) = Kn+1(ao, ey an) - anl(al, ey an,l).

It too is related to continued fractions, via the identity

o= )5 L) (7 7)
na1(ao, ..., ay) = tr )
AT 1 0 1 0 1 0

As an illustration, let us display Rs(ag, a1, az, a3, aq):
aga10a2a304 — (aoalag + aijagas + agsazayg + asagag + a4a0a1) + (ao +a1 +ag +as+ a4).

In the next two statements, let (Xo,..., X2,+1) be a generic (n,2n + 2)-Lagrangian configuration
over K with representatives xo, ..., Zan41, inner products w;; = w(z,;,z;), and cross-ratios co, ..., Cp.
Recall from Section 1.3 that we refer to the (2n + 2)-periodic sequence (w; i1+n); as the set of symplectic
subdiameters of (z;);, and the (n + 1)-periodic sequence (wj i+n+1): as the set of symplectic diameters.

Proposition 3.3. Forn even and K = C, (X, ..., Xont1) admits exactly four choices of representatives
whose symplectic subdiameters are all 1. Fix such a choice, xq, ..., Tont1, and set a; := Wi j4ni1-
(i) The four choices are (x;);, (—x4)i, ((—1)%x;);, and (—(=1)iz;);.
(ii) The first two choices in (i) have symplectic diameters (a;);, and the second two have symplectic
diameters (—a;);.
(iii) The cross-ratios of the configuration are ¢; = a;a;+1. The symplectic diameters satisfy

a2 — CiCit2 " Ciyn

Ci+1Ci+3 " Citn—1

This result shows that the symplectic diameters of the choices of representatives whose symplectic
subdiameters are all 1 are invariants of the configuration, defined up to an overall sign. We refer to them

as the normalized symplectic diameters and denote them by +(ag, ..., a,).
In reading the next result, keep in mind that K,, and hence also R,, are of parity (—1)™ under negation
of all their arguments, so R,,+1(ao,-. ., a,) vanishes if and only if R, 1(—aq, ..., —ay,) vanishes.

Theorem 2. Let n be even.
(i) The cyclic continuant of the normalized symplectic diameters on Ly, 2n+2(C) vanishes:
Rn+1(a0, ceey an) = 0.
(ii) Equivalence classes in Ly 2n4+2(C) with the same normalized symplectic diameters are equal.

(iii) If *(ao,...,an) are arbitrary non-zero complex scalars with cyclic continuant zero, then they are
the normalized symplectic diameters of some equivalence class in Ly an4+2(C).

As noted above, Proposition 3.3 and Theorem 2 are proven in Section 5.1.



12 CHARLES H. CONLEY AND VALENTIN OVSIENKO

4. PFAFFIANS AND THE PROOF OF THEOREM 1

This section contains the proof of our main result, Theorem 1.

4.1. Tridiagonal determinants and the proof of Theorem 1(i). The following formula is well-known
and easily proven by induction.

Proposition 4.1. The tridiagonal matriz

a11 a12
a1 Q22 a23
(4.1) A, =
Gp—1,n—2 Gp—1,n—1 An—1n
Gnn—1 Ann
has determinant
n (/2] L a
is,ts+1 Yig+1,1s
(4.2) det(A,) = (ﬂakk) M (-1 3 [ &etettfiatbic,
k=1 =0 I<in<r<ip<n, s=1 Yisis Viatlyis+1

ts+1<igyr V 1<s<r

Remark. When the sub- and superdiagonal entries of A,, are all 1, its determinant is in fact the con-
tinuant K. In this case Euler discovered a pleasing interpretation of Proposition 4.1, which generalizes
as follows: to write out all summands of (4.2), start with ajq -+ ann, and for each set of disjoint adja-
cent pairs (4,7 + 1), 1 < i < n, replace a;;Git1,i+1 By —a;i+1Gi+1,.- We refer to this process as Fuler’s
replacement algorithm.

Examples. Indicating pairs by parentheses, det(As), det(A4), and det(As) are, respectively,
e ariazazs — (a12a21)ass — aii(azsasz),
® (11022033044 — (A12021)a33044 — 11(a23032)a44 — a11022(a34043) + (a12a21)(a34043),
® (11022033044055 — (a12a21)a33a44a55 - a11(a23a32)a44a55 - a11a22(a34a43)a55 - a11a22a33(a45a54)
+ (a12a21)(az4a43)ass + (a12a21)a33(as5054) + a11(a23a32)(a45054)-

Recall now that the Pfaffian pf(S) is a polynomial in the entries of a skew-symmetric matrix S whose
square is det(S). Consider the (2n + 2) x (2n + 2) matrix

wo,nE A
(4.3) Q,, = ,
AT w1001 E

with ingredients defined as follows: E is the skew-symmetric (n+ 1) x (n+ 1) matrix e n41 —ent1,1 (€45
being the elementary matrix whose ij** entry is 1 and whose other entries are 0), A is given by

Wo,n+1 Wo,n+2

Wi,n+1 Wi,n+2 Wi,n+3

Wn—1,2n—1 Wn—1,2n Wn—12n+1

Wn,2n Wn, 2n+1



LAGRANGIAN CONFIGURATIONS 13

and the w;; are arbitrary scalars. As a visual aid, we illustrate €, in long form:

wo,n, Wo,n4+1  Wo,n+2
Win+1l Win4+2 Win+3
Wn—1,2n+1
—Wo,n Wn 2n Wn,2n+1
(4.5) Q, =
—Wo,n+1 —Win+1 Wn+1,2n+1
—Wo,n+2
—Wn,2n
—Wn—-12n+1 —Wn2n+1 —Wn+12n+1
Proposition 4.2. The Pfaffian pf(£2,) is given by the expression
n [(n+1)/2] r w w
2 Wi 41, 1
(46) (V"R (Tlwnprnsn) Y, (U7 Y [] Setdeetislioed
k=0 r=0 0<ir<-<ip<n, i=1 FlsststntlWis+lis+n+2

lis—igr|nt1=2 V s=£s’
where whenever w; on+2 appears, it should be replaced by wo ;.

Proof. Given any m x m matrix A, let Apiq be the (m — 2) x (m — 2) matrix obtained by deleting the
top and bottom rows and left and right columns of A. The following lemma is proven in [3].

Lemma 4.3. For any m x m matriz A and any scalars x and y, one has

E A m(m—
(4.7) pf <_””AT yE) = (—1)™m=D/2(det(A) — zy det(Amia)).-
Applying both (4.2) and (4.7) to (4.3) yields (4.6). O

Remark. The Pfaffian (4.6) may be interpreted via a cyclic version of Euler’s replacement algorithm,
the “cyclic replacement algorithm”: to write out all summands of (—1)™("+1)/2pf((Q,,), start with

Wo,n+1Wi,n+2 " Wn2n+1,

and for each set of disjoint cyclically adjacent pairs (4,7 + 1), 0 < ¢ < n, replace w; j4n+1Wit1,i+nt+2 DY
—Wi itnt2Witlitnt1. Cyclically adjacent indicates that the pair (n,n + 1) is read as (n,0). When it is
in the set of pairs, replace wo n+1Wn,2n+1 DY —Wo nwn+1,2n+1. To explain, note that by the replacement
rule w; op42 = wo i,

Wo,n+1Wn 2n+1 = Wn 2n+1Wn+1,2n+2, Wn 2n4+2Wn+12n+1 = WonWn+1,2n+1-

Examples. Let us give (4.6) explicitly for small n. As in the examples below Proposition 4.1, we indicate
pairs with parentheses. By (4.7) and (4.4), the summands from sets not containing the special pair (n,0)
add up to an (n + 1) x (n + 1) tridiagonal determinant, and the summands from sets containing it add
up to wo pWnt1,2n+1 times an (n — 1) x (n — 1) tridiagonal determinant. To emphasize this, we have
separated the two types of terms with square brackets and factored wg nwn+1,2n+1 Out of the second type.
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Note that at n = 1 there are two ways to delete the lone pair (0,1): as (0,1), or as (1,0). For n =1,
2, and 3, (—1)"("+*1/2pf(Q,,) is, respectively,

. [w02w13 - (w03w12)] — (wo1was) [1],
i [w03w14w25 - (w04w13)w25 - w03(w15w24)] - (Wozwss) [W14],
i [w04w15w26w37 - (w05w14)w26w37 — Wo4 (W16w25)w37 - W04W15(w27w36) + (w05w14)(w27w36)]

- (W03W47)[W15W26 - (Wlﬁwzs)]-

Observe that dividing by wo n+1wi,n+2 - - Wn,2n+1 leads to the examples in Section 3.2, and compare the
terms in square brackets to the examples below Proposition 4.1.

Proof of (3.2). Suppose now that (Kzg,...,Kzg,41) is an (n,2n + 2)-Lagrangian configuration, and
revert to our customary notation w;; = w(z;,x;). By the Lagrangian condition, the w-Gram matrix
Q(zg,...,Zon+1) is precisely the matrix Q, in (4.3), and by Lemma 2.1(ii),

det (Q(LBQ, ey 372n+1>) =0.
Hence Proposition 4.2 yields the following corollary.

Corollary 4.4. Let (Kzo,...,Kzani1) be an (n,2n + 2)-Lagrangian configuration. Then

L(n+1)/2] r

(4.8) 0= (]_[ wk,,ﬁnﬂ) Mo 3 Ci
k=0 is

r=0 0<iy <--<ip<n, i=1
lis—ig|nt122 V s¥s’
This in turn yields (3.2) of Theorem 1(i), because generic (n, 2n + 2)-configurations have w j4+n+1 = 0.
Note that (4.6) is polynomial in the w;;, so after cancellation, Corollary 4.4 gives a non-trivial relation
even on non-generic configurations.

4.2. Proof of Theorem 1(ii). Suppose that (Kz1,...,Kza,42) and (KZq,...,KZa,42) are two generic
(n,2n + 2)-Lagrangian configurations with the same cross-ratios ¢y, ..., c,+1. Following our convention
wij 1= w(x;, ), we set @i 1= O(x;, ;).

By Lemma 2.1(iii), in order to prove the two configurations equivalent it suffices to find a renormal-
ization x; — A;z; such that \;A\jw;; = @;; for all 7 and j. By the Lagrangian condition, we need only do
this for j =i+ n and ¢ + n + 1. The argument depends on the parity of n.

The case of n even. It is important to keep in mind that here GCD(n,2n + 2) = 2. Hence the subset
of lines in an (n,2n + 2)-configuration whose indices have a given parity may be written in either of the
following ways:

{(Ki, Kejpo, Kipa, ..., Kaiyon} = {Kay, Kajpn, Kojpon, - ., Ky pn2 ).

We begin with the case K = C. For i = 1,...,2n + 2, fix a square root x; of @; tn/w;itn. Extend
(2n + 2)-periodically to define y; for i € Z. Set

n
XiXi+2nXi+4n " Xi+n? (—1)"
' Xi+nXi+3n *** Xi+(n—1)n i vhrn

and check that M1y, = @; i4n/wiitn for all 4.
Replacing z; by A;x;, we may assume wj ;+n = @; ;4n for all i. Write p; for the ratio @; ;4+n+1/Wiitn+1,
which is (n + 1)-periodic. Use the fact that the configurations have the same cross-ratios to obtain
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PiPi+1 = 1 for all 7. Hence

1= (pipi+1)(pi+2pi+3) e (pi+npi+n+1) _ pg

(Pi+1pi+2)(Pi+3pita) -+ (Pitn—1Pitn) ’
Deduce that the p; are either all 1 or all —1. In the former case we are done. In the latter case, rescale
again, replacing x; by (—1)%z;. This leaves the w; ;+, unchanged and negates the w; ;in41, S0 again we

are done.

Example. For n = 2 and n = 4, the following diagrams depict the equations giving the scale factors (4.9)
sending w;j ;j4n to @; i4n for ¢ even. Those for i odd are constructed independently.

Zo
Zo Tg / Z1
Tg~— 1 Z7 T3
€3 Te T4
x5

Figure 3. The rescaling scheme for L9 ¢ and L4 10.

Now take K = R. Because (2n + 2)/ GCD(n,2n + 2) = n + 1 is odd, the sign invariant

(410) Sgn(l_[ wrn,(r-ﬁ-l)n) = Sgn(n w25,25+n)
r=0 s=0

reverses under passage to the opposite configuration. Therefore, replacing (Rzq,...,Rxza,42) by its
opposite if necessary, we may assume that

(411) Sgn(l_[ w2s,25+n) = Sgﬂ(l_[ a)2s,2s+n) .
s=0 s=0

Under this assumption we will show that the scale factors (4.9) are all real, so the two configurations
are equivalent over R. This will complete the proof of Theorem 1(ii) for even n.
To prove \; real, we must prove A? positive. From (4.9),

M= ﬁ (Myil)r, sgn(A?) = Sgn( n CDJ‘,J‘Jrn/WjJJr”)'

0 “Witrn,i+(r+1)n j=imod 2

For i even, this is positive by (4.11). To prove it positive for ¢ odd, we must prove that

n n
(4.12) sgn(l—[ w25+1,2s+1+n) = sgn(l—[ @23+1,zs+1+n)-
5=0

s=0
Check that
n n 9 2n+1 _1
(4.13) nCi = (H Wi,i+n+1) ( H wi,iJrn)
i=0 i=0 i=0
Because the two configurations have the same cross-ratios, we must have
2n+1 2n+1
sgn( H Wi,i+n) = sgn( n @i,i+n>-
i=0 i=0

Therefore (4.11) implies (4.12).
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The case of n odd. Here GCD(n,2n + 2) = 1, so in contrast with the case that n is even, the entire
set of lines in an (n,2n + 2)-configuration may be listed with increments of n:

{Kx()aleva?v s 7Km2n+1} = {K.’I,'O,K.’L'n,KxQn, s 7Kx(2n+1)n}‘

Set Ao := 1 and define Ay, ..., \2p41)n recursively by A, := A 1)n@r—1)n,rn/W(r—1)n,rm for 1 <r <
2n + 1. This leads to

W(s—1)n,sn (=
>\rn = ( ( ) ) .
s=1 w(s—l)n,sn

At this point we have A\;Aitn = ;i itn/Wi i+n except possibly at ¢ = —n modulo 2n + 2, where
ont+1l  ~ o
o= ] (Blmtimany 7
“no = .
a1 W(s—1)n,sn
We claim that this is in fact @_,, o/w_n,0. The proof reduces to proving that the expression

Wo,nW2n,3n " " Wan2 (2n+1)n . Wo,nW2,n+2 " Wan 3n

Wn2nW3ndn "  W(2n+1)n,(2n+2)n Win+1W3 n+3 *° *W2n+1,3n+1

does not change if all the w’s are replaced with w’s. This is true, because as the reader may check, it is
equal to
CoC2 "+ " Cp—1
C1C3 - Cp ’
and the w’s and @’s have the same cross-ratios.

Thus we may replace x; by A\;x;, giving w; i4n = @; 44 for all 2. Then by equality of cross-ratios,
Wi ifn1Wit1,i4nt2 18 equal t0 Wj i1 nt1Wit1,i4nt2, O, equivalently,

(4.14) (@z‘,z’+n+1/wz‘,i+n+1)(_1)
is independent of 3.

If K = C, let x be a square root of (4.14). If K = R, let x be a square root of its magnitude. Observe
that for any 6, the rescaling z; — 6(-Y"z; leaves w; i+n unchanged and multiplies w; ;1n4+1 by §2(=1",
Therefore in the case K = C, replacing the z; by (=D z; gives w;j = W;j, proving the two configurations
equivalent. In the case K = R, the same argument proves them equivalent when (4.14) is positive.

In the case that K = R and (4.14) is negative, this argument leaves us with w; ;4 = @;4n and
Wiitn+1 = —Wiitnt+1. Replacing the x; by the additional rescaling (—1)‘z; then gives w;; = —@;j,
proving the configurations opposite.

4.3. Proof of Theorem 1(iii). Suppose that co,..., ¢, are non-zero scalars in K satisfying (3.2), and
extend them (n + 1)-periodically to (¢;)iez. We will construct an (n,2n + 2)-Lagrangian configuration
(Kzg, Ky, ...,Kzo,11) having the given scalars ¢; as cross-ratios.

As an intermediate step, we construct from the ¢; scalars w;; that will be equal to w(z;, z;). By (2.4)
and the Lagrangian condition, it is only necessary to construct a (2n + 2)-periodic sequence w; ;4p and
an (n + 1)-periodic sequence w; ;41 such that the ¢; are given by (2.6): then w; ;4nt+2 = wi—n;, and the
remaining w;; are 0.

The w;; for n even. Over C, set w; ;4, := 1 for all ¢ and fix an (n + 1)-periodic sequence o; of square
roots of the ¢;: 02 = ¢;. It is then simple to check that (2.6) is satisfied if we set

0i0i+2" " Oj+tn
(415) Wi idn+1 =

0i+104+3 """ Oi4+n—1 .

Over R, the same process works if cgcy - - - ¢, is positive: the individual o; may not be real, but the
Wi i+n+1 are because their squares are positive.

If coeq - - - ¢y, is negative, it suffices to modify the construction as follows: set w; ;4r := (—1)%, let o; be
an (n + 1)-periodic sequence of square roots of the —¢;, and again define the w; ;n4+1 by (4.15).
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The w;; for n odd. Observe that in this case, (2.6) implies [ 77" Wz(;i)rz =11 S
We begin with an asymmetric choice of the w;; that works over any field. Define wg, = gcg_l)z,
and for 1 < i < 2n + 1, set w; 4, := 1. Check that it suffices to set wp p+1 1= 1, Wi nt2 = co, and in

general, for 0 < k < (n —1),

. CiC3 - Cop—1 . CoC2 " C2k
W2k 2k+n+1 ‘= ——— Wok+1,2k4+n+2 == ————————— .
CoC2 + +* C2k—2 C1C3 - - - C2k—1

Over C it is possible to choose the w;; more symmetrically, as described in Section 1.3. Fix an (n +1)-

periodic sequence 7; such that n?”” = ¢;. Define the w; ;1 by

”70772 PR n 71 _ i
= Wi itn = T
mmns:--Tn
The reader may check that then (2.6) is satisfied by fixing wp 41 arbitrarily and setting
C1C3 - C2k—1 —4k—2 — CoC2 "+ " Cag
W2k, 2k+n+1 += /J'4kw0,n+17 W2k+1,2k+n+2 ‘= M i 2Wo,711+17
C1C3 - C2k—1

9y
CoC2 "+ Cok—2
for0<k < %(n —1). Requiring agas - - - an—1 = ajas - - - a, leads to the most symmetric choice

n,,n—4 —n+2 n )

iy hign—1 (—=1)? (n—27)

Wiitn+1 += n—2 n—6 —-n ni+j .
Miv1 Mit3 " " Mign =0

The z; for n arbitrary. Suppose now that scalars w;; in K have been chosen so as to satisfy (2.6).
From these scalars we will construct an (n,2n + 2)-Lagrangian configuration (Kzo,...,Kzg,41) over K
which satisfies w(x;, ;) = w;j;, and therefore has the given cross-ratios co, ..., cy.

The representatives z; are almost standard: we set x; :=¢; for 1 < i < n, and

Ti4n = Wi, 14nf1, Totn 1= W1 24nf1 T W2,24n f2,

Titn 1= Wi—2itnfi—2 + Wi—1itnfi-1 + Wiisnfi, 3<i<n.

It is immediate that with these definitions, w(z;, ;) = w;; for 1 <4,j < 2n.
The requirement that w(x;,z;) = w;; for 1 < i < 2n and j = 2n + 1 or 2n + 2 now determines o, 41

and g = —x2,4+2. We find that

n i
i -1
Tont1 = Wn—12n+1fn-1 + Wn2nt1fn + Witn2n+1 Z(*l) (H wj,j_;,_n)diei’
J=1

i=1
where di = 1, d2 = w124, and the d; with 3 < i < n satisfy the recursion relation

(4.16) di = Wi—1,i4ndi—1 — Wi 1 i4n—1Wi—2i4ndi—2.

In the same way we obtain

Ty = _WO,nfn - 2(_1)1(Hw;jl+n)d;eu
j=1

i=1

where d} = Wo 14n, db = W0, 14nW1,24n — W0, 24nW1,14n, and the d; with 3 < i < n also satisfy (4.16).
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In order to clarify (4.16), consider for any integers 0 < j < i < n the following truncation of the
tridiagonal matrix A in (4.4):
Wy, j+n+1 Wj,j+n+2

Wi41,j+n+1 Wi+1,j+n+2 Wi+l j+n+3

Wi—1,i+n—1 Wi—1,i+n Wi—1,i4n+1
Wi i+n Wi i+n+1
Let us write Aj; for det(4;;), and adopt the convention A;;_; := 1 and Aj;_o := 0. It is clear that
the A;; satisfy a shifted version of (4.16):
Aj,i = wi,i+n+1Aj,i71 - wi,i+nwi71,i+n+lAj,if2'
Therefore d; = Ay ;1 and d} = Ag,—; for 1 <i < n.
The only remaining condition is w(xg, Zap4+1) = 0. After some simplification it reduces to
(4.17) Ao — wo,nWn+1,2n+181,n—1 = 0.

Recall the matrices €2, and A from (4.3). Because A is Ay, Proposition 4.2 and (4.7) show that (4.17)
is equivalent to (4.8). Because we assumed that the given ¢; satisfy (3.2), these conditions hold. This
completes the proof of Theorem 1.

5. NORMALIZED CONFIGURATIONS

As noted in Section 3.3, in this section we describe certain normalized choices of representatives of
(n,2n + 2)-configurations. As in that section, let (Xo,..., Xa2,41) be a generic (n,2n + 2)-Lagrangian
configuration over K with representatives o, ..., Zap41, inner products w;; := w(z;, z;), and cross-ratios
COy-++5Cn.

5.1. The case of n even and K = C. The results in this case were stated in Section 3.3. Here we give
their proofs.

Proof of Proposition 3.3. By the constructions in Section 4.3, there exists a generic configuration

(CZo,...,CEap41) with @;;4n, = 1 and cross-ratios co,...,c,. By Theorem 1(ii), it is equivalent to
(Xo,.-.,Xont1). The images zg, ..., %241 of Zo,...,Tan+1 under the equivalence have w; 4, = 1 for
all 7.

To see that there are exactly four such choices of (z;);, suppose that (\;z;); is another. Observe that
then Aivn = Ay Y, 80 Aigrn = AUV But Aiyn(ni1) = Ai by periodicity, so A; = +1, whence Ajyn = Ai,
and A; = A; for ¢ = j modulo 2. This proves (i). The remaining statements are immediate. O
Proof of Theorem 2. Part (i) follows from Section 4.1: by Lemma 4.3, for normalized representatives
(o, ..., Tans1) the Pfaffian of the w-Gram matrix is, up to a sign, R,+1(ao,...,ay). Parts (ii) and (iii)
follow from Theorem 1(ii) and (iii) and Proposition 3.3(iii): the cross-ratios determine +(ay, ..., a,) and
vice versa. O

5.2. The case of n even and K = R. Recall from Section 4.2 the sign invariants

n n n
€0 = sgn(H w25,25+n>, €1 = sgn(H w25+1725+1+n), Ee = SgN (H ci)
5=0 =0 i=0

of the configuration (Xo,..., Xon11): €0 is (4.10), &1 is the left side of (4.12), and by (4.13), €. = £o&1.

Proposition 5.1. Forn even and K = R, (Xo, ..., Xon+1) admits exactly four choices of representatives
whose symplectic subdiameters are w;;yn = €imod2. Fir such a choice, xo,...,Tant+1, and denote its
symplectic diameters wi ;yni1 by a]lR.
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(i) In terms of (x;)i, the four choices are as in Proposition 3.3(i). The first two have symplectic
diameters (af);, and the second two have symplectic diameters (—ak);. In particular, £(al); is
an invariant of the configuration, the collection of its normalized real symplectic diameters.

(ii) If e. =1, then the normalized symplectic diameters coincide with the normalized real symplectic
diameters: +(a;); = £(a¥);.

(iii) If e, = —1, then +(a;); = ++/—1 (a®);.

Proof. By the constructions in Section 4.3, there exists a generic configuration (R, ..., RZs,4+1) with
cross-ratios ¢;, such that if e. = 1, then @;;1, = 1 for all i, and if e, = —1, then @;;4n, = (—1)°
for all i. By Theorem 1(ii), this configuration is equivalent either to (Xo,..., Xo,+1) or its opposite,
and so, replacing (RZg, ..., RZa,41) by its opposite if necessary, we may assume that it is equivalent
to (Xo,...,Xon+1). Then, recalling that passage to opposites negates inner products, we find that the
images xo,...,Tan4+1 Of Zo,...,Tan4+1 under the equivalence have w; ;j4+n = €imod 2-

The proof of (i) goes exactly as in Proposition 3.3. For (ii) and (iii), fix a choice of v/—1. In (ii), if o
and €1 are both —1, then the representatives of the complex normalization of Section 3.3 may be taken
to be /=1 (x;);, while if they are both 1, then the real and complex normalizations coincide.

In (iii), if &g = 1 and &7 = —1, the C-normalized representatives may be taken to be z; for i even and
v/—1z; for i odd, while if g = —1 and €; = 1, they may be taken to be /—1x; for i even and z; for 4
odd. To summarize, in all cases the C-normalized representatives are (v/—1 (1= moaz2)/ Qmi)i. The relation
between +(a;); and +(ar); now follows easily. O

5.3. The case of n odd and K = C. Recall from Section 4.3 that here Hfﬁgl wl(;i)n =11 cgfl)i.
Proposition 5.2. Forn odd, K = C, and p any (2n + 2)™ root of ]} cz(-_l)i, (Xo, ..., Xont1) admits
exactly (2n + 2) choices of representatives such that w; ;4n = u(_l)i for all i and 1], wlg;i)nlﬂ =1. Fiz
such a choice, xo, ..., Tont1, and set a; := W; j4n41-

(i) The 2n + 2 choices are (51 z;);, where § runs over the (2n + 2)™ roots of unity.

(ii) The symplectic diameters corresponding to any given choice of 6 are (52(_1)1@1‘)14.

(iii) The cross-ratios of the configuration are ¢; = u2(_1)iaiai+1.

Proof. The discussion in Section 4.3 shows that for any (2n + 2)" root p of []g cg_l)l, there exists a
configuration (CZo,...,CZapt1) with & i4n = p D" and cross-ratios ¢, ...,c,. By Theorem 1(ii), it
is equivalent to (Xo,...,Xon+1). The images o, ..., Ta,+1 of Zo,...,T2,+1 under the equivalence have
Wiitn = ,u(*l)l for all 1.

For (i), first check that if a renormalization z; — \;z; preserves w; ;4 for all ¢, then it is of the form

Ai = 601" for some 6. Then check that I wl(;}_),zﬂ = 1 if and only if 6*"*2 = 1. The remaining

statements are clear. O

We remark that the general rescaling x; — \;x; going between normalizations as above with different
choices of p is \; = f(_l)i(”’ﬂ), where ¢ is any primitive (2n + 2)*® root of unity and p and q are
arbitrary elements of Zs, 9. It transforms w; i, from u(_l)i to (f‘p”u)(_l)i and w; j4n41 from a; to
(—1)Pe2(=0"r+a)g, e,

(1 ai), = (€77, (~1)P 7D 4a)g,)
We will not formally state the specialization of Theorem 1 corresponding to the normalization in

Proposition 5.2, but let us describe the specialization of the relation (3.2): it becomes the vanishing of
the quantity obtained from the product ag - --a, by applying the “u-cyclic replacement rule”: replace
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—2(-1)" | For example, at n = 1 and 3,

cyclically adjacent pairs a;a;+1 by —p
0 =agay — p~> — 4%,
0 = apajazas — p~ 2(apa; + asaz) + p~* + pt.
5.4. The case of n odd and K = R. Here we have only found natural normalizations under certain
positivity conditions.

Proposition 5.3. Suppose that n is odd, K = R, and ]_[8 cz(fl)l s positive, and let p be its positive

(2n + 2)"4 root. Then (Xo, ..., Xons1) admits choices of representatives such that w; i, = D" for
all 1.

If both cocz - cny1 and cics---c, are positive, then exactly two such choices satisfy in addition
Iy wg’;ﬂwl = 1. Otherwise there is no such choice.

Proof. Given any representatives (z;);, rescale to A\;x;, where Ao := 1 and

)\T'n)\(r+1)nwrn,(r+1)n = ,U'(il)l

for 0 < r < 2n + 2. Check that this proves the first paragraph. _
In the second paragraph we can only use further rescalings preserving the subdiameters: z; — §(—1)"z;.

: : n (=1)°
Such rescalings multiply [ [ w; ;1511
]_[g Wi i+n+1 is positive. To complete the proof, observe that cocy - - - cp—1 is untt ]_[g Wi i+n+1- There are
two choices because the sign of § is irrelevant. O

by 8272, so we can choose § to make the product 1 if and only if

6. SYMMETRIC LINEAR DIFFERENCE EQUATIONS AND THE CLOSURE OF L, n(K)

In this section we present general results relating Lagrangian configurations to non-degenerate sym-
metric linear difference equations of degree 2n. The solution space of such an equation has a natural
symplectic form, generalizing the Wronski determinant. When the equation has N-periodic coefficients
and monodromy —Id, there is a simple way to construct a particular Lagrangian configuration in its
solution space. This yields a projection from the space of all such equations to equivalence classes of
Lagrangian configurations.

6.1. Linear difference operators. Let T be the shift operator, acting on infinite sequences (V;);ez by
(TV); :=Vi_1. A linear difference operator over K is a polynomial expression in 7" and its inverse,
(6.1) A=a"T" +a" T oo a™T™,
where m < n are arbitrary integers and the coefficients a‘ are sequences (af);cz of K-scalars. Such
operators act on sequences (V;) of K-scalars, the coefficients acting by multiplication: (aV); := a;V;.

e A is said to be of order n — m if both ™ and a™ are non-zero.

e A is said to be non-degenerate if both a}* and a are non-zero for all 3.

e Ais said to be N-periodic if af = af,  for all £ and i.

Definition. The adjoint A* of a linear difference operator A is defined by
V- (AMW) = (AV) - W,
where V- W := 3., V;W;, an inner product on scalar sequences with only finitely many non-zero terms.

It is simple to check that 7% = T—'. This is the discrete analog of the fact that translation is the

exponential of the derivation %, and %* = —%. It is also clear that (AB)* = B*A* for any operators
A and B. Tn particular, writing (7% a’) for the multiplication operator (¢ a’); = a!_,,, one obtains the

following lemma.

Lemma 6.1. (Y, o'T)* = 37 (T~‘a")T".



LAGRANGIAN CONFIGURATIONS 21

Definition. If an operator A satisfies A = A*, it is self-adjoint, or symmetric. In this case, for some
n > 0 there exist sequences a, ..., a" such that

(6.2) A=a"+ i (a"T" + (T T7Y).
=1

Remark. The spectral theory of linear difference operators is quite similar to that of linear differential
operators; see [10] and references therein. Operators with periodic or antiperiodic solutions play a special
role in [10], where they are called “superperiodic”.

6.2. Linear difference equations. The linear difference equation corresponding to a linear difference
operator A is AV = 0. We denote the space of solutions of this equation, the kernel of A, by IC(A):

K(A) :={V: AV =0}.

Lemma 6.2. Let A be a non-degenerate linear difference operator over K of order p. For any ig € Z
and any K-scalars ciy+1,-+ , Cig+p, there is a unique solution (V;) of the equation AV = 0 satisfying the
initial conditions V; = ¢; forig < i < ig+p. In particular, K(A) is a p-dimensional vector space over K.

The proof of this lemma is immediate. Note that the symmetric operator (6.2) is non-degenerate if
and only if af 4 O for all ¢. Let us write the equation AV = 0 explicitly in this case:

(6.3) al Vien + - +aj Vici +a Vi+aly Vigr + -+ aly,, Vign = 0 for all 4.

Corollary 6.3. Given a non-degenerate symmetric difference operator A over K of degree 2n as in (6.5),
for all i € 7 there is a unique element Vi(A) of the kernel K(A) such that

. . , , 1 1
64) (V) Va4, o Vi (A), Vi () = (— 20000, 1),
i i+n

For any i, {V**1(A), VIT2(A), ..., VIT2(A)} is a basis of K(A).

An important property of non-degenerate symmetric operators is the existence of a natural symplectic
form on their kernels. Before giving the general result, we describe the simplest case.

Example. The operator L := T — a + T~! is known as the discrete Sturm-Liouville (or Hill, or
Schrodinger) operator. It is non-degenerate and symmetric, and the classical Wronski determinant
Vieie VL
WV, V') = ’ bt
v,V

is a well-defined symplectic form on its kernel C(L). To understand this, check that when L(V') and

L(V') are zero, W(V, V") is independent of the choice of i:
‘ vi WV ‘ ViV Vi v/

Vi vV}

7 K2

Y _ ' V%—l ‘/;,,1
Vit Vzl+1 Vier Vi, Vi Vi

K2

Remark. The continuant (3.3) may be viewed as an element of (L): the Sturm-Liouville difference
equation is

(6.5) Vici —a;Vi + Vi1 =0,

and the initial conditions (V_1,Vp) = (0,1) give V,, = K,(ag,...,an,—1). In fact, continuants are the
simplest members of the series of André determinants, which satisfy linear difference equations of higher
order; see [1] and also [13].

We now define a multidimensional version of the Wronski determinant. It is a discrete analog of the
symplectic form on the solution space of the symmetric linear differential equation studied in [16].
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Definition. Fix a non-degenerate symmetric linear difference operator A over K of order 2n, as in (6.2).
Given two elements V' and V' of the kernel K(A) and any ¢ € Z, set

n 1+£ /
m 4 Vm—E

Lemma 6.4. (i) Wi is independent of i and is a symplectic form Wa on K(A).
(i) Writing V* for the solution V*(A) of Corollary 6.3, Wa(V*,V7) =V} = ~V7.
(iii) In particular, Wa(VE, V) =0 for |i —j| <n, and Wa(VIi—", V7)) = 1/af.

\Z

Proof. Let us use the shorthand ’ ) for

. It is helpful to expand WY (V, V') as

Vi V’
1 i 2 i 3 i
(ai+1 i+1 ) + (ai+1 z+1‘ + al+2 i+2 ) + (ai-H z+1’ + az+2 z+2‘ + a7+3 i+3 )
1 o ,
Tt <“?+1 T | P Al | [ Al i )
To prove that WY is independent of 4, verify that Wi (V, V') — Wi (V, V') is
. - , - . -
(azlﬂ i-&l-l‘ —a} "] ) + <a12+2 i-‘yl-2’_a22 Y ) +ooot (G?Jrn ian| @ | )
’:Z‘ to — iif and use (6.3), |‘| = = 0 to check that this is
‘ Vi %4 _ ‘ Vi Vi
(AV); (AV'); 0 0

Thus we may write simply Wy for WY. Clearly it is a skew-symmetric bilinear form on K(A).
For (ii) and (iii), it suffices to check from the definitions that for any V' € K(A),

Vi, Vi
ViV

7 (2

-V

?

Wi (VEVY) = af

To prove that W, is non-degenerate, recall Lemma 2.1 and consider the matrix Qyy, of W4 in the
basis {VJI=n T Vit VItnd: for 1< s < 2n, (Qy, )rs = Wa (V77" Vo+Hi=m) The result will
follow if we prove det(yy,) £ 0. Applying (iii), we find

0 T
QWA:(—Tt 0)’

where T is an n x n upper triangular matrix with diagonal entries (a7 ;)™ (a} )7, ..., (a}y,,) " O

Rescaling. Suppose that A is a non-vanishing sequence over K: a sequence (\;);ez of non-zero K-scalars.
Given an operator A, we define its rescaling by \ to be the operator A™' o Ao A7L.

Lemma 6.5. Let A be a non-degenerate symmetric linear difference operator over K of order 2n, as
in (6.2), and let X be a non-vanishing sequence over K. Let A be the rescaling \™*AX~L.
(1) A is a non-degenerate symmetric operator over K of order 2n. Its coefficients at are
as = M\7taLal.
(ii) If A and \ are N-periodic, then A is too.
(iii) A is a symplectic map from (K(A),Wa) to (IC(A),WA).
(iv) AM(Vi(A)) = A\ 1Vi(A).
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Proof. We leave (i), (i), and A(K(4)) = K(A) to the reader. To prove A symplectic, verify

n i+l Vs ! ;
WEAVAV) o= >0 > it A A ne
l=1m=i+1 Vm Vm

Because a, A\ Am—_¢ = a’,, this is simply W4 (V, V).
For (iv), use Corollary 6.3 to check that )\(Vl(A))j =\ 'Vi(A); for i —n < j <i+n. By (iii), both
A(Vi(A)) and A7 1VE(A) are in K(A), so by Lemma 6.2 they are equal. O

6.3. Periodic operators, monodromy, and Lagrangian configurations. Difference equations cor-
responding to N-periodic operators do not necessarily have N-periodic solutions. However, we do have
the following lemma. Its proof is immediate from the obvious fact that an operator is N-periodic if and
only if it commutes with T,

Lemma 6.6. Suppose that A is an N-periodic linear difference operator. Then TN preserves the kernel
K(A). It is called the monodromy operator M4 of A:

MA = TN|,C(A) : ]C(A) s ,C(A)
In the case of non-degenerate symmetric operators, the monodromy is symplectic:

Lemma 6.7. Suppose that A is a non-degenerate N -periodic symmetric linear difference operator of
order 2n. Then the monodromy operator M 4 preserves the symplectic form Wy on KC(A).

Proof. We must prove that Wa(TNV,TNV') = Wa(V,V’) for all elements V and V' of K(A). Recall
that W4 may be expressed as WY for any i. Use the fact that (TVa’) = a® for all £ to check that
Wi TNV, TNV') = Wir N (V, V7). O

Our main result in Section 6 is Theorem 3, the most general result of the paper. It states that
a certain set of difference operators may be projected to symplectic equivalence classes of Lagrangian
configurations. In order to define this projection we make two preliminary definitions.

Definition. For N > 2n, let £, x(K) be the Sp(2n, K)-moduli space of symplectic equivalence classes
of all (n, N)-Lagrangian configurations over K, both generic and non-generic.

Definition. For N > 2n, let &, v (K) be the set of non-degenerate N-periodic symmetric linear difference
operators over K of order 2n with monodromy —Id.

Remarks. e £, v(K) is a closure of £, y(K).

e For both geometric and analytic reasons, imposing the condition that the monodromy be Id in
the definition of &, n(K) would be less natural; cf. [13, 10] for the SL(2n)-analog.

e Suppose that A is a non-degenerate N-periodic symmetric linear difference operator of order 2n.
Fix initial conditions V;,+1, ..., Vi,+2n, and let V' be the corresponding solution of AV = 0. It is
easy to see that each entry V; of V depends polynomially on the quantities (a?)*!,a}™",..., al

for igp < k < ip + N. It follows that the same is true of M4, and so &, y is an algebraic variety.
We will see that &, x projects to £, n, with fibers given by rescaling. Recall from Proposi-

tion 2.7 that £,, n is n(N —2n—1)-dimensional. The set of periodic rescalings has N parameters,

so the dimension of &, y is (n+1)N —n(2n+1). Thus the number of independent constraints im-

posed on a periodic symmetric linear difference operator by specifying its monodromy to be —Id

is the dimension of the symplectic group preserving Wy, as one would predict from Lemma 6.7.

Proposition 6.8. Suppose that A is in &, n(K). Fiz arbitrarily an identification of the symplectic
space (/C(A),WA) with the standard symplectic space (KQ”,w), and let v; € K®* be the image under this
identification of the element Vi(A) of K(A) defined in Corollary 6.5.

(i) The v; are N-antiperiodic.
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(ii) (Kwvi,...,Kvy) is an (n, N)-Lagrangian configuration.
(iii) There is a map P : &, v(K) — L, n(K), defined by

P(A) := the symplectic equivalence class of (Kvl, . ,KUN).
(iv) P(A) and P(—A) are opposite configurations.

Proof. The fact that the monodromy My is —Id translates to the statement that VitV (A4) = —Vi(A),
giving (i). For (i), apply Lemmas 2.2 and 6.4(iii) and use the fact that Wa (V(A), VI(A)) = w(vi, v))

by construction. For (iii), note that the symplectic equivalence class of (Kvy,...,Kovy) is independent of
the choice of symplectic identification of K(A) with K2".

For (iv), use the facts that K(—A) = K(A4), Vi(—A) = —Vi(A), and W_, = —Wa. O
Theorem 3. (i) P:&Eun(K) - L, n(K) is surjective.

(ii) P(A) = P(A) if and only if A is a rescaling \"" AN of A by an N-periodic ).

Proof. We proceed by a series of lemmas. For (i), fix an (n, N)-Lagrangian configuration (K1, ..., Kzy).
As usual, extend the representatives N-antiperiodically to (z;):ez and write w;; for w(x;, z;). In order to
construct an operator A in &, n(K) such that P(A) is the class of (Kz1,...,Kzy), for all i define

(67) a? = 1/(,01‘,”,%‘.
Keeping in mind that {z; ,41,...,%i1n} is a basis of K?*, define a?fl, ...,a; " by the equation
(6.8) alTi—n + a?‘lxi,nﬂ +- 4 a[”+1xi+n,1 +a; "Titn =0.

Define A by (AV); :=alV,—i + - - a; "Vi+i. The next two lemmas concern this difference operator.

Lemma 6.9. (i) A is non-degenerate, N -periodic, and symmetric.

)
(i) For 1< p < n, the coefficients a; " are given by

p—1
(6.9) a"P — 2 : 2 : (—1)™ Wi—n,i+p1 Wi—n+p1,i+ps * " Wi—n+pm_1,i+pm Yi—n+pm,itp
: i - AT . . . . . . . . .
M=0 0<p1<--<pm<p Wi—n,i Wi—n+p1,i+p1 * " Wi—n+pm,i+pm Yi—n+p,i+p

Examples. Observe that (6.9) has 2P~! summands. Let us give the first three cases as examples. The
summand at m = 0 is understood to be —w;_y, ;+p/Wi—n,i Wi—n+p,i+p, SO We have

ne1 -1 Wi—n,it+1
a, = ,
Wi—n,i \Wi—n+1,i+1
a2 -1 ( Wi—n.i+2 Wi, it1 Wimn41,i42 )
7 - - )
Wi—n,i \Wi—n4+2i+2 Wi—n+41,i+1 Wi—n+2,i+2
a”*‘g . -1 ( Wi—n,i+3 Wi—n,i+1 Wi—n+1,i+3 Wi—n,i+2 Wi—n42,i+3
! = _ _
Wi—n,i \Wi—n+3,i+3 Wi—n41,i+1 Wi—n+43,i+3 Wi—n42,i4+2 Wi—n+3,i+3

+

Wi—n,i+1 Wi—n41,i+2 Wi—n+2,i+3 )
Wi—n4+1,i4+1 Wi—n+2,i+2 Wi—n43,i+3
Proof. Apply w(z;—,-) to (6.8) to obtain
n n—1 n—2 —-n
(6.10) 0=a/wirin+0a; Wirint1+T0; Wirint2t...+0; Wiritn.

Consider the case r = 0. By the Lagrangian condition, here only the leftmost and rightmost terms on
the right hand side are non-zero. We obtain

(611) ai_n = l/wi,i+n = a?—&-n'

Thus A is non-degenerate and satisfies the symmetry condition ai_z = af 4o for £ =mn.
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Now consider the cases r = +p with 1 < p < n. By the Lagrangian condition, for » = —p only the
leftmost p + 1 terms on the right hand side are non-zero, while for » = p only the rightmost p + 1 terms
are non-zero. We obtain

1 Wi
n—p __ 1—n,1+p n—1 n—p+1
(6.12) a; - = ( ta; Wintlitp T TG wz‘—n+p—1,z‘+p)7
Wi—n+p,i+p Wi—n,i
-1 Wi
p—n __ 1—p,itn 1-n p—1-n
(6.13) a; "= ( +a; " Wi—pitn_1 + -+ a; wi,p,¢+n,p+1).
Wi—p,i+n—p Wi i+n

A straightforward induction argument from (6.12) gives (6.9): the first term of (6.12) is the m = 0
term of (6.9), and the term —a]  Yw;_y4q,i+p/Wi—ntpi+p Of (6.12) gives those terms of (6.9) with p,, = ¢.
A parallel argument from (6.13) yields a closed formula for a?~":

—1
(6.14) " = g —(=1)™ Wizpyitn—pm Yizpm,itn—pm_r " Wizpsjitn-pis Yizpiitn

=0 0<p1<-<pm<p Wi—p,itn—p Wi—pp,,i+n—pm " " Wi—p1,i+n—p1 Wii+n

To finish proving that A is symmetric, we must prove ai_é = af 4o for 0 < £ < n. Note that

(p17p27 "'7pm>'_)(p_pm7p_pmfla 7p_p1)

is an involution of the index set of the inner summation in (6.9). Use this to verify that replacing ¢ by
i+mn—pin (6.9) gives (6.14). This completes the proof of the lemma: the fact that A is N-periodic is
now immediate from wi N j+N = wij. O

Lemma 6.10. (i) A lies in &, n(K).
(i) The solutions V*(A) defined in Corollary 6.3 are given by V' (A) = wi;.

Proof. We begin with (ii). Abbreviate V*(A) by V*. By (6.4), (6.7), and (6.11),
(V;l,,w V;i,nJrl, ey V;iJrnflﬂ ‘/an) = (wi,i,n, 07 ey 0, wi7i+n)

= (wi,if'ru Wi i—n+1 -+ Wiitn—1, wi,iJrn) .

Consider (6.10): since i — r is arbitrary, we see that (w;;); lies in C(A). By the above equation, it has
the same initial conditions as V*, and so (ii) follows from Lemma 6.2.
In light of Lemma 6.9(i), to prove (i) it suffices to prove that (6.8) has monodromy —Id. Because the

Vi span K(A), this reduces to Vji+N = =V} for all 4, j. By (ii), this follows from ;4 v = —x;. O

At this point we have proven Theorem 3(i): by Lemmas 6.4 and 6.10, the element A of &, n(K)
constructed in Lemma 6.9 has solutions Vi(A) satisfying Wa(V:,V7) = VJ’ = w(ax;,x;). Therefore by
Lemma 2.1(iii) there is an element of Sp(2n,K) carrying the x; to the v; of Proposition 6.8, and so P(A)
is the class of the Lagrangian configuration originally given.

We now turn to Theorem 3(ii). The fact that P(4) = P(A) if A = AAX is immediate from Lemma 6.5:
A is a symplectic map carrying V#(A) to a multiple of V#(A). Conversely, suppose that P(A) = P(A).
Reviewing Proposition 6.8, we find that this means there is a symplectic map A from (/C(A), WA) to
(IC(A), Wy) carrying V¥(A) to a non-zero multiple of Vi(A), for all i. Define X by setting A\; ! to be this
multiple. Because the sequences Vi(A) and Vi(A) are both N-antiperiodic, X is N-periodic.

Let A := AAX. By Lemma 6.5, \ is a symplectic map from (IC(A), W;) to (IC(A), Wj) carrying Vi(A)
to A; ' Vi(A). Therefore A~ o A is a symplectic map from (K(A), Wa) to (K(A), W) carrying Vi(A) to
Vl(fl) The following lemma shows that A = A, completing the proof of Theorem 3. O
Lemma 6.11. Let A and A be elements of Enn(K). Write a* and a° for the coefficients of A and A,

Viand V* for VI(A) and Vi(A), and vij and 0ij for the inner products Wa(V*, V) and WA(Vi, Vi),
respectively. The following statements are equivalent:



26 CHARLES H. CONLEY AND VALENTIN OVSIENKO

(i) A=A4, ie,a' =a for 0<l<n.

i) There exists a symplectic map o : (K(A),Wa) — (IC(A), W;) such that o(V') = Vi for all i.
iii) 1/” = ;5 for alli and j.
iv) Vi=V? for all i.

Proof. Tt is immediate that (i) implies (ii), (iii), and (iv), and (ii) implies (iii). By Lemma 2.1(iii), (iii)
implies (ii), and (iii) and (iv) are equivalent by Lemma 6.4(ii). In order to prove that (iii) and (iv)
imply (i), we will prove that for 0 < p < n the a;”? are given by (6.7) and (6.9) with v;; replacing w;;.

For p = 0, recall that by Lemma 6. 4(111) " = 1/V;_y ;. For p > 0 it suffices to prove that (6.12) holds
with v replacing w, and for this it suffices to prove that (6 10) holds with v replacing w. This equation in
turn results from applying Wa (V") to (6.8) with V* replacing z., so finally we come down to proving
the vector equation

alnvi—n _'_a?—lvi—n-kl +. _’_aH_n 1Vl+’ﬂ 1 +al+nvz+n _ 0
for all i. Because V7 is itself in K(A), we know that the scalar equation
, i
a?‘/zjfn + a? V;—{n+1 +ot aern 1‘/zj+n 1 + az+n‘/zj+n =

holds for all 7. To complete the proof, recall from Lemma 6.4(ii) that ij = —ij. g

7. THE CASE N =2n+ 3

In this section, let (X1,...,Xxn) be a generic complex (n, N)-Lagrangian configuration with repre-
sentatives (z1,...,zn). Extend them to an N-antiperiodic sequence and write w;; for w(z;,z;). We
conclude the article with a discussion of the case N = 2n + 3: we generalize the five Gauss relations (1.3)
on £4,5(C) to 2n + 3 relations on the 2n + 3 basic symplectic cross-ratios of £, 2,+3(C).

These relations are obtained by means of the symmetric linear difference operators associated to
Lagrangian configurations in Theorem 3. The computations actually consist in solving the system of
equations given by the condition that the operators have monodromy —Id. We remark that Theorem 2(i)
may be obtained via the same method.

There are two sequences of non-trivial cross-ratios on £,, 2,,13: the ¢; of (1.4), and the 7; ;441 of (2.7),
which we will abbreviate by ;. Both are (2n + 3)-periodic:

Wi i4+n+1 Wit1,i+n+2 Wi—2i4n Wi i+n+1

Ci = Ciitlitn+litnt2 = sy Vi = Ci—24i4n,i+n+l =
Wi i+n+2 Wit1,i+n+1 Wi—2,i4+n+1 Wi itn

We have v; = ¢j—1¢j4n, so all cross-ratios on L, 2,+3 may be written in terms of the ¢;. We will prove
that over C these 2n+ 3 cross-ratios determine the equivalence class of their Lagrangian configuration (we
expect that over R they determine it up to opposites). By Proposition 2.7, £,, 2,4+3(C) is 2n-dimensional,
so the space of relations on the ¢; must have Krull dimension 3. We conjecture that the 2n + 3 relations
we present generate the full space of relations.

If wiiyn = 1 for all 4, as in Section 3.3, then the representatives z; are said to be normalized. We
begin with a general lemma permitting us to restrict our consideration to such representatives.

Lemma 7.1. For any complex (n, N)-Lagrangian configuration (Xi,...,Xn) with N/GCD(n, N) odd,
there exist exactly 25CPN) normalized choices of representatives.

Proof. Following Section 4.2, let (Z1,...,Zx) be any representatives of (X1,..., Xy), with corresponding
inner products @;;. Fix an N-periodic sequence x; such that X? = @i itn. Mimicking (4.9), set

- ™™’

_ XiXi+2n Xit+4n " Xit(g—1)n —1)"
Aj 1= l_[ Xi+
Xi+nXi+3n Xi+(g—2)n

where ¢ denotes N/GCD(n, N). Check that \jXitn = @i i4n, 50 &; := T; /A, satisfies w; j4n = 1.
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The fact that \? = Hg;é @E;:LTH(TH)H implies that each g-tuple (A, Aiyn,. .., Aiy(g—1)n) is deter-
mined up to a single choice of overall sign. The lemma follows. O
Henceforth let (Xi,...,Xo,+3) be a generic complex (n,2n + 3)-Lagrangian configuration, and fix

a normalized choice of representatives x;. Recall from Section 3.3 the (n + 1)-periodic sequence a; :=
Wi i+n+1 Of symplectic diameters of normalized (n, 2n +2)-configurations. The analog here is the (2n+3)-
periodic sequence of symplectic main diagonals, defined by the same formula as the a;:
di = Wi itn+1-
Note that this notation is consistent with (1.3), and
ci = didiy1/di—pn_1, Vi = Ci—1Citn = didiyn.
Corollary 7.2. (i) If 3 t n, then (X1,...,Xont3) has two normalized choices of representatives:
(z3); and (—x;);. Both have the same d;: the configuration determines its main diagonals.
(ii)) If 3 | n, then (Xi1,...,Xonts) has eight normalized choices of representatives: e€;x;, where
€; = 1 and depends only on i modulo 3. The corresponding main diagonals are €;€;4+1d;.

Proposition 7.3. Generic equivalence classes in Ly, 2n+3(C) with the same cross-ratios ¢; are equal.

Proof. Let xz; and Z; be normalized representatives of two Lagrangian configurations having the same
cross-ratios: ¢; = ¢;. It suffices to show that the Z; may chosen so that the two sets of main diagonals
are the same, i.e., d; = d;, as then @;; = w;; for all 4 and j. Observe that

YiYi4+2n * Vi+2rn
Yit+nYi+3n " Vit (2r—1)n

¢i—17i+1 = di—1d;d;+1, and for any r, = did;y (2r+1)n-

Write n in the form 3m + s, where s € {—1,0,1}. Take r = m above and apply (2n + 3)-periodicity
to see that d;d;, s is determined by the cross-ratios. If s = +1, dividing ¢; _17;11 by this gives d;_, as a
function of the cross-ratios. Thus for 3 f m, the cross-ratios determine the main diagonals.

If 3 | m,ie., s =0, taking r = m gives d?, and so the cross-ratios determine the main diagonals up
to sign: d; = 6;d; for some §; = +1. Using v; = didisn, ¥ = vi, and GCD(n,2n + 3) = 3, we find that
0; depends only on ¢ modulo 3. Applying ¢;—17v;+1 = d;—1d;d;+1, we obtain 6;_16;6;41 = 1. Therefore by
Corollary 7.2 it is possible to modify the z; so that d; = d;. O

Recall now the difference operator A constructed from the representatives z; in (6.8). In the normalized
case the formula (6.9) for its coeflicients simplifies, as the denominators are all 1:

— m . . . . PR . . . .
a; = Z Z —(=1)" Wimnitps Wimntpri+ps *** Wimn+pm_1,i+pm Wimn+pm,i+p-

m=0 0<p1<--<pm<p

Observe that the factor wi_yp4p, ;4 ,i4p, 15 equal to di_nip,—1 if Do —pe—1 is 1, is equal to d;qp, if Pr —Ppr—1
is 2, is equal to 1 if py — py—1 is 3, and is equal to 0 otherwise. The initial cases are

n n—1 n—2
a; =1, a;” " = —di_n, a;" " =di_ndi_ny1 — diyo,
a;"" = —di_ndi—pnt1di—pi2 + di—ndiz3 + di—pi2diye — 1.

Proposition 7.4. The 2n + 3 symplectic main diagonals d; of the normalized representatives x; of
(X1,...,Xon13) satisfy the following 2n + 3 polynomial relations on the d; (for n = 1, take a? to be 0):

(71) 0= af + di+n+1a} + dla? + a}H.

Proof. Simply take r = —(n + 1) in (6.10). O
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Legendrian pentagons in CP'. This is L1 5, the Gaussian case discussed in Section 1.2. Here (7.1)
reduces to (1.3). Using d; = ¢;—2¢;4+1/c¢i+2, the relations may be stated in terms of the ¢;:

1 1

—— =1

&7 Ci—1Ci+1
Legendrian heptagons in CP?. For Lo7, (7.1) reads

di—1didip1 — di—3di—1 — dip1diyz —di +1 = 0.
USiIlg dl = Ci_lcicl‘+3/0i_201‘+1, thiS becomes
1 1 1 1

- + — =1
Ci—3 Ci+3 Ci—2Ci+2 Ci—3CiCi+3

Legendrian nonagons in CP°. For L3, (7.1) yields
di—ad;—3diy3dipa — di—adi—3d;i1 — di—3d;dir3 — diy1diy3diva
—di—4diyq +di_1diy1 +di_3 +d;i +diy3 =0.
Using ¢; = d;d;1/di—4, ci—1¢i13 = v; = d;d;t3, and ¢;_17y;+1 = d;—1d;d; 11, this may be rewritten as
1 1 1 1 1 1 1 1

—_—+ — + + + — — — =1.
Ci—1 & Cit1 Ci—1Cit+1 Ci—2Ci42 Ci—4CiCiy1 Ci—2C;iCiy2 Ci—1CiCit4

We close with a few general remarks. Note that for 3 f n, (7.1) can always be written as a rational
relation on the ¢;, because the d; are rational functions of the ¢;. In light of the situation for L3 g, we
expect that this is in fact true for all n. Also, although we have worked only over C in this section, it
should be easy to show that the relations we have given on the ¢; hold also over R.

Finally, let us reiterate our conjecture regarding (7.1). Because Ly 2,43 is 2n-dimensional and the
cross-ratios (cy, ..., can+3) form a coordinate ring on it, the space of relations on the ¢; must be of Krull
dimension 3. We conjecture that the 2n + 3 relations (7.1) generate the full relation space.
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