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Lagrangian configurations and symplectic cross-ratios

Introduction

Throughout this article, K will denote either R or C. We consider configurations of one-dimensional subspaces in the standard symplectic space K 2n , or equivalently, configurations of points in the contact projective space KP 2n´1 , modulo the action of the symplectic group Spp2n, Kq.

Definition. For N ě 2n, define an pn, N q-Lagrangian configuration over K to be a cyclically ordered Ntuple pX 1 , . . . , X N q of lines through the origin in the symplectic space K 2n with the following properties (by cyclically ordered, we mean that the indices are read modulo N ):

(i) Every n consecutive lines span a Lagrangian subspace: xX i`1 , . . . , X i`n y is Lagrangian for all i.

(ii) Every 2n consecutive lines span the entire symplectic space: xX i`1 , . . . , X i`2n y " K 2n for all i.

Equivalently, we may speak of Legendrian configurations of points in the contact projective space KP 2n´1 . We have formulated our results in the symplectic setting, but let us mention that Legendrian configurations in RP 3 may be viewed as discrete analogs of Legendrian knots. In another direction, one may consider cyclically ordered N -tuples of Lagrangian subspaces pL 1 , L 2 , . . . , L N q in R 2n such that every two consecutive subspaces L i and L i`1 are "maximally non-transversal". These configurations are in some sense dual to Lagrangian configurations, and the Maslov index may be applied to study them; see [START_REF] Arnold | The Sturm theorems and symplectic geometry[END_REF]. Continuous versions were treated in [START_REF] Ovsienko | Self-dual differential operators and curves on Lagrangian Grassmannian that are subordinate to a loop[END_REF].

Suppose that an arbitrary cyclically ordered N -tuple pX 1 , . . . , X N q of lines through the origin in K 2n has Property (i) above. We will see in Lemma 2.2 that then it has Property (ii) if and only if the subspace xX i , X i`n y is not isotropic for any i. It turns out that Spp2n, Kq does not act freely on all Lagrangian configurations, but for N ą 2n, it does act freely on configurations in which xX i , X j y is not isotropic except when forced to be so by Property (i); see Proposition 2.7. We refer to such configurations as generic:

Definition. An pn, N q-Lagrangian configuration pX 1 , . . . , X N q is generic if xX i , X j y is non-isotropic whenever the N -cyclic distance between i and j is at least n, that is, |i ´j| is not congruent to any of 0, . . . , n ´1 modulo N . We denote the Spp2n, Kq-moduli space of generic pn, N q-configurations over K by L n,N pKq.

The space L n,N pKq is the main object of our study. We will see that Spp2n, Kq acts freely on generic configurations, implying that L n,N pKq is a variety of dimension npN ´2n ´1q, and moreover, L n,N pRq and L n,N pCq are smooth real and complex manifolds of this dimension, respectively. We construct a collection of symplectic cross-ratios which are Spp2n, Kq-invariants of Lagrangian configurations over K, and in some cases show that these cross-ratios form a coordinate ring on L n,N pKq. They satisfy certain relations, which we calculate explicitly as Pfaffians for N " 2n `2, the simplest non-trivial case. These Pfaffians are closely related to the classical determinants of continued fractions known as continuants; see [START_REF] Conley | Rotundus: triangulations, Chebyshev polynomials, and Pfaffians[END_REF].

Observe that for n " 1 the Lagrangian condition is vacuous, so L 1,N pKq is essentially the classical moduli space M 0,N of configurations of N points on the projective line. We regard L n,N pKq as a multidimensional symplectic variant of M 0,N . The only previously studied configurations in symplectic space we know of are triangles and skew lines; see [START_REF] Yaglom | On linear subspaces of symplectic space[END_REF] and Section 2.8 of [START_REF] Onishchik | Projective and Cayley-Klein geometries[END_REF]. To the best of our knowledge, Lagrangian configurations have not been considered before. We believe that they deserve further study; in particular, it would be interesting to investigate the topology of L n,N pKq. It seems plausible that the topological invariants of Legendrian knots, for instance, the Maslov class and the Bennequin invariant, as well as more general invariants, can be expressed in terms of cross-ratios of a Lagrangian configuration.

Relations to dynamical systems also seem promising. Moduli spaces of cyclic configurations of points in RP n (without any Legendrian condition) carry a family of discrete integrable systems, including the pentagram map and its generalizations; see [START_REF] Felipe | The pentagram map on Grassmannians[END_REF][START_REF] Glick | Y -meshes and generalized pentagram maps[END_REF][START_REF] Khesin | The geometry of dented pentagram maps[END_REF][START_REF] Ovsienko | The pentagram map: A discrete integrable system[END_REF][START_REF] Ovsienko | Liouville-Arnold Integrability of the Pentagram Map on Closed Polygons[END_REF][START_REF] Soloviev | Integrability of the Pentagram Map[END_REF]. We believe that L n,N pKq also supports interesting discrete dynamical systems.

1.1. Example: hexagons in KP 3 . Our main geometric result is a description of L n,2n`2 . The simplest case, L 1,4 pKq, is the moduli space of quadrilaterals in KP 1 . It has been known since ancient times to be 1-dimensional and parametrized by the classical cross-ratio. Therefore the first new case is L 2,6 pKq, the Spp4, Kq-moduli space of generic p2, 6q-Lagrangian configurations, i.e., Legendrian hexagons in KP 3 .

Given any p2, 6q-configuration, choosing a non-zero point on each of the six lines gives a hexagon px 0 , . . . , x 5 q in K 4 . It turns out to be natural to regard this hexagon as the 6-antiperiodic sequence px i q iPZ defined by x i˘6 :" ´xi . Then ωpx i , x i`3 q " ωpx i`3 , x i`6 q, ωpx i , x i`2 q " ωpx i`2 , x i`6 q,

where here and throughout the paper ω is the standard symplectic form on K 2n (see Section 2.5). The sequences `ωpx i , x i`2 q ˘iPZ and `ωpx i , x i`3 q ˘iPZ are 6-periodic and 3-periodic, respectively. The Lagrangian conditions are ωpx i , x i`1 q " 0 and ωpx i , x i`2 q " 0. Thus we may say that we are considering hexagons whose sides are of "symplectic length zero", but whose "symplectic subdiameters" are non-zero. The generic configurations are those with non-zero "symplectic diameters": ωpx i , x i`3 q " 0.

The three "diametric symplectic cross-ratios" c i :" ωpx i , x i`3 q ωpx i`1 , x i`4 q ωpx i , x i`4 q ωpx i`1 , x i`3 q , i " 0, 1, 2, depend only on the original configuration of lines, not the choice of points x i , and are symplectic invariants. We will see that they form an essentially complete set of invariants parametrizing L 2,6 pKq. As an example, we illustrate c 0 by the following diagram.

x 0

x 5 x 1

x 4 x 2

x 3

Figure 1. The cross-ratio c 0 " ωpx0,x3q ωpx1,x4q ωpx0,x4q ωpx1,x3q on L 2,6 pKq. Observe that the space of all p2, 6q-Lagrangian configurations is 12-dimensional: there are three degrees of freedom for each of the six points, and six Lagrangian conditions. As mentioned earlier, the 10-dimensional group Spp4, Kq acts freely on the generic configurations, so L 2,6 pKq is 2-dimensional. Therefore the three cross-ratios cannot be independent. In fact, they satisfy the relation

(1.1) 1 c 0 `1 c 1 `1 c 2 " 1.
For K " C this analysis can be reformulated as follows. By rescaling, the x i can be normalized so that the symplectic subdiameters ωpx i , x i`2 q are all 1. Then the symplectic diameters a i :" ωpx i , x i`3 q become, up to an overall choice of sign, symplectic invariants. Indeed, here c i " a i a i`1 , so (1.1) becomes (1.2) a 0 a 1 a 2 " a 0 `a1 `a2 .

For K " R, it may happen that only complex rescalings can bring all subdiameters to 1. However, the required scale factors are always either real or pure imaginary. There are four possibilities: the normalized x i with i even are either all real or all pure imaginary, and similarly for i odd. If the normalized x i are all real or all imaginary, then the a i are all real, while if the normalized x i are half real and half imaginary, then the a i are all imaginary.

Let us remark that up to permutation, pc 0 , c 1 , c 2 q " p2, 3, 6q is the only Egyptian fraction solution of (1.1). It arises from pa 0 , a 1 , a 2 q " p1, 2, 3q, the only positive integer solution of (1.2). Integer solutions of the multi-dimensional analogs of these relations are discussed in [START_REF] Conley | Rotundus: triangulations, Chebyshev polynomials, and Pfaffians[END_REF][START_REF] Ovsienko | Partitions of unity in SLp2, Zq, negative continued fractions, and dissections of polygons[END_REF]. 1.2. Example: the Gauss relations. In the final section of this article we make some initial remarks on the relations between the symplectic cross-ratios of L n,2n`3 . Historically, the earliest examples of relations between cross-ratios arose in Gauss' pentagramma mirificum [START_REF] Gauss | Pentagramma Mirificum[END_REF], which is M 0,5 pKq, or equivalently, L 1,5 pKq, the moduli space of pentagons in KP 1 .

As we did for Legendrian hexagons, given five points in KP 1 , lift them to non-zero points x 0 , ¨¨¨, x 4 in K 2 and extend to a 5-antiperiodic sequence px i q iPZ via x i˘5 :" ´xi . Gauss discovered that the 5-periodic sequence of cross-ratios d i :" ωpx i´3 , x i qωpx i´2 , x i´1 q{ωpx i´3 , x i´2 qωpx i´1 , x i q satisfy the relations

(1.3) d i d i`1 " d i`3 `1.
These five Gauss relations completely determine the varietal structure of M 0,5 . They can be rewritten in the remarkable form

ˆd0 1 ´1 0 ˙ˆd 1 1 ´1 0 ˙ˆd 2 1 ´1 0 ˙ˆd 3 1 ´1 0 ˙ˆd 4 1 ´1 0 ˙" ˆ´1 0 0 ´1 ˙.
This relates the topic to two classical subjects: the theory of continued fractions and the theory of linear difference equations. The Gauss relations were the main motivation for Coxeter [START_REF] Coxeter | Frieze patterns[END_REF] to develop the notion of frieze patterns, relating projective geometry to combinatorics. Friezes provide a special parametrization of M 0,N ; see [START_REF] Morier-Genoud | Linear difference equations, frieze patterns and combinatorial Gale transform[END_REF] and the appendix of [START_REF] Morier-Genoud | 2-Frieze patterns and the cluster structure of the space of polygons[END_REF].

We regard the relations between the symplectic cross-ratios of L n,N as multi-dimensional analogs of the Gauss relations. Building on preliminary versions of this article, Morier-Genoud [START_REF] Morier-Genoud | Symplectic frieze patterns[END_REF] has studied the combinatorial aspects of L 2,N pCq, the moduli space of Legendrian N -gons in CP 3 . Her work indicates that in general, L n,N pKq has a rich combinatorial structure related to friezes.

Outline of results.

It is natural to ask for a coordinate system on the moduli space L n,N pKq of pn, N q-Lagrangian configurations. In this article we show that this question is vacuous when N is 2n or 2n `1, and answer it when N is 2n `2. Our coordinates are given by the symplectic cross-ratio, a direct analog of the classical cross-ratio: we show that L n,2n`2 pKq is parametrized by symplectic cross-ratios and determine its structure as an algebraic variety. We expect that symplectic cross-ratios parametrize L n,N pKq for all N . The exposition is organized as follows.

In Section 2 we define symplectic cross-ratios and show that they provide continuous invariants on pn, N q-Lagrangian configurations for N ě 2n `2. We also deduce the dimension of L n,N pKq and define opposite configurations and equivalence classes, which over R are distinguished by sign invariants.

Section 3 contains our main geometric results, which we summarize here:

' pn, 2nq-configurations are all generic and equivalent over both C and R.

' pn, 2n `1q-configurations are all generic. Over C they are all equivalent, and over R there are two equivalence classes, which are opposite.

' pn, 2n `2q-configurations admit n `1 diametric symplectic cross-ratios c 0 , . . . , c n :

(1.4)

c i :" ωpx i , x i`n`1 q ωpx i`1 , x i`n`2 q ωpx i , x i`n`2 q ωpx i`1 , x i`n`1 q ,
the x i being arbitrary non-zero points on the lines of the configuration. Over C, generic pn, 2n `2q-configurations are equivalent if and only if they have the same diametric cross-ratios. Over R, generic pn, 2n `2q-configurations with the same cross-ratios are either equivalent or in opposite equivalence classes.

The moduli space L n,2n`2 pKq is n-dimensional. The n`1 cross-ratios satisfy the relation (3.2), and any collection of non-zero K-scalars pc 0 , . . . , c n q satisfying (3.2) is the set of cross-ratios of an pn, 2n `2q-configuration over K. Thus the cross-ratios are coordinates describing L n,2n`2 pKq as an algebraic hypersurface in K n`1 . These results are presented in Theorem 1.

For pn, 2n `2q-configurations the proof has several components and is given in Section 4.

In Section 5 we present certain normalized choices of the x i generalizing Section 1.1. For n even there is an essentially unique choice such that the symplectic subdiameters ωpx i , x i`n q are all 1. This normalization provides an alternate coordinate system on L n,2n`2 pKq: the symplectic diameters a 0 , . . . , a n , where a i :" ωpx i , x i`n`1 q. These diameters are determined up to an overall choice of sign, and for K " R they are either all real or all pure imaginary. In this coordinate system the relation (3.2) can be written in terms of the celebrated classical determinants called continuants. This connection is emphasized in Section 3.3; see Theorem 2.

For n odd, one cannot in general choose the points x i so that the symplectic subdiameters are all 1, but one can choose them so that the subdiameters alternate between a scalar µ and its reciprocal, and the two alternating products of diameters are equal: a 0 a 2 ¨¨¨a n´1 " a 1 a 3 ¨¨¨a n . Here µ is determined up to a p2n `2q nd root of unity, and the a i are determined up to an overall pn `1q st root of unity.

An old idea of projective differential geometry consists in representing geometric objects such as curves or configurations of points via differential or difference operators. Following this approach, in Section 6 we realize the moduli space of Lagrangian configurations as the quotient by rescaling of the space of symmetric linear difference equations with periodic coefficients and antiperiodic solutions; see Theorem 3.

We conclude in Section 7 with a preliminary discussion of L n,2n`3 , including a general result on normalizations in the case that N { GCDpn, N q is odd, and relations on cross-ratios for L 2,7 and L 3,9 , the moduli spaces of generic Legendrian heptagons in KP 3 and Legendrian nonagons in KP 5 .

Lagrangian configurations and their moduli spaces

In this section we collect some basic properties of Lagrangian configurations and the action of Spp2n, Kq on them. We prove that the action is free on generic configurations and introduce two types of invariants: continuous invariants known as symplectic cross-ratios, and certain discrete sign invariants.

2.1. Symplectic cross-ratios. Consider two pairs of points in pK 2n , ωq, px 1 , x 2 q and py 1 , y 2 q, such that ωpx 1 , y 2 q and ωpx 2 , y 1 q are non-zero. We define their symplectic cross-ratio to be (2.1) rx 1 , x 2 ; y 1 , y 2 s :" ωpx 1 , y 1 q ωpx 2 , y 2 q ωpx 1 , y 2 q ωpx 2 , y 1 q .

The symplectic cross-ratio is obviously invariant with respect to both the action of the symplectic group Spp2n, Kq and rescalings x i Þ Ñ λ i x i and y i Þ Ñ µ i y i . Therefore it is in fact a symplectic invariant of two pairs of one-dimensional subspaces in K 2n , or equivalently, of two pairs of points in KP 2n´1 . Observe the symmetries (2.2) rx 2 , x 1 ; y 1 , y 2 s " rx 1 , x 2 ; y 1 , y 2 s ´1, ry 1 , y 2 ; x 1 , x 2 s " rx 1 , x 2 ; y 1 , y 2 s.

Remark. For n ą 1, (2.1) is not the only symplectic invariant of a quadruple pKx 1 , Kx 2 , Ky 1 , Ky 2 q of lines in K 2n . However, it is the only such invariant if ' xx 1 , x 2 y and xy 1 , y 2 y are isotropic, i.e., ωpx 1 , x 2 q and ωpy 1 , y 2 q are 0, and ' px 1 , x 2 , y 1 , y 2 q is generic under this condition.

In the one-dimensional case, (2.1) is nothing but the classical cross-ratio of 4 points on the projective line. In affine coordinates, it is given by the usual formula: rx 1 , x 2 ; y 1 , y 2 s " px 1 ´y1 q px 2 ´y2 q px 1 ´y2 q px 2 ´y1 q .

It is the unique PSLp2, Kq-invariant of px 1 , x 2 , y 1 , y 2 q. Different partitions of the points into two pairs give six different cross-ratios, but any one of them determines the others.

Remark. The cross-ratio plays a fundamental role in many areas, from projective geometry to mathematical physics; for an overview, see [START_REF] Labourie | What is... a cross-ratio?[END_REF]. It is the discrete version of the Schwarzian derivative; see, e.g., [START_REF] Ovsienko | Projective differential geometry old and new: From the Schwarzian derivative to the cohomology of diffeomorphism groups[END_REF]. Different versions of multi-dimensional symplectic cross-ratios have been considered. One is an invariant of a quadruples of Lagrangian planes related to the Maslov index; again, see [START_REF] Ovsienko | Projective differential geometry old and new: From the Schwarzian derivative to the cohomology of diffeomorphism groups[END_REF] for a survey. Another is a unitary group invariant defined in the complex setting; see [START_REF] Falbel | The PUp2, 1q configuration space of four points in S 3 and the cross-ratio variety[END_REF]. The symplectic cross-ratio (2.1) is the most straightforward generalization of the one-dimensional cross-ratio. It has been used to construct symplectic projective invariants in other settings; see, e.g., [START_REF] Onishchik | Projective and Cayley-Klein geometries[END_REF] (p. 367) and [START_REF] Yaglom | On linear subspaces of symplectic space[END_REF].

2.2. Gram matrices. Given a collection x 1 , . . . , x m of vectors in K 2n , we define their ω-Gram matrix Ωpx 1 , . . . , x m q to be the m ˆm matrix whose entries are their inner products: Ωpx 1 , . . . , x m q ij :" ωpx i , x j q.

We will use the following standard lemma throughout the paper. Its proof is elementary and is omitted.

Lemma 2.1. Suppose that x 1 , . . . , x m and x 1 1 , . . . , x 1 m are two collections of m vectors in K 2n . (i) Ωpx 1 , . . . , x m q is of rank at most 2n. (ii) Ωpx 1 , . . . , x m q is of rank 2n if and only if xx 1 , . . . , x m y " K 2n . (iii) If Ωpx 1 , . . . , x m q and Ωpx 1 1 , . . . , x 1 m q are equal and of rank 2n, then there is a unique symplectic transformation T such that T px i q " x 1 i for all i. Lemma 2.2. Fix N ě 2n and let px 1 , . . . , x N q be an N -tuple of points in K 2n . Define px i q iPZ via x i˘N :" ´xi , and assume that xx i`1 , . . . , x i`n y is Lagrangian for all i. Then pKx 1 , . . . , Kx N q is an pn, N q-Lagrangian configuration if and only if ωpx i , x i`n q " 0 for all i.

Proof. We must show that xx i`1 , . . . , x i`2n y " K 2n for all i if and only if ωpx i , x i`n q " 0 for all i. Consider the ω-Gram matrix Ω i :" Ωpx i`1 , . . . , x i`2n q. By Lemma 2.1(ii), detpΩ i q " 0 if and only if x i`1 , . . . , x i`2n form a basis of K 2n . The Lagrangian condition implies that the block 2 ˆ2 form of Ω i is ´0 A ´AT 0 ¯, where A is upper triangular with diagonal entries ωpx i`r , x i`r`n q, 1 ď r ď n. 2.3. Continuous invariants. Given an pn, N q-Lagrangian configuration pX 1 , . . . , X N q, fix representatives: non-zero points x i on the lines X i . As in Section 1.1, extend the N -tuple px 1 , . . . , x N q to an N -antiperiodic sequence (2.3) px i q iPZ , x i˘N :" ´xi .

Write ω ij for ωpx i , x j q, and observe that (2.4)

ω i`N,j " ω ji " ´ωij , ω j,i`N " ω ij .
Of course the ω ij depend on the choice of the x i , but the symplectic cross-ratios of the configuration do not. Define projective symplectic invariants (2.5)

c i1i2j1j2 :" rx i1 , x i2 ; x j1 , x j2 s " ω i1j1 ω i2j2 ω i1j2 ω i2j1 .
Note that c i1i2j1j2 has the symmetries (2.2) and in addition is invariant under the addition of N to any of the four indices. Due to the Lagrangian condition many of the c i1i2j1j2 vanish or are not well defined. To be precise, define the N -cyclic distance |i ´j| N between any two integers i and j to be their "separation modulo N ": |i ´j| N :" min |i ´j `qN | : q P Z ( . The Lagrangian condition is ω ij " 0 for |i ´j| N ă n. Therefore c i1i2j1j2 is either zero or undefined unless |i εi ´jεj | N ě n for ε i and ε j either 1 or 2. Moreover, if either i 1 " i 2 or j 1 " j 2 , then c i1i2j1j2 is 1 if defined. It follows that there are no non-trivial cross-ratios when N is 2n or 2n `1, and the only cross-ratios of configurations with N " 2n `2 taking values other than 0 and 1 are the c i of (1.4):

(2.6)

c i " c i,i`1,i`n`1,i`n`2 " ω i,i`n`1 ω i`1,i`n`2 ω i´n,i ω i`1,i`n`1 .
Observe that for N " 2n `2 these cross-ratios are pn `1q-periodic. Lemma 2.2 shows that in this case they are also always well defined. We conjecture that in general, (2.5) is a coordinate ring on L n,N pKq with polynomial relations. This is confirmed only for N ď 2n `2. It would be interesting to find minimal cyclically invariant subsets of (2.5) providing such coordinate rings.

2.4. Opposite configurations and sign invariants. Note that the negation of a symplectic form is also a symplectic form; in particular, ´ω is a symplectic form on K 2n . This leads to the notion of opposite Lagrangian configurations. To be concrete, observe that the 2n ˆ2n matrix Q " `Id 0 0 ´Id ˘has the property ωpQx, Qyq " ´ωpx, yq for all x and y in K 2n .

In light of the fact that conjugation by Q preserves Spp2n, Kq, the following lemma is clear.

Lemma 2.3. (i) If pX 1 , .
. . , X N q is a Lagrangian configuration, then so is pQX 1 , . . . , QX N q. We refer to them as opposites. (ii) Opposite configurations have the same cross-ratios, and if one is generic, then so is the other. (iii) If two Lagrangian configurations are equivalent, then their opposites are also equivalent.

Therefore we may speak of opposite equivalence classes in L n,N pKq. Because Q is not symplectic, a configuration is not a priori equivalent to its opposite. In order to resolve the situation we define the sign invariants. Let us write sgn for the sign function:

sgn : Rzt0u Ñ t˘1u.
Let pRx 1 , . . . , Rx N q be a real pn, N q-Lagrangian configuration, and suppose that j 0 , j 1 , . . . , j r are any integers such that j 0 " j r modulo N . If ω js´1,js " 0 for all s, consider the product ś r 1 ω js´1,js . Suppose we rescale each x j by some λ j . Because the λ j are by definition N -periodic, λ j0 " λ jr , so the product rescales by the positive quantity ś r 1 λ 2 js . This gives the following lemma.

Lemma 2.4. Let pRx 1 , . . . , Rx N q be a real pn, N q-Lagrangian configuration. If j 0 , . . . , j r are integers such that j 0 " j r modulo N and ω js´1,js " 0 for all s, then sgn `śr 1 ω js´1,js ˘is an invariant of the configuration.

The next proposition elucidates equivalence and inequivalence of opposite configurations. We write GCD for the greatest common divisor function.

Proposition 2.5.

(i) Opposite complex configurations are equivalent.

(ii) Opposite real pn, N q-configurations are inequivalent if N { GCDpn, N q is odd.

(iii) Opposite real generic pn, N q-configurations are inequivalent for N ą 2n.

Proof. Let pKx 1 , . . . Kx N q be a configuration. For (i), note that iQ is symplectic and iQCx j " QCx j . For (ii), note that the sign invariant sgn `śN{ GCDpn,N q s"1 ω ps´1qn,sn ˘negates under passage to the representatives Qx j of the opposite configuration.

In the setting of (iii), it is always possible to find a sequence j 0 , . . . , j r with r odd, j 0 " j r modulo N , and |j s ´js´1 | N ě n, whence the invariant sgn `śr 1 ω js´1,js ˘distinguishes between the configuration and its opposite.

2.5. Dimensions and standard configurations. We now discuss the dimension of L n,N , which determines the number of independent relations which must be satisfied by any coordinate ring of symplectic invariants of configurations. It turns out that for N ě 2n `2, this dimension is always strictly less than the number of non-trivial symplectic cross-ratios. As stated in Section 1.3, at N " 2n `2 the dimension is n and there are n `1 invariants c i , so there must be one relation. It is given in Theorem 1.

Let us begin by defining a convenient normal form for sets of representatives of configurations.

Definition. Throughout this paper we write te 1 , . . . , e n , f 1 , . . . , f n u for the standard basis of K 2n , and ω for the standard symplectic form on it. Thus for 1 ď i, j ď n, ωpe i , e j q " 0, ωpe i , f j q " δ ij , ωpf i , f j q " 0.

We define the group Spp2n, Kq with respect to ω.

Let pKx 1 , . . . , Kx N q be an pn, N q-Lagrangian configuration. The representatives x 1 , . . . x N are said to be standard if x 1 , . . . , x 2n may be written in terms of the standard basis as follows: for some vectors g i P xf 1 , . . . , f i´1 y, we have

x 1 " e 1 , x 2 " e 2 , . . . , x n " e n , x n`1 " f 1 , x n`2 " f 2 `g2 , . . . , x 2n " f n `gn .
Lemma 2.6.

(i) Every pn, N q-Lagrangian configuration is symplectically equivalent to a configuration with standard representatives.

(ii) In a configuration with standard representatives, ωpe j , g i q " 0 for j ă i `2n ´N .

(iii) In a generic configuration with standard representatives, ωpe j , g i q " 0 for i `2n ´N ď j ă i.

Proof. Given an pn, N q-configuration pKx 1 , . . . , Kx N q, consider the Gram matrix Ωpx 1 , . . . , x 2n q. Because it has the form noted in the proof of Lemma 2.2, Lemma 2.1(iii) shows that there is a symplectic transformation mapping x i to e i and x n`i to a multiple of f i `gi for 1 ď i ď n, g 1 being zero and g 2 , . . . , g n having the desired form. To complete the proof, rescale the representatives. For (ii) and (iii), refer to the definitions of Lagrangian and generic.

Proposition 2.7. For N ą 2n, the variety of pn, N q-Lagrangian configurations is nN -dimensional. Spp2n, Kq acts freely on generic configurations, and so L n,N pKq is npN ´2n ´1q-dimensional.

Proof. Consider the process of constructing an pn, N q-configuration by choosing first X 1 , then X 2 , and so on to X N . Count the number of degrees of freedom available in choosing each X i as follows. There are 2n ´1 degrees of freedom for X 1 , as it is simply an arbitrary line. There are 2n ´2 degrees of freedom for X 2 , as xX 1 , X 2 y must be isotropic, and 2n ´3 for X 3 , as xX 1 , X 2 , X 3 y must be isotropic. Continuing, for i ď n we find that there are 2n ´i degrees for X i . For n ď i ď N ´n `1 there are n degrees for X i , as the only constraints arise from the requirement that xX i´n`1 , . . . , X i y be isotropic.

There are n ´1 degrees for X N ´n`2 , as in addition to the above isotropy requirement, xX N ´n`2 , X 1 y must be isotropic. Continuing, for N ´n `1 ď i ď N there are N `1 ´i degrees for X i . In particular, all of the X i can be chosen, and there are a total of nN degrees of freedom in choosing the configuration.

To complete the proof, it suffices to prove that any symplectic transformation T stabilizing a generic standard configuration pKx 1 , . . . , Kx N q is the identitity Id. Keeping in mind that T must stabilize Kx i but not necessarily x i , we find that it must be of the form `D 0 0 D ´1 ˘for some diagonal matrix D. Because N ą 2n, ωpe i´1 , g i q " 0, forcing D to be scalar. Finally, genericity implies that ωpe n , x 2n`1 q and ωpf 1 , x 2n`1 q are both non-zero. Hence the condition that T stabilize Kx 2n`1 forces D " Id.

Corollary 2.8. L n,N pRq and L n,N pCq are smooth manifolds.

2.6. The case N ą 2n `2. We conclude this section with a few remarks on configurations with N ą 2n `2. We begin with a corollary of Lemma 2.2. Let us single out the symplectic cross-ratios (2.7)

γ ij :" c i,j`n,j,i`n " ω ij ω i`n,j`n ω i,i`n ω j,j`n .
Corollary 2.9. Let pKx 1 , . . . , Kx N q be an pn, N q-Lagrangian configuration. Then γ ij is defined for all i and j, and it is 0 for |i ´j| N ă n and 1 for |i ´j| N " n. The configuration is generic if and only if γ ij is non-zero whenever |i ´j| N ě n.

Observe that γ i`N,j " γ ji " γ ij . For N " 2n `2, all non-trivial symplectic cross-ratios are γ ij 's, as c i " γ i`1,i´n . This is not true for N ą 2n `2: for example, for p2, 7q-configurations, c 1,2,4,5 is not a γ ij . However, we do have the relation

c i1i2j1j2 c i1`n,i2`n,j1`n,j2`n " γ i1j1 γ i2j2 γ i1j2 γ i2j1 .

The main results

In this section we describe the moduli space L n,N pKq of generic pn, N q-configurations over K " R or C for N equal to 2n, 2n `1, and 2n `2. In the first two cases it is trivial and is described in Proposition 3.1. Let us mention that a related result is proven in [START_REF] Onishchik | Projective and Cayley-Klein geometries[END_REF] for three lines in K 2n .

The first non-trivial case, L n,2n`2 pKq, is described in Theorem 1: there are n `1 cross-ratios, which satisfy a single relation. In the case that n is even and K " C, Theorem 2 provides a combinatorial interpretation of this relation. (i) For N " 2n or 2n `1, all pn, N q-Lagrangian configurations are generic.

(ii) L n,2n pKq is a single point for K " R or C.

(iii) L n,2n`1 pRq consists of two opposite points, and L n,2n`1 pCq is a single point.

Proof. Part (i) is clear from Lemma 2.2 and the fact that |i ´j| 2n`1 never exceeds n. For (ii), Lemma 2.6 shows that all configurations are equivalent to pKe 1 , . . . , Ke n , Kf 1 , . . . , Kf n q. For (iii), Lemma 2.6 shows that any configuration is equivalent to some pKx 1 , . . . , Kx 2n`1 q with x i " e i and x n`i " f i `bi f i´1 for 1 ď i ď n, where b i is a non-zero scalar for i ą 1. Define b 1 :" 1, apply the diagonal symplectic transformation e i Þ Ñ e i ś i 1 b ´1 j and f i Þ Ñ f i ś i 1 b j , and rescale to deduce that we may assume b i " 1 for all i.

Combine the Lagrangian condition with genericity to see that x 2n`1 can be rescaled to take the form f n `b0

ř n 1 p´1q i e i for some scalar b 0 " 0. For K " R and b 0 ą 0 or K " C, apply the symplectic

transformation e i Þ Ñ b 1{2 0 e i and f i Þ Ñ b ´1{2 0
f i and rescale to arrive at x 2n`1 " f n `řn 1 p´1q i e i . For K " R and b 0 ă 0, use p´b 0 q 1{2 in place of b 1{2 0 to arrive at x 2n`1 " f n ´řn 1 p´1q i e i . By Proposition 2.5, the two signs of b 0 give opposite real equivalence classes.

Combining this argument with Section 2.4 yields the following corollary. For ε " ˘1, consider the pn, 2n `1q-configurations with representatives

(3.1)
´e1 , e 2 , . . . , e n , εf 1 , εpf 1 `f2 q, εpf 2 `f3 q, . . . , εpf n´1 `fn q, εf n `n ÿ

i p´1q i e i ¯.
Observe that these representatives have ω i,n`i " ε for all i.

Corollary 3.2.

(i) The unique element of L n,2n`1 pCq is the class of (3.1) for ε " 1.

(ii) The two opposite elements of L n,2n`1 pRq are the classes of (3.1) for ε " ˘1.

(iii) An arbitrary pn, 2n `1q-Lagrangian configuration pRx 1 , . . . , Rx 2n`1 q over R is equivalent to (3.1) with ε " sgn `ś2n i"0 ω i,n`i ˘.

3.2.

The first non-trivial case: N " 2n `2. We now give the description of L n,2n`2 pKq, one of our main results. Recall that the symplectic cross-ratios c i given in (1.4) and (2.6) are pn `1q-periodic, are the only non-trivial cross-ratios on pn, 2n `2q-configurations, and are non-zero on generic configurations. We use the standard notation txu for the integer part of a real number x.

Theorem 1.

(i) On L n,2n`2 pKq, the n `1 symplectic cross-ratios c 0 , . . . , c n satisfy the relation

(3.2) 0 " tpn`1q{2u ÿ r"0 p´1q r ÿ 0ďi1㨨¨ăirďn, |is´i s 1 |n`1ě2 @ s "s 1 r ź i"1 1 c is .
(ii) pc 0 , . . . , c n q is a coordinate ring on L n,2n`2 pKq: any two generic pn, 2n `2q-equivalence classes with the same cross-ratios are equal for K " C, and either equal or opposite for K " R.

(iii) (3.
2) is the only relation on the cross-ratios: if c 0 , . . . , c n are arbitrary non-zero scalars in K satisfying (3.2), then they are the cross-ratios of some generic pn, 2n `2q-configuration over K.

Thus L n,2n`2 pKq may be viewed as a dense open subset of the algebraic hypersurface in K n`1 defined by multiplying (3.2) by c 0 ¨¨¨c n . We prove Theorem 1 in Section 4.

Examples.

(a) For L 1,4 pKq, the relation on the two cross-ratios of quadrilaterals in KP 1 simply relates two forms of the classical cross-ratio:

1 c 0 `1 c 1 " 1.
(b) For L 2,6 pKq, the relation on the three cross-ratios c 0 , c 1 , and c 2 of Legendrian hexagons in KP 3 was given in (1.1).

(c) The moduli space L 3,8 pKq of Legendrian octagons in KP 5 is parametrized by the four cross-ratios c 0 , c 1 , c 2 , and c 3 , subject to the relation

1 c 0 `1 c 1 `1 c 2 `1 c 3 ´1 c 0 c 2 ´1 c 1 c 3 " 1.
(d) For L 4,10 pKq, the Legendrian decagons in KP 7 , the five cross-ratios c 0 , . . . , c 4 satisfy

1 c 0 `1 c 1 `1 c 2 `1 c 3 `1 c 4 ´1 c 0 c 2 ´1 c 1 c 3 ´1 c 2 c 4 ´1 c 3 c 0 ´1 c 4 c 1 " 1.
The following analog of Figure 1 depicts c 0 in this setting. 3.3. The cyclic continuant. In Section 5 we will describe certain normalized choices of representatives of pn, 2n `2q-Lagrangian configurations. The nature of the normalizations depends on the field K and the parity of n. The situation is simplest for n even and K " C, the case generalizing the hexagonal example in Section 1.1. At this point we state the relevant normalization, Proposition 3.3, along with the corresponding specialization of Theorem 1, Theorem 2. A notable feature of this specialization is that the relation (3.2) is expressed in terms of continuants. The proofs will be given in Section 5.1.

x 0 x 9 x 1 x 8 x 2 x 7 x 3 x 6 x 4 x 5
The classical continuant is the tridiagonal determinant

(3.3) K n pa 1 , . . . , a n q :" ˇˇˇˇˇˇˇˇˇˇˇˇa 1 1 1 a 2 1 . . . . . . . . . 1 a n´1 1 1 a n ˇˇˇˇˇˇˇˇˇˇˇˇ.
This remarkable polynomial has a long history. It arises in the theory of continued fractions and many other areas; see for example [START_REF] Conley | Rotundus: triangulations, Chebyshev polynomials, and Pfaffians[END_REF] and references therein.

The main topic of [START_REF] Conley | Rotundus: triangulations, Chebyshev polynomials, and Pfaffians[END_REF] is the cyclic continuant, defined as (3.4) R n`1 pa 0 , . . . , a n q :" K n`1 pa 0 , . . . , a n q ´Kn´1 pa 1 , . . . , a n´1 q.

It too is related to continued fractions, via the identity R n`1 pa 0 , , . . . , a n q " tr ˆan ´1 1 0

˙ˆa n´1 ´1 1 0 ˙¨¨¨ˆa 0 ´1 1 0 ˙.
As an illustration, let us display R 5 pa 0 , a 1 , a 2 , a 3 , a 4 q:

a 0 a 1 a 2 a 3 a 4 ´`a 0 a 1 a 2 `a1 a 2 a 3 `a2 a 3 a 4 `a3 a 4 a 0 `a4 a 0 a 1 ˘``a 0 `a1 `a2 `a3 `a4 ˘.
In the next two statements, let pX 0 , . . . , X 2n`1 q be a generic pn, 2n `2q-Lagrangian configuration over K with representatives x 0 , . . . , x 2n`1 , inner products ω ij :" ωpx i , x j q, and cross-ratios c 0 , . . . , c n . Recall from Section 1.3 that we refer to the p2n `2q-periodic sequence pω i,i`n q i as the set of symplectic subdiameters of px i q i , and the pn `1q-periodic sequence pω i,i`n`1 q i as the set of symplectic diameters. Proposition 3.3. For n even and K " C, pX 0 , . . . , X 2n`1 q admits exactly four choices of representatives whose symplectic subdiameters are all 1. Fix such a choice, x 0 , . . . , x 2n`1 , and set a i :" ω i,i`n`1 .

(i) The four choices are px i q i , p´x i q i , pp´1q i x i q i , and p´p´1q i x i q i .

(ii) The first two choices in (i) have symplectic diameters pa i q i , and the second two have symplectic diameters p´a i q i .

(iii) The cross-ratios of the configuration are c i " a i a i`1 . The symplectic diameters satisfy

a 2 i " c i c i`2 ¨¨¨c i`n c i`1 c i`3 ¨¨¨c i`n´1
.

This result shows that the symplectic diameters of the choices of representatives whose symplectic subdiameters are all 1 are invariants of the configuration, defined up to an overall sign. We refer to them as the normalized symplectic diameters and denote them by ˘pa 0 , . . . , a n q.

In reading the next result, keep in mind that K n and hence also R n are of parity p´1q n under negation of all their arguments, so R n`1 pa 0 , . . . , a n q vanishes if and only if R n`1 p´a 0 , . . . , ´an q vanishes. Theorem 2. Let n be even.

(i) The cyclic continuant of the normalized symplectic diameters on L n,2n`2 pCq vanishes: R n`1 pa 0 , . . . , a n q " 0.

(ii) Equivalence classes in L n,2n`2 pCq with the same normalized symplectic diameters are equal.

(iii) If ˘pa 0 , . . . , a n q are arbitrary non-zero complex scalars with cyclic continuant zero, then they are the normalized symplectic diameters of some equivalence class in L n,2n`2 pCq.

As noted above, Proposition 3.3 and Theorem 2 are proven in Section 5.1.

Pfaffians and the proof of Theorem 1

This section contains the proof of our main result, Theorem 1.

4.1.

Tridiagonal determinants and the proof of Theorem 1(i). The following formula is well-known and easily proven by induction. 

a nn ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' has determinant (4.2) detpA n q " ´n ź k"1 a kk ¯tn{2u ÿ r"0 p´1q r ÿ 1ďi1㨨¨ăirăn, is`1ăis`1 @ 1ďsďr r ź s"1 a is,is`1 a is`1,is a isis a is`1,is`1 .
Remark. When the sub-and superdiagonal entries of A n are all 1, its determinant is in fact the continuant K n . In this case Euler discovered a pleasing interpretation of Proposition 4.1, which generalizes as follows: to write out all summands of (4.2), start with a 11 ¨¨¨a nn , and for each set of disjoint adjacent pairs pi, i `1q, 1 ď i ă n, replace a ii a i`1,i`1 by ´ai,i`1 a i`1,i . We refer to this process as Euler's replacement algorithm.

Examples. Indicating pairs by parentheses, detpA 3 q, detpA 4 q, and detpA 5 q are, respectively, Recall now that the Pfaffian pfpSq is a polynomial in the entries of a skew-symmetric matrix S whose square is detpSq. Consider the p2n `2q ˆp2n `2q matrix

'
(4.3) Ω n :" ˜ω0,n E A ´AT ω n`1,2n`1 E ¸,
with ingredients defined as follows: E is the skew-symmetric pn `1q ˆpn `1q matrix e 1,n`1 ´en`1,1 (e ij being the elementary matrix whose ij th entry is 1 and whose other entries are 0), A is given by

(4.4) A " ¨ω0,n`1 ω 0,n`2 ω 1,n`1 ω 1,n`2 ω 1,n`3 . . . . . . . . . ω n´1,2n´1 ω n´1,2n ω n´1,2n`1 ω n,2n ω n,2n`1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, and the ω ij are arbitrary scalars. As a visual aid, we illustrate Ω n in long form: 

(4.5) Ω n " ¨ω0,n ω 0,n`1 ω 0,n`2 ω 1,n`1 ω 1,n`2 ω 1,
‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
Proposition 4.2. The Pfaffian pfpΩ n q is given by the expression

(4.6) p´1q npn`1q{2 ´n ź k"0 ω k,k`n`1 ¯tpn`1q{2u ÿ r"0 p´1q r ÿ 0ďi1㨨¨ăirďn, |is´i s 1 |n`1ě2 @ s "s 1 r ź i"1 ω is,is`n`2 ω is`1,is`n`1 ω is,is`n`1 ω is`1,is`n`2 ,
where whenever ω i,2n`2 appears, it should be replaced by ω 0,i .

Proof. Given any m ˆm matrix A, let A mid be the pm ´2q ˆpm ´2q matrix obtained by deleting the top and bottom rows and left and right columns of A. The following lemma is proven in [START_REF] Conley | Rotundus: triangulations, Chebyshev polynomials, and Pfaffians[END_REF].

Lemma 4.3. For any m ˆm matrix A and any scalars x and y, one has

(4.7) pf ˆxE A ´AT yE ˙" p´1q mpm´1q{2 `detpAq ´xy detpA mid q ˘.
Applying both (4.2) and (4.7) to (4.3) yields (4.6).

Remark. The Pfaffian (4.6) may be interpreted via a cyclic version of Euler's replacement algorithm, the "cyclic replacement algorithm": to write out all summands of p´1q npn`1q{2 pfpΩ n q, start with

ω 0,n`1 ω 1,n`2 ¨¨¨ω n,2n`1 ,
and for each set of disjoint cyclically adjacent pairs pi, i `1q,

0 ď i ď n, replace ω i,i`n`1 ω i`1,i`n`2 by ´ωi,i`n`2 ω i`1,i`n`1 .
Cyclically adjacent indicates that the pair pn, n `1q is read as pn, 0q. When it is in the set of pairs, replace ω 0,n`1 ω n,2n`1 by ´ω0,n ω n`1,2n`1 . To explain, note that by the replacement rule ω i,2n`2 " ω 0,i ,

ω 0,n`1 ω n,2n`1 " ω n,2n`1 ω n`1,2n`2 , ω n,2n`2 ω n`1,2n`1 " ω 0,n ω n`1,2n`1 .
Examples. Let us give (4.6) explicitly for small n. As in the examples below Proposition 4.1, we indicate pairs with parentheses. By (4.7) and (4.4), the summands from sets not containing the special pair pn, 0q add up to an pn `1q ˆpn `1q tridiagonal determinant, and the summands from sets containing it add up to ω 0,n ω n`1,2n`1 times an pn ´1q ˆpn ´1q tridiagonal determinant. To emphasize this, we have separated the two types of terms with square brackets and factored ω 0,n ω n`1,2n`1 out of the second type.

Note that at n " 1 there are two ways to delete the lone pair p0, 1q: as p0, 1q, or as p1, 0q. For n " 1, 2, and 3, p´1q npn`1q{2 pfpΩ n q is, respectively, Proof of (3.2). Suppose now that pKx 0 , . . . , Kx 2n`1 q is an pn, 2n `2q-Lagrangian configuration, and revert to our customary notation ω ij " ωpx i , x j q. By the Lagrangian condition, the ω-Gram matrix Ωpx 0 , . . . , x 2n`1 q is precisely the matrix Ω n in (4.3), and by Lemma 2.1(ii), det `Ωpx 0 , . . . , x 2n`1 q ˘" 0.

'
Hence Proposition 4.2 yields the following corollary.

Corollary 4.4. Let pKx 0 , . . . , Kx 2n`1 q be an pn, 2n `2q-Lagrangian configuration. Then

(4.8) 0 " ´n ź k"0 ω k,k`n`1 ¯tpn`1q{2u ÿ r"0 p´1q r ÿ 0ďi1㨨¨ăirďn, |is´i s 1 |n`1ě2 @ s "s 1 r ź i"1 1 c is .
This in turn yields (3.2) of Theorem 1(i), because generic pn, 2n `2q-configurations have ω k,k`n`1 " 0. Note that (4.6) is polynomial in the ω ij , so after cancellation, Corollary 4.4 gives a non-trivial relation even on non-generic configurations.

Proof of Theorem 1(ii)

. Suppose that pKx 1 , . . . , Kx 2n`2 q and pKx 1 , . . . , Kx 2n`2 q are two generic pn, 2n `2q-Lagrangian configurations with the same cross-ratios c 1 , . . . , c n`1 . Following our convention ω ij :" ωpx i , x j q, we set ωij :" ωpx i , x j q.

By Lemma 2.1(iii), in order to prove the two configurations equivalent it suffices to find a renormalization x i Þ Ñ λ i x i such that λ i λ j ω ij " ωij for all i and j. By the Lagrangian condition, we need only do this for j " i `n and i `n `1. The argument depends on the parity of n.

The case of n even. It is important to keep in mind that here GCDpn, 2n `2q " 2. Hence the subset of lines in an pn, 2n `2q-configuration whose indices have a given parity may be written in either of the following ways:

tKx i , Kx i`2 , Kx i`4 , . . . , Kx i`2n u " tKx i , Kx i`n , Kx i`2n , . . . , Kx i`n 2 u.
We begin with the case K " C. For i " 1, . . . , 2n `2, fix a square root χ i of ωi,i`n {ω i,i`n . Extend p2n `2q-periodically to define χ i for i P Z. Set (4.9)

λ i :" χ i χ i`2n χ i`4n ¨¨¨χ i`n 2 χ i`n χ i`3n ¨¨¨χ i`pn´1qn " n ź r"0 χ p´1q r i`rn
and check that λ i λ i`n " ωi,i`n {ω i,i`n for all i. Replacing x i by λ i x i , we may assume ω i,i`n " ωi,i`n for all i. Write ρ i for the ratio ωi,i`n`1 {ω i,i`n`1 , which is pn `1q-periodic. Use the fact that the configurations have the same cross-ratios to obtain ρ i ρ i`1 " 1 for all i. Hence 1 " pρ i ρ i`1 qpρ i`2 ρ i`3 q ¨¨¨pρ i`n ρ i`n`1 q pρ i`1 ρ i`2 qpρ i`3 ρ i`4 q ¨¨¨pρ i`n´1 ρ i`n q " ρ 2 i .

Deduce that the ρ i are either all 1 or all ´1. In the former case we are done. In the latter case, rescale again, replacing x i by p´1q i x i . This leaves the ω i,i`n unchanged and negates the ω i,i`n`1 , so again we are done.

Example. For n " 2 and n " 4, the following diagrams depict the equations giving the scale factors (4.9) sending ω i,i`n to ωi,i`n for i even. Those for i odd are constructed independently. Under this assumption we will show that the scale factors (4.9) are all real, so the two configurations are equivalent over R. This will complete the proof of Theorem 1(ii) for even n.

x 0 D D x 5 x 1 x 4 o o x 2 x 3 x 0 x 9 x 1 x 8 / / x 2 x x x 7 x 3 x 6 I I x 4 f f x 5
To prove λ i real, we must prove λ 2 i positive. From (4.9),

λ 2 i " n ź
r"0 ´ω i`rn,i`pr`1qn ω i`rn,i`pr`1qn ¯p´1q r , sgnpλ 2 i q " sgn ´ź j"i mod 2 ωj,j`n {ω j,j`n ¯.

For i even, this is positive by (4.11). To prove it positive for i odd, we must prove that (4.12) sgn ´n ź

s"0 ω 2s`1,2s`1`n ¯" sgn ´n ź s"0 ω2s`1,2s`1`n ¯.
Check that (4.13)

n ź i"0 c i " ´n ź i"0 ω i,i`n`1 ¯2´2n`1 ź i"0 ω i,i`n ¯´1 .
Because the two configurations have the same cross-ratios, we must have sgn ´2n`1 ź

i"0

ω i,i`n ¯" sgn ´2n`1 ź i"0 ωi,i`n ¯.
Therefore (4.11) implies (4.12).

The case of n odd. Here GCDpn, 2n `2q " 1, so in contrast with the case that n is even, the entire set of lines in an pn, 2n `2q-configuration may be listed with increments of n:

Kx 0 , Kx 1 , Kx 2 , . . . , Kx 2n`1
( " Kx 0 , Kx n , Kx 2n , . . . , Kx p2n`1qn ( .

Set λ 0 :" 1 and define λ n , . . . , λ p2n`1qn recursively by λ rn :" λ pr´1qn ωpr´1qn,rn {ω pr´1qn,rn for 1 ď r ď 2n `1. This leads to λ rn " r ź s"1 ´ω ps´1qn,sn ω ps´1qn,sn ¯p´1q r´s .

At this point we have λ i λ i`n " ωi,i`n {ω i,i`n except possibly at i " ´n modulo 2n `2, where

λ ´nλ 0 " 2n`1 ź s"1
´ω ps´1qn,sn ω ps´1qn,sn ¯p´1q s´1 .

We claim that this is in fact ω´n,0 {ω ´n,0 . The proof reduces to proving that the expression ω 0,n ω 2n,3n ¨¨¨ω 2n 2 ,p2n`1qn ω n,2n ω 3n,4n ¨¨¨ω p2n`1qn,p2n`2qn " ω 0,n ω 2,n`2 ¨¨¨ω 2n,3n ω 1,n`1 ω 3,n`3 ¨¨¨ω 2n`1,3n`1 does not change if all the ω's are replaced with ω's. This is true, because as the reader may check, it is equal to

c 0 c 2 ¨¨¨c n´1 c 1 c 3 ¨¨¨c n ,
and the ω's and ω's have the same cross-ratios. Thus we may replace x i by λ i x i , giving ω i,i`n " ωi,i`n for all i. Then by equality of cross-ratios, ω i,i`n`1 ω i`1,i`n`2 is equal to ωi,i`n`1 ωi`1,i`n`2 , or, equivalently, (4.14) `ω i,i`n`1 {ω i,i`n`1 ˘p´1q i is independent of i.

If K " C, let χ be a square root of (4.14). If K " R, let χ be a square root of its magnitude. Observe that for any δ, the rescaling x i Þ Ñ δ p´1q i x i leaves ω i,i`n unchanged and multiplies ω i,i`n`1 by δ 2p´1q i . Therefore in the case K " C, replacing the x i by χ p´1q i x i gives ω ij " ωij , proving the two configurations equivalent. In the case K " R, the same argument proves them equivalent when (4.14) is positive.

In the case that K " R and (4.14) is negative, this argument leaves us with ω i,i`n " ωi,i`n and ω i,i`n`1 " ´ω i,i`n`1 . Replacing the x i by the additional rescaling p´1q i x i then gives ω ij " ´ω ij , proving the configurations opposite.

Proof of Theorem 1(iii)

. Suppose that c 0 , . . . , c n are non-zero scalars in K satisfying (3.2), and extend them pn `1q-periodically to pc i q iPZ . We will construct an pn, 2n `2q-Lagrangian configuration pKx 0 , Kx 1 , . . . , Kx 2n`1 q having the given scalars c i as cross-ratios.

As an intermediate step, we construct from the c i scalars ω ij that will be equal to ωpx i , x j q. By (2.4) and the Lagrangian condition, it is only necessary to construct a p2n `2q-periodic sequence ω i,i`n and an pn `1q-periodic sequence ω i,i`n`1 such that the c i are given by (2.6): then ω i,i`n`2 " ω i´n,i , and the remaining ω ij are 0.

The ω ij for n even. Over C, set ω i,i`n :" 1 for all i and fix an pn `1q-periodic sequence σ i of square roots of the c i :

σ 2 i " c i . It is then simple to check that (2.6) is satisfied if we set (4.15) ω i,i`n`1 :" σ i σ i`2 ¨¨¨σ i`n σ i`1 σ i`3 ¨¨¨σ i`n´1
.

Over R, the same process works if c 0 c 1 ¨¨¨c n is positive: the individual σ i may not be real, but the ω i,i`n`1 are because their squares are positive.

If c 0 c 1 ¨¨¨c n is negative, it suffices to modify the construction as follows: set ω i,i`n :" p´1q i , let σ i be an pn `1q-periodic sequence of square roots of the ´ci , and again define the ω i,i`n`1 by (4.15).

The ω ij for n odd. Observe that in this case, (2.6) implies ś 2n`1 i"0 ω

p´1q i i,i`n " ś n 0 c p´1q i i .
We begin with an asymmetric choice of the ω ij that works over any field. Define ω 0,n :" ś n 0 c p´1q i i , and for 1 ď i ď 2n `1, set ω i,i`n :" 1. Check that it suffices to set ω 0,n`1 :" 1, ω 1,n`2 :" c 0 , and in general, for 0 ď k ď 1 2 pn ´1q,

ω 2k,2k`n`1 :" c 1 c 3 ¨¨¨c 2k´1 c 0 c 2 ¨¨¨c 2k´2 , ω 2k`1,2k`n`2 :" c 0 c 2 ¨¨¨c 2k c 1 c 3 ¨¨¨c 2k´1 .
Over C it is possible to choose the ω ij more symmetrically, as described in Section 1.3. Fix an pn `1qperiodic sequence η i such that η 2n`2 i " c i . Define the ω i,i`n by µ :"

η 0 η 2 ¨¨¨η n´1 η 1 η 3 ¨¨¨η n , ω i,i`n :" µ p´1q i .
The reader may check that then (2.6) is satisfied by fixing ω 0,n`1 arbitrarily and setting

ω 2k,2k`n`1 :" µ 4k ω 0,n`1 c 1 c 3 ¨¨¨c 2k´1 c 0 c 2 ¨¨¨c 2k´2 , ω 2k`1,2k`n`2 :" µ ´4k´2 ω ´1 0,n`1 c 0 c 2 ¨¨¨c 2k c 1 c 3 ¨¨¨c 2k´1 for 0 ď k ď 1 2 pn ´1q.
Requiring a 0 a 2 ¨¨¨a n´1 " a 1 a 3 ¨¨¨a n leads to the most symmetric choice:

ω i,i`n`1 :" η n i η n´4 i`2 ¨¨¨η ´n`2 i`n´1 η n´2 i`1 η n´6 i`3 ¨¨¨η ´n i`n " n ź j"0 η p´1q j pn´2jq i`j
.

The x i for n arbitrary. Suppose now that scalars ω ij in K have been chosen so as to satisfy (2.6).

From these scalars we will construct an pn, 2n `2q-Lagrangian configuration pKx 0 , . . . , Kx 2n`1 q over K which satisfies ωpx i , x j q " ω ij , and therefore has the given cross-ratios c 0 , . . . , c n . The representatives x i are almost standard: we set x i :" e i for 1 ď i ď n, and

x 1`n :" ω 1,1`n f 1 , x 2`n :" ω 1,2`n f 1 `ω2,2`n f 2 , x i`n :" ω i´2,i`n f i´2 `ωi´1,i`n f i´1 `ωi,i`n f i , 3 ď i ď n.
It is immediate that with these definitions, ωpx i , x j q " ω ij for 1 ď i, j ď 2n. The requirement that ωpx i , x j q " ω ij for 1 ď i ď 2n and j " 2n `1 or 2n `2 now determines x 2n`1 and x 0 " ´x2n`2 . We find that

x 2n`1 " ω n´1,2n`1 f n´1 `ωn,2n`1 f n `ω1`n,2n`1 n ÿ i"1 p´1q i ´i ź j"1 ω ´1 j,j`n ¯di e i ,
where d 1 " 1, d 2 " ω 1,2`n , and the d i with 3 ď i ď n satisfy the recursion relation

(4.16) d i " ω i´1,i`n d i´1 ´ωi´1,i`n´1 ω i´2,i`n d i´2 .
In the same way we obtain

x 0 " ´ω0,n f n ´n ÿ i"1 p´1q i ´i ź j"1 ω ´1 j,j`n ¯d1 i e i ,
where d 1 1 " ω 0,1`n , d 1 2 " ω 0,1`n ω 1,2`n ´ω0,2`n ω 1,1`n , and the d 1 i with 3 ď i ď n also satisfy (4.16).

In order to clarify (4.16), consider for any integers 0 ď j ď i ď n the following truncation of the tridiagonal matrix A in (4.4):

A j,i " ¨ωj,j`n`1 ω j,j`n`2 ω j`1,j`n`1 ω j`1,j`n`2 ω j`1,j`n`3 . . . . . . . . . ω i´1,i`n´1 ω i´1,i`n ω i´1,i`n`1 ω i,i`n ω i,i`n`1 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
Let us write ∆ j,i for detpA j,i q, and adopt the convention ∆ j,j´1 :" 1 and ∆ j,j´2 :" 0. It is clear that the ∆ j,i satisfy a shifted version of (4.16):

∆ j,i " ω i,i`n`1 ∆ j,i´1 ´ωi,i`n ω i´1,i`n`1 ∆ j,i´2 .
Therefore d i " ∆ 1,i´1 and d 1 i " ∆ 0,i´1 for 1 ď i ď n. The only remaining condition is ωpx 0 , x 2n`1 q " 0. After some simplification it reduces to (4.17) ∆ 0,n ´ω0,n ω n`1,2n`1 ∆ 1,n´1 " 0.

Recall the matrices Ω n and A from (4.3). Because A is A 0,n , Proposition 4.2 and (4.7) show that (4.17) is equivalent to (4.8). Because we assumed that the given c i satisfy (3.2), these conditions hold. This completes the proof of Theorem 1.

Normalized configurations

As noted in Section 3.3, in this section we describe certain normalized choices of representatives of pn, 2n `2q-configurations. As in that section, let pX 0 , . . . , X 2n`1 q be a generic pn, 2n `2q-Lagrangian configuration over K with representatives x 0 , . . . , x 2n`1 , inner products ω ij :" ωpx i , x j q, and cross-ratios c 0 , . . . , c n . 5.1. The case of n even and K " C. The results in this case were stated in Section 3.3. Here we give their proofs.

Proof of Proposition 3.3. By the constructions in Section 4.3, there exists a generic configuration pCx 0 , . . . , Cx 2n`1 q with ωi,i`n " 1 and cross-ratios c 0 , . . . , c n . By Theorem 1(ii), it is equivalent to pX 0 , . . . , X 2n`1 q. The images x 0 , . . . , x 2n`1 of x0 , . . . , x2n`1 under the equivalence have ω i,i`n " 1 for all i.

To see that there are exactly four such choices of px i q i , suppose that pλ i x i q i is another. Observe that then λ i`n " λ ´1 i , so λ i`rn " λ p´1q r i . But λ i`npn`1q " λ i by periodicity, so λ i " ˘1, whence λ i`n " λ i , and λ i " λ j for i " j modulo 2. This proves (i). The remaining statements are immediate. l

Proof of Theorem 2. Part (i) follows from Section 4.1: by Lemma 4.3, for normalized representatives px 0 , . . . , x 2n`1 q the Pfaffian of the ω-Gram matrix is, up to a sign, R n`1 pa 0 , . . . , a n q. Parts (ii) and (iii) follow from Theorem 1(ii) and (iii) and Proposition 3.3(iii): the cross-ratios determine ˘pa 0 , . . . , a n q and vice versa. l 5.2. The case of n even and K " R. Recall from Section 4.2 the sign invariants

ε 0 :" sgn ´n ź s"0 ω 2s,2s`n ¯, ε 1 :" sgn ´n ź s"0 ω 2s`1,2s`1`n ¯, ε c :" sgn ´n ź i"0 c i ōf
the configuration pX 0 , . . . , X 2n`1 q: ε 0 is (4.10), ε 1 is the left side of (4.12), and by (4.13), ε c " ε 0 ε 1 .

Proposition 5.1. For n even and K " R, pX 0 , . . . , X 2n`1 q admits exactly four choices of representatives whose symplectic subdiameters are ω i,i`n " ε i mod 2 . Fix such a choice, x 0 , . . . , x 2n`1 , and denote its symplectic diameters ω i,i`n`1 by a R i .

(i) In terms of px i q i , the four choices are as in Proposition 3.3(i). The first two have symplectic diameters pa R i q i , and the second two have symplectic diameters p´a R i q i . In particular, ˘pa R i q i is an invariant of the configuration, the collection of its normalized real symplectic diameters.

(ii) If ε c " 1, then the normalized symplectic diameters coincide with the normalized real symplectic diameters:

˘pa i q i " ˘pa R i q i . (iii) If ε c " ´1, then ˘pa i q i " ˘?´1 pa R i q i .
Proof. By the constructions in Section 4.3, there exists a generic configuration pRx 0 , . . . , Rx 2n`1 q with cross-ratios c i , such that if ε c " 1, then ωi,i`n " 1 for all i, and if ε c " ´1, then ωi,i`n " p´1q i for all i. By Theorem 1(ii), this configuration is equivalent either to pX 0 , . . . , X 2n`1 q or its opposite, and so, replacing pRx 0 , . . . , Rx 2n`1 q by its opposite if necessary, we may assume that it is equivalent to pX 0 , . . . , X 2n`1 q. Then, recalling that passage to opposites negates inner products, we find that the images x 0 , . . . , x 2n`1 of x0 , . . . , x2n`1 under the equivalence have ω i,i`n " ε i mod 2 .

The proof of (i) goes exactly as in Proposition 3.3. For (ii) and (iii), fix a choice of ? ´1. In (ii), if ε 0 and ε 1 are both ´1, then the representatives of the complex normalization of Section 3.3 may be taken to be ? ´1 px i q i , while if they are both 1, then the real and complex normalizations coincide. In (iii), if ε 0 " 1 and ε 1 " ´1, the C-normalized representatives may be taken to be x i for i even and ? ´1 x i for i odd, while if ε 0 " ´1 and ε 1 " 1, they may be taken to be ? ´1 x i for i even and x i for i odd. To summarize, in all cases the C-normalized representatives are `?´1 p1´ε i mod 2 q{2 x i ˘i. The relation between ˘pa i q i and ˘pa R i q i now follows easily.

5.3.

The case of n odd and K " C. Recall from Section 4.3 that here ś 2n`1 i"0 ω

p´1q i i,i`n " ś n 0 c p´1q i i .
Proposition 5.2. For n odd, K " C, and µ any p2n `2q nd root of ś n 0 c

p´1q i i
, pX 0 , . . . , X 2n`1 q admits exactly p2n `2q choices of representatives such that ω i,i`n " µ p´1q i for all i and ś n 0 ω p´1q i i,i`n`1 " 1. Fix such a choice, x 0 , . . . , x 2n`1 , and set a i :" ω i,i`n`1 .

(i) The 2n `2 choices are pδ p´1q i x i q i , where δ runs over the p2n `2q nd roots of unity.

(ii) The symplectic diameters corresponding to any given choice of δ are pδ 2p´1q i a i q i .

(iii) The cross-ratios of the configuration are c i " µ 2p´1q i a i a i`1 .

Proof. The discussion in Section 4.3 shows that for any p2n `2q nd root µ of ś n 0 c

p´1q i i
, there exists a configuration pCx 0 , . . . , Cx 2n`1 q with ωi,i`n " µ p´1q i and cross-ratios c 0 , . . . , c n . By Theorem 1(ii), it is equivalent to pX 0 , . . . , X 2n`1 q. The images x 0 , . . . , x 2n`1 of x0 , . . . , x2n`1 under the equivalence have ω i,i`n " µ p´1q i for all i.

For (i), first check that if a renormalization x i Þ Ñ λ i x i preserves ω i,i`n for all i, then it is of the form λ i " δ p´1q i for some δ. Then check that ś n 0 ω

p´1q i i,i`n`1 " 1 if and only if δ 2n`2 " 1.
The remaining statements are clear.

We remark that the general rescaling x i Þ Ñ λ i x i going between normalizations as above with different choices of µ is λ i :" ξ p´1q i pip`qq , where ξ is any primitive p2n `2q nd root of unity and p and q are arbitrary elements of Z 2n`2 . It transforms ω i,i`n from µ p´1q i to pξ ´pn µq p´1q i and ω i,i`n`1 from a i to p´1q p ξ 2p´1q i pip`qq a i , i.e., `µ, a i ˘i Þ Ñ `ξ´pn µ, p´1q p ξ 2p´1q i pip`qq a i ˘i.

We will not formally state the specialization of Theorem 1 corresponding to the normalization in Proposition 5.2, but let us describe the specialization of the relation (3.2): it becomes the vanishing of the quantity obtained from the product a 0 ¨¨¨a n by applying the "µ-cyclic replacement rule": replace cyclically adjacent pairs a i a i`1 by ´µ´2p´1q i . For example, at n " 1 and 3, 0 " a 0 a 1 ´µ´2 ´µ2 , 0 " a 0 a 1 a 2 a 3 ´µ´2 pa 0 a 1 `a2 a 3 q `µ´4 `µ4 .

5.4. The case of n odd and K " R. Here we have only found natural normalizations under certain positivity conditions.

Proposition 5.3. Suppose that n is odd, K " R, and

ś n 0 c p´1q i i
is positive, and let µ be its positive p2n `2q nd root. Then pX 0 , . . . , X 2n`1 q admits choices of representatives such that ω i,i`n " µ p´1q i for all i.

If both c 0 c 2 ¨¨¨c n`1 and c 1 c 3 ¨¨¨c n are positive, then exactly two such choices satisfy in addition ś n 0 ω

p´1q i i,i`n`1 " 1.
Otherwise there is no such choice. Proof. Given any representatives px i q i , rescale to λ i x i , where λ 0 :" 1 and λ rn λ pr`1qn ω rn,pr`1qn " µ p´1q i for 0 ă r ă 2n `2. Check that this proves the first paragraph.

In the second paragraph we can only use further rescalings preserving the subdiameters:

x i Þ Ñ δ p´1q i x i . Such rescalings multiply ś n 0 ω p´1q i
i,i`n`1 by δ 2n`2 , so we can choose δ to make the product 1 if and only if ś n 0 ω i,i`n`1 is positive. To complete the proof, observe that c 0 c 2 ¨¨¨c n´1 is µ n`1 ś n 0 ω i,i`n`1 . There are two choices because the sign of δ is irrelevant.

Symmetric linear difference equations and the closure of L n,N pKq

In this section we present general results relating Lagrangian configurations to non-degenerate symmetric linear difference equations of degree 2n. The solution space of such an equation has a natural symplectic form, generalizing the Wronski determinant. When the equation has N -periodic coefficients and monodromy ´Id, there is a simple way to construct a particular Lagrangian configuration in its solution space. This yields a projection from the space of all such equations to equivalence classes of Lagrangian configurations. 6.1. Linear difference operators. Let T be the shift operator, acting on infinite sequences pV i q iPZ by pT V q i :" V i´1 . A linear difference operator over K is a polynomial expression in T and its inverse, (6.1)

A " a n T n `an´1 T n´1 `¨¨¨`a m T m , where m ď n are arbitrary integers and the coefficients a are sequences pa i q iPZ of K-scalars. Such operators act on sequences pV i q of K-scalars, the coefficients acting by multiplication: paV q i :" a i V i .

' A is said to be of order n ´m if both a m and a n are non-zero. ' A is said to be non-degenerate if both a m i and a n i are non-zero for all i. ' A is said to be N -periodic if a i " a i`N for all and i. Definition. The adjoint A ˚of a linear difference operator A is defined by V ¨pA ˚W q " pAV q ¨W, where V ¨W :" ř iPZ V i W i , an inner product on scalar sequences with only finitely many non-zero terms. It is simple to check that T ˚" T ´1. This is the discrete analog of the fact that translation is the exponential of the derivation d dx , and d dx ˚" ´d dx . It is also clear that pABq ˚" B ˚A˚f or any operators A and B. In particular, writing pT 1 a q for the multiplication operator pT 1 a q i " a i´ 1 , one obtains the following lemma.

Lemma 6.1.

`řn "m a T ˘˚" ř n "m pT ´ a q T ´ .

Definition. If an operator A satisfies A " A ˚, it is self-adjoint, or symmetric. In this case, for some n ě 0 there exist sequences a 0 , . . . , a n such that (6.2)

A " a 0 `n ÿ "1

`a T `pT ´ a q T ´ ˘.

Remark. The spectral theory of linear difference operators is quite similar to that of linear differential operators; see [START_REF] Krichever | Commuting difference operators and the combinatorial Gale transform[END_REF] and references therein. Operators with periodic or antiperiodic solutions play a special role in [START_REF] Krichever | Commuting difference operators and the combinatorial Gale transform[END_REF], where they are called "superperiodic".

6.2. Linear difference equations. The linear difference equation corresponding to a linear difference operator A is AV " 0. We denote the space of solutions of this equation, the kernel of A, by KpAq:

KpAq :" tV : AV " 0u.

Lemma 6.2. Let A be a non-degenerate linear difference operator over K of order p. For any i 0 P Z and any K-scalars c i0`1 , ¨¨¨, c i0`p , there is a unique solution pV i q of the equation AV " 0 satisfying the initial conditions V i " c i for i 0 ă i ď i 0 `p. In particular, KpAq is a p-dimensional vector space over K.

The proof of this lemma is immediate. Note that the symmetric operator (6.2) is non-degenerate if and only if a n i " 0 for all i. Let us write the equation AV " 0 explicitly in this case: (6.3)

a n i V i´n `¨¨¨`a 1 i V i´1 `a0 i V i `a1 i`1 V i`1 `¨¨¨`a n i`n V i`n
" 0 for all i. Corollary 6.3. Given a non-degenerate symmetric difference operator A over K of degree 2n as in (6.3), for all i P Z there is a unique element V i pAq of the kernel KpAq such that (6.4) `V i i´n pAq, V i i´n`1 pAq, . . . , V i i`n´1 pAq, V i i`n pAq ˘:" ´´1 a n i , 0, 0, . . . , 0, 1

a n i`n ¯.
For any i, V i`1 pAq, V i`2 pAq, . . . , V i`2n pAq ( is a basis of KpAq.

An important property of non-degenerate symmetric operators is the existence of a natural symplectic form on their kernels. Before giving the general result, we describe the simplest case.

Example. The operator L :" T ´a `T ´1 is known as the discrete Sturm-Liouville (or Hill, or Schrödinger) operator. It is non-degenerate and symmetric, and the classical Wronski determinant

WpV, V 1 q :" ˇˇˇV i´1 V 1 i´1 V i V 1
i ˇˇǐ s a well-defined symplectic form on its kernel KpLq. To understand this, check that when LpV q and LpV 1 q are zero, WpV, V 1 q is independent of the choice of i:

ˇˇˇV i V 1 i V i`1 V 1 i`1 ˇˇˇ" ´ˇˇˇV i V 1 i V i´1 V 1 i´1 ˇˇˇ´a i ˇˇˇV i V 1 i V i V 1 i ˇˇˇ" ˇˇˇV i´1 V 1 i´1 V i V 1 i ˇˇˇ.
Remark. The continuant (3.3) may be viewed as an element of KpLq: the Sturm-Liouville difference equation is

(6.5) V i´1 ´ai V i `Vi`1 " 0,
and the initial conditions pV ´1, V 0 q " p0, 1q give V n " K n pa 0 , . . . , a n´1 q. In fact, continuants are the simplest members of the series of André determinants, which satisfy linear difference equations of higher order; see [START_REF] André | Terme général d'un série quelconque déterminée à la façon des séries récurrentes[END_REF] and also [START_REF] Morier-Genoud | Linear difference equations, frieze patterns and combinatorial Gale transform[END_REF].

We now define a multidimensional version of the Wronski determinant. It is a discrete analog of the symplectic form on the solution space of the symmetric linear differential equation studied in [START_REF] Ovsienko | Self-dual differential operators and curves on Lagrangian Grassmannian that are subordinate to a loop[END_REF].

Definition. Fix a non-degenerate symmetric linear difference operator A over K of order 2n, as in (6.2). Given two elements V and V 1 of the kernel KpAq and any i P Z, set (6.6)

W i A pV, V 1 q :" n ÿ "1 i` ÿ m"i`1 a m ˇˇˇV m´ V 1 m´ V m V 1 m ˇˇˇ.
Lemma 6.4.

(i) W i A is independent of i and is a symplectic form W A on KpAq. (ii) Writing V i for the solution V i pAq of Corollary 6.3, W A pV i , V j q " V i j " ´V j i . (iii) In particular, W A pV i , V j q " 0 for |i ´j| ă n, and W A pV j´n , V j q " 1{a n j .

Proof. Let us use the shorthand

ˇˇj k ˇˇfor ˇˇV j V 1 j V k V 1 k ˇˇ. It is helpful to expand W i A pV, V 1 q as ˆa1 i`1 ˇˇi i`1 ˇˇ˙`ˆa 2 i`1 ˇˇi ´1 i`1 ˇˇ`a 2 i`2 ˇˇi i`2 ˇˇ˙`ˆa 3 i`1 ˇˇi ´2 i`1 ˇˇ`a 3 i`2 ˇˇi ´1 i`2 ˇˇ`a 3 i`3 ˇˇi i`3 ˇˇȧ n i`1 ˇˇi `1´n i`1 ˇˇ`a n i`2 ˇˇi `2´n i`2 ˇˇ`¨¨¨`a n i`n ˇˇi i`n ˇˇ˙.
To prove that W i A is independent of i, verify that

W i A pV, V 1 q ´Wi´1 A pV, V 1 q is ˆa1 i`1 ˇˇi i`1 ˇˇ´a 1 i ˇˇi ´1 i ˇˇ˙`ˆa 2 i`2 ˇˇi i`2 ˇˇ´a 2 i ˇˇi ´2 i ˇˇ˙`¨¨¨`ˆa n i`n ˇˇi i`n ˇˇ´a n i ˇˇi ´n i ˇˇ˙.
Convert ˇˇi ´ i ˇˇto ´ˇˇi i´ ˇˇand use (6.3), ˇˇi i ˇˇ" 0, and AV " AV 1 " 0 to check that this is

ˇˇˇV i V 1 i pAV q i pAV 1 q i ˇˇˇ" ˇˇˇV i V 1 i 0 0 ˇˇˇ" 0.
Thus we may write simply W A for W i A . Clearly it is a skew-symmetric bilinear form on KpAq. For (ii) and (iii), it suffices to check from the definitions that for any

V 1 P KpAq, W i´1 A pV i , V 1 q " a n i ˇˇˇV i i´n V 1 i´n V i i V 1 i ˇˇˇ" ´V 1 i .
To prove that W A is non-degenerate, recall Lemma 2.1 and consider the matrix Ω W A of W A in the basis V j´n`1 , V j`1 , . . . , V j`n ( : for 1 ď r, s ď 2n, pΩ W A q rs :" W A pV r`j´n , V s`j´n q. The result will follow if we prove detpΩ W A q " 0. Applying (iii), we find

Ω W A " ˆ0 T ´T t 0 ˙,
where T is an n ˆn upper triangular matrix with diagonal entries pa n j`1 q ´1, pa n j`2 q ´1, . . . , pa n j`n q ´1. Rescaling. Suppose that λ is a non-vanishing sequence over K: a sequence pλ i q iPZ of non-zero K-scalars. Given an operator A, we define its rescaling by λ to be the operator λ ´1 ˝A ˝λ´1 . Lemma 6.5. Let A be a non-degenerate symmetric linear difference operator over K of order 2n, as in (6.2), and let λ be a non-vanishing sequence over K. Let à be the rescaling λ ´1Aλ ´1.

(i) Ã is a non-degenerate symmetric operator over K of order 2n. Its coefficients ã are

ã i " λ ´1 i λ ´1 i´ a i .
(ii) If A and λ are N -periodic, then à is too.

(iii) λ is a symplectic map from `KpAq, W A ˘to `Kp Ãq, W Ã˘.

(iv) λ `V i pAq ˘" λ ´1 i V i p Ãq.

(ii) `Kv 1 , . . . , Kv N ˘is an pn, N q-Lagrangian configuration.

(iii) There is a map P : E n,N pKq Ñ L n,N pKq, defined by P pAq :" the symplectic equivalence class of `Kv 1 , . . . , Kv N ˘.

(iv) P pAq and P p´Aq are opposite configurations.

Proof. The fact that the monodromy M A is ´Id translates to the statement that V i`N pAq " ´V i pAq, giving (i). For (ii), apply Lemmas 2.2 and 6.4(iii) and use the fact that W A `V i pAq, V j pAq ˘" ωpv i , v j q by construction. For (iii), note that the symplectic equivalence class of pKv 1 , . . . , Kv N q is independent of the choice of symplectic identification of KpAq with K 2n .

For (iv), use the facts that Kp´Aq " KpAq, V i p´Aq " ´V i pAq, and W ´A " ´WA .

Theorem 3.

(i) P : E n,N pKq Ñ L n,N pKq is surjective.

(ii) P pAq " P p Ãq if and only if à is a rescaling λ ´1Aλ ´1 of A by an N -periodic λ.

Proof. We proceed by a series of lemmas. For (i), fix an pn, N q-Lagrangian configuration pKx 1 , . . . , Kx N q.

As usual, extend the representatives N -antiperiodically to px i q iPZ and write ω ij for ωpx i , x j q. In order to construct an operator A in E n,N pKq such that P pAq is the class of pKx 1 , . . . , Kx N q, for all i define (6.7) a n i :" 1{ω i´n,i . Keeping in mind that tx i´n`1 , . . . , x i`n u is a basis of K 2n , define a n´1 i , . . . , a ´n i by the equation (6.8)

a n i x i´n `an´1 i x i´n`1 `¨¨¨`a ´n`1 i x i`n´1 `a´n i x i`n " 0. Define A by pAV q i :" a n i V n´i `¨¨¨a ´n i V n`i .
The next two lemmas concern this difference operator. Lemma 6.9.

(i) A is non-degenerate, N -periodic, and symmetric.

(ii) For 1 ď p ď n, the coefficients a n´p i are given by (6.9) a n´p i " p´1 ÿ m"0 ÿ 0ăp1㨨¨ăpmăp ´p´1q m ω i´n,i`p1 ω i´n`p1,i`p2 ¨¨¨ω i´n`pm´1,i`pm ω i´n`pm,i`p ω i´n,i ω i´n`p1,i`p1 ¨¨¨ω i´n`pm,i`pm ω i´n`p,i`p .

Examples. Observe that (6.9) has 2 p´1 summands. Let us give the first three cases as examples. The summand at m " 0 is understood to be ´ωi´n,i`p {ω i´n,i ω i´n`p,i`p , so we have

a n´1 i " ´1 ω i´n,i ´ωi´n,i`1 ω i´n`1,i`1 ¯, a n´2 i " ´1 ω i´n,i ´ωi´n,i`2 ω i´n`2,i`2 ´ωi´n,i`1 ω i´n`1,i`2 ω i´n`1,i`1 ω i´n`2,i`2 ¯, a n´3 i " ´1 ω i´n,i ´ωi´n,i`3 ω i´n`3,i`3 ´ωi´n,i`1 ω i´n`1,i`3 ω i´n`1,i`1 ω i´n`3,i`3 ´ωi´n,i`2 ω i´n`2,i`3 ω i´n`2,i`2 ω i´n`3,i`3 `ωi´n,i`1 ω i´n`1,i`2 ω i´n`2,i`3 ω i´n`1,i`1 ω i´n`2,i`2 ω i´n`3,i`3 ¯.
Proof. Apply ωpx i´r , ¨q to (6.8) to obtain (6.10) 0 " a n i ω i´r,i´n `an´1

i ω i´r,i´n`1 `an´2 i ω i´r,i´n`2 `. . . `a´n i ω i´r,i`n . Consider the case r " 0. By the Lagrangian condition, here only the leftmost and rightmost terms on the right hand side are non-zero. We obtain (6.11) a ´n i " 1{ω i,i`n " a n i`n . Thus A is non-degenerate and satisfies the symmetry condition a ´ i " a i` for " n.

(i) A " Â, i.e., a " â for 0 ď ď n.

(ii) There exists a symplectic map σ : `KpAq, W A ˘Ñ `Kp Âq, W ¢s uch that σpV i q " V i for all i.

(iii) ν ij " νij for all i and j.

(iv) V i " V i for all i.

Proof. It is immediate that (i) implies (ii), (iii), and (iv), and (ii) implies (iii). By Lemma 2.1(iii), (iii) implies (ii), and (iii) and (iv) are equivalent by Lemma 6.4(ii). In order to prove that (iii) and (iv) imply (i), we will prove that for 0 ď p ď n the a n´p i are given by (6.7) and (6.9) with ν ij replacing ω ij . For p " 0, recall that by Lemma 6.4(iii), a n i " 1{ν i´n,i . For p ą 0 it suffices to prove that (6.12) holds with ν replacing ω, and for this it suffices to prove that (6.10) holds with ν replacing ω. This equation in turn results from applying W A pV i´r , ¨q to (6.8) with V ' replacing x ' , so finally we come down to proving the vector equation

a n i V i´n `an´1 i V i´n`1 `¨¨¨`a n´1 i`n´1 V i`n´1
`an i`n V i`n " 0 for all i. Because V j is itself in KpAq, we know that the scalar equation

a n i V j i´n `an´1 i V j i´n`1 `¨¨¨`a n´1 i`n´1 V j i`n´1
`an i`n V j i`n " 0 holds for all i. To complete the proof, recall from Lemma 6.4(ii) that V j k " ´V k j .

7. The case N " 2n `3

In this section, let pX 1 , . . . , X N q be a generic complex pn, N q-Lagrangian configuration with representatives px 1 , . . . , x N q. Extend them to an N -antiperiodic sequence and write ω ij for ωpx i , x j q. We conclude the article with a discussion of the case N " 2n `3: we generalize the five Gauss relations (1.3) on L 1,5 pCq to 2n `3 relations on the 2n `3 basic symplectic cross-ratios of L n,2n`3 pCq.

These relations are obtained by means of the symmetric linear difference operators associated to Lagrangian configurations in Theorem 3. The computations actually consist in solving the system of equations given by the condition that the operators have monodromy ´Id. We remark that Theorem 2(i) may be obtained via the same method.

There are two sequences of non-trivial cross-ratios on L n,2n`3 : the c i of (1.4), and the γ i,i`n`1 of (2.7), which we will abbreviate by γ i . Both are p2n `3q-periodic: c i :" c i,i`1,i`n`1,i`n`2 " ω i,i`n`1 ω i`1,i`n`2 ω i,i`n`2 ω i`1,i`n`1 , γ i :" c i´2,i,i`n,i`n`1 " ω i´2,i`n ω i,i`n`1 ω i´2,i`n`1 ω i,i`n .

We have γ i " c i´1 c i`n , so all cross-ratios on L n,2n`3 may be written in terms of the c i . We will prove that over C these 2n`3 cross-ratios determine the equivalence class of their Lagrangian configuration (we expect that over R they determine it up to opposites). By Proposition 2.7, L n,2n`3 pCq is 2n-dimensional, so the space of relations on the c i must have Krull dimension 3. We conjecture that the 2n `3 relations we present generate the full space of relations.

If ω i,i`n " 1 for all i, as in Section 3.3, then the representatives x i are said to be normalized. We begin with a general lemma permitting us to restrict our consideration to such representatives. Lemma 7.1. For any complex pn, N q-Lagrangian configuration pX 1 , . . . , X N q with N { GCDpn, N q odd, there exist exactly 2 GCDpn,N q normalized choices of representatives.

Proof. Following Section 4.2, let px 1 , . . . , xN q be any representatives of pX 1 , . . . , X N q, with corresponding inner products ωij . Fix an N -periodic sequence χ i such that χ 2 i " ωi,i`n . Mimicking (4.9), set λ i :" χ i χ i`2n χ i`4n ¨¨¨χ i`pq´1qn χ i`n χ i`3n ¨¨¨χ i`pq´2qn " q´1 ź r"0 χ p´1q r i`rn , where q denotes N { GCDpn, N q. Check that λ i λ i`n " ωi,i`n , so x i :" xi {λ i satisfies ω i,i`n " 1.

The fact that λ 2 i " ś q´1 r"0 ωp´1q r i`rn,i`pr`1qn implies that each q-tuple pλ i , λ i`n , . . . , λ i`pq´1qn q is determined up to a single choice of overall sign. The lemma follows.

Henceforth let pX 1 , . . . , X 2n`3 q be a generic complex pn, 2n `3q-Lagrangian configuration, and fix a normalized choice of representatives x i . Recall from Section 3.3 the pn `1q-periodic sequence a i :" ω i,i`n`1 of symplectic diameters of normalized pn, 2n `2q-configurations. The analog here is the p2n `3qperiodic sequence of symplectic main diagonals, defined by the same formula as the a i :

d i :" ω i,i`n`1 .
Note that this notation is consistent with (1.3), and

c i " d i d i`1 {d i´n´1 , γ i " c i´1 c i`n " d i d i`n .
Corollary 7.2.

(i) If 3 ffl n, then pX 1 , . . . , X 2n`3 q has two normalized choices of representatives: px i q i and p´x i q i . Both have the same d i : the configuration determines its main diagonals. (ii) If 3 n, then pX 1 , . . . , X 2n`3 q has eight normalized choices of representatives: i x i , where

i " ˘1 and depends only on i modulo 3. The corresponding main diagonals are i i`1 d i .

Proposition 7.3. Generic equivalence classes in L n,2n`3 pCq with the same cross-ratios c i are equal.

Proof. Let x i and xi be normalized representatives of two Lagrangian configurations having the same cross-ratios: ci " c i . It suffices to show that the xi may chosen so that the two sets of main diagonals are the same, i.e., di " d i , as then ωij " ω ij for all i and j. Observe that c i´1 γ i`1 " d i´1 d i d i`1 , and for any r, γ i γ i`2n ¨¨¨γ i`2rn γ i`n γ i`3n ¨¨¨γ i`p2r´1qn

" d i d i`p2r`1qn .

Write n in the form 3m `s, where s P t´1, 0, 1u. Take r " m above and apply p2n `3q-periodicity to see that d i d i`s is determined by the cross-ratios. If s " ˘1, dividing c i´1 γ i`1 by this gives d i´s as a function of the cross-ratios. Thus for 3 ffl m, the cross-ratios determine the main diagonals.

If 3 m, i.e., s " 0, taking r " m gives d 2 i , and so the cross-ratios determine the main diagonals up to sign: di " δ i d i for some δ i " ˘1. Using γ i " d i d i`n , γi " γ i , and GCDpn, 2n `3q " 3, we find that δ i depends only on i modulo 3. Applying c i´1 γ i`1 " d i´1 d i d i`1 , we obtain δ i´1 δ i δ i`1 " 1. Therefore by Corollary 7.2 it is possible to modify the xi so that di " d i .

Recall now the difference operator A constructed from the representatives x i in (6.8). In the normalized case the formula (6.9) for its coefficients simplifies, as the denominators are all 1:

a n´p i " p´1 ÿ m"0 ÿ 0ăp1㨨¨ăpmăp
´p´1q m ω i´n,i`p1 ω i´n`p1,i`p2 ¨¨¨ω i´n`pm´1,i`pm ω i´n`pm,i`p .

Observe that the factor ω i´n`p ´1 ,i`p is equal to d i´n`p ´1 if p ´p ´1 is 1, is equal to d i`p if p ´p ´1 is 2, is equal to 1 if p ´p ´1 is 3, and is equal to 0 otherwise. The initial cases are Proposition 7.4. The 2n `3 symplectic main diagonals d i of the normalized representatives x i of pX 1 , . . . , X 2n`3 q satisfy the following 2n `3 polynomial relations on the d i (for n " 1, take a 2 i to be 0): (7.1) 0 " a 2 i `di`n`1 a 1 i `di a 0 i `a1 i`1 .

Proof. Simply take r " ´pn `1q in (6.10).

Legendrian pentagons in CP 1 . This is L 1,5 , the Gaussian case discussed in Section 1.2. Here (7.1) reduces to (1.3). Using d i " c i´2 c i`1 {c i`2 , the relations may be stated in terms of the c i :

1 c i `1 c i´1 c i`1 " 1.
Legendrian heptagons in CP 3 . For L 2,7 , (7.1) reads

d i´1 d i d i`1 ´di´3 d i´1 ´di`1 d i`3 ´di `1 " 0.
Using d i " c i´1 c i c i`3 {c i´2 c i`1 , this becomes

1 c i´3 `1 c i`3 `1 c i´2 c i`2 ´1 c i´3 c i c i`3 " 1.
Legendrian nonagons in CP 5 . For L 3,9 , (7.1) yields

d i´4 d i´3 d i`3 d i`4 ´di´4 d i´3 d i´1 ´di´3 d i d i`3 ´di`1 d i`3 d i`4
´di´4 d i`4 `di´1 d i`1 `di´3 `di `di`3 " 0.

Using c i " d i d i`1 {d i´4 , c i´1 c i`3 " γ i " d i d i`3 , and c i´1 γ i`1 " d i´1 d i d i`1 , this may be rewritten as

1 c i´1 `1 c i `1 c i`1 `1 c i´1 c i`1 `1 c i´2 c i`2 ´1 c i´4 c i c i`1 ´1 c i´2 c i c i`2 ´1 c i´1 c i c i`4 " 1.
We close with a few general remarks. Note that for 3 ffl n, (7.1) can always be written as a rational relation on the c i , because the d i are rational functions of the c i . In light of the situation for L 3,9 , we expect that this is in fact true for all n. Also, although we have worked only over C in this section, it should be easy to show that the relations we have given on the c i hold also over R.

Finally, let us reiterate our conjecture regarding (7.1). Because L n,2n`3 is 2n-dimensional and the cross-ratios pc 1 , . . . , c 2n`3 q form a coordinate ring on it, the space of relations on the c i must be of Krull dimension 3. We conjecture that the 2n `3 relations (7.1) generate the full relation space.
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 2 Figure 2. The cross-ratio c 0 " ω0,5 ω1,6 ω0,6 ω1,5 on L 4,10 .
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 34 Figure 3. The rescaling scheme for L 2,6 and L 4,10 .Now take K " R. Because p2n `2q{ GCDpn, 2n `2q " n `1 is odd, the sign invariant

"

  ´di´n d i´n`1 d i´n`2 `di´n d i`3 `di´n`2 d i`2 ´1.

  a 11 a 22 a 33 ´pa 12 a 21 qa 33 ´a11 pa 23 a 32 q, ' a 11 a 22 a 33 a 44 ´pa 12 a 21 qa 33 a 44 ´a11 pa 23 a 32 qa 44 ´a11 a 22 pa 34 a 43 q `pa 12 a 21 qpa 34 a 43 q, ' a 11 a 22 a 33 a 44 a 55 ´pa 12 a 21 qa 33 a 44 a 55 ´a11 pa 23 a 32 qa 44 a 55 ´a11 a 22 pa 34 a 43 qa 55 ´a11 a 22 a 33 pa 45 a 54 q `pa 12 a 21 qpa 34 a 43 qa 55 `pa 12 a 21 qa 33 pa 45 a 54 q `a11 pa 23 a 32 qpa 45 a 54 q.

  " ω 02 ω 13 ´pω 03 ω 12 q 14 ω 25 ´pω 04 ω 13 qω 25 ´ω03 pω 15 ω 24 q 15 ω 26 ω 37 ´pω 05 ω 14 qω 26 ω 37 ´ω04 pω 16 ω 25 qω 37 ´ω04 ω 15 pω 27 ω 36 q `pω 05 ω 14 qpω 27 ω 36 q Observe that dividing by ω 0,n`1 ω 1,n`2 ¨¨¨ω n,2n`1 leads to the examples in Section 3.2, and compare the terms in square brackets to the examples below Proposition 4.1.

		ı		"	ı
		´pω 01 ω 23 q	1	,
	'	" ω 03 ω ı	´pω 02 ω 35 q	" ω 14	ı ,
	'	" ω 04 ω ı
			"			ı
		´pω 03 ω 47 q	ω 15 ω 26 ´pω 16 ω 25 q	.
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Proof. We leave (i), (ii), and λ `KpAq ˘" Kp Ãq to the reader. To prove λ symplectic, verify

Because ã m λ m λ m´ " a m , this is simply W i A pV, V 1 q. For (iv), use Corollary 6.3 to check that λ `V i pAq ˘j " λ ´1 i V i p Ãq j for i ´n ď j ď i `n. By (iii), both λ `V i pAq ˘and λ ´1 i V i p Ãq are in Kp Ãq, so by Lemma 6.2 they are equal. 6.3. Periodic operators, monodromy, and Lagrangian configurations. Difference equations corresponding to N -periodic operators do not necessarily have N -periodic solutions. However, we do have the following lemma. Its proof is immediate from the obvious fact that an operator is N -periodic if and only if it commutes with T N . Lemma 6.6. Suppose that A is an N -periodic linear difference operator. Then T N preserves the kernel KpAq. It is called the monodromy operator M A of A:

In the case of non-degenerate symmetric operators, the monodromy is symplectic: Lemma 6.7. Suppose that A is a non-degenerate N -periodic symmetric linear difference operator of order 2n. Then the monodromy operator M A preserves the symplectic form W A on KpAq.

Proof. We must prove that W A pT N V, T N V 1 q " W A pV, V 1 q for all elements V and V 1 of KpAq. Recall that W A may be expressed as W i A for any i. Use the fact that pT N a q " a for all to check that

Our main result in Section 6 is Theorem 3, the most general result of the paper. It states that a certain set of difference operators may be projected to symplectic equivalence classes of Lagrangian configurations. In order to define this projection we make two preliminary definitions.

Definition. For N ě 2n, let L n,N pKq be the Spp2n, Kq-moduli space of symplectic equivalence classes of all pn, N q-Lagrangian configurations over K, both generic and non-generic.

Definition. For N ě 2n, let E n,N pKq be the set of non-degenerate N -periodic symmetric linear difference operators over K of order 2n with monodromy ´Id.

Remarks.

' L n,N pKq is a closure of L n,N pKq. ' For both geometric and analytic reasons, imposing the condition that the monodromy be Id in the definition of E n,N pKq would be less natural; cf. [START_REF] Morier-Genoud | Linear difference equations, frieze patterns and combinatorial Gale transform[END_REF][START_REF] Krichever | Commuting difference operators and the combinatorial Gale transform[END_REF] for the SLp2nq-analog.

' Suppose that A is a non-degenerate N -periodic symmetric linear difference operator of order 2n. Fix initial conditions V i0`1 , . . . , V i0`2n , and let V be the corresponding solution of AV " 0. It is easy to see that each entry V i of V depends polynomially on the quantities pa n k q ˘1, a n´1 k , . . . , a 0 k for i 0 ă k ď i 0 `N . It follows that the same is true of M A , and so E n,N is an algebraic variety. We will see that E n,N projects to L n,N , with fibers given by rescaling. Recall from Proposition 2.7 that L n,N is npN ´2n ´1q-dimensional. The set of periodic rescalings has N parameters, so the dimension of E n,N is pn`1qN ´np2n`1q. Thus the number of independent constraints imposed on a periodic symmetric linear difference operator by specifying its monodromy to be ´Id is the dimension of the symplectic group preserving W A , as one would predict from Lemma 6.7. Proposition 6.8. Suppose that A is in E n,N pKq. Fix arbitrarily an identification of the symplectic space `KpAq, W A ˘with the standard symplectic space `K2n , ω ˘, and let v i P K 2n be the image under this identification of the element V i pAq of KpAq defined in Corollary 6.3.

(i) The v i are N -antiperiodic. Now consider the cases r " ˘p with 1 ď p ď n. By the Lagrangian condition, for r " ´p only the leftmost p `1 terms on the right hand side are non-zero, while for r " p only the rightmost p `1 terms are non-zero. We obtain

´1 ω i´n`p,i`p ´ωi´n,i`p ω i´n,i `an´1

i ω i´n`1,i`p `¨¨¨`a n´p`1 i ω i´n`p´1,i`p ¯, (6.12)

A straightforward induction argument from (6.12) gives (6.9): the first term of (6.12) is the m " 0 term of (6.9), and the term ´an´q i ω i´n`q,i`p {ω i´n`p,i`p of (6.12) gives those terms of (6.9) with p m " q. A parallel argument from (6.13) yields a closed formula for a p´n i : (6.14)

To finish proving that A is symmetric, we must prove a ´ i " a i` for 0 ď ă n. Note that pp 1 , p 2 , . . . , p m q Þ Ñ pp ´pm , p ´pm´1 , . . . , p ´p1 q is an involution of the index set of the inner summation in (6.9). Use this to verify that replacing i by i `n ´p in (6.9) gives (6.14). This completes the proof of the lemma: the fact that A is N -periodic is now immediate from ω i`N,j`N " ω ij . Lemma 6.10.

(i) A lies in E n,N pKq. (ii) The solutions V i pAq defined in Corollary 6.3 are given by V i j pAq " ω ij . Proof. We begin with (ii). Abbreviate V i pAq by V i . By (6.4), (6.7), and (6.11), `V i i´n , V i i´n`1 , . . . , V i i`n´1 , V i i`n ˘:" ´ωi,i´n , 0, . . . , 0, ω i,i`n

:" ´ωi,i´n , ω i,i´n`1 . . . , ω i,i`n´1 , ω i,i`n ¯.

Consider (6.10): since i ´r is arbitrary, we see that pω ij q j lies in KpAq. By the above equation, it has the same initial conditions as V i , and so (ii) follows from Lemma 6.2.

In light of Lemma 6.9(i), to prove (i) it suffices to prove that (6.8) has monodromy ´Id. Because the V i span KpAq, this reduces to V i j`N " ´V i j for all i, j. By (ii), this follows from x j`N " ´xj . At this point we have proven Theorem 3(i): by Lemmas 6.4 and 6.10, the element A of E n,N pKq constructed in Lemma 6.9 has solutions V i pAq satisfying W A pV i , V j q " V i j " ωpx i , x j q. Therefore by Lemma 2.1(iii) there is an element of Spp2n, Kq carrying the x i to the v i of Proposition 6.8, and so P pAq is the class of the Lagrangian configuration originally given.

We now turn to Theorem 3(ii). The fact that P pAq " P p Ãq if A " λ Ãλ is immediate from Lemma 6.5: λ is a symplectic map carrying V i pAq to a multiple of V i p Ãq. Conversely, suppose that P pAq " P p Ãq. Reviewing Proposition 6.8, we find that this means there is a symplectic map Λ from `KpAq, W A ˘to `Kp Ãq, W Ã˘c arrying V i pAq to a non-zero multiple of V i p Ãq, for all i. Define λ by setting λ ´1 i to be this multiple. Because the sequences V i pAq and V i p Ãq are both N -antiperiodic, λ is N -periodic.

Let  :" λ Ãλ. By Lemma 6.5, λ is a symplectic map from `Kp Âq, W ¢t o `Kp Ãq, W Ã˘c arrying V i p Âq to λ ´1 i V i p Ãq. Therefore λ ´1 ˝Λ is a symplectic map from `KpAq, W A ˘to `Kp Âq, W ¢c arrying V i pAq to V i p Âq. The following lemma shows that A " Â, completing the proof of Theorem 3. Lemma 6.11. Let A and  be elements of E n,N pKq. Write a and â for the coefficients of A and Â, V i and V i for V i pAq and V i p Âq, and ν ij and νij for the inner products W A pV i , V j q and W Âp V i , V j q, respectively. The following statements are equivalent: