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Abstract 

This present pilot study investigates the relationship between dependency distance and fre-

quency based on the analysis of an English dependency treebank. The preliminary result shows 

that there is a non-linear relation between dependency distance and frequency. This relation 

between them can be further formalized as a power law function which can be used to predict 

the distribution of dependency distance in a treebank. 

1 Introduction 

As a well-discussed norm (Hudson 1995; Temperley 2007; Futrell et al. 2015; Liu et al. 2017), depend-

ency distance shows several attractive features for quantitative studies. First, its definition is rather clear. 

It is the linear distance between a word and its head.1 Second, it is very easy to quantify. We can simply 

compute dependency distance as the difference of the word ID and its head’s ID in a CoNLL style 

treebank (Buchholz & Marsi 2006). These features together with the emergence of large-scale depend-

ency treebanks made dependency distance one of the popular topics in quantitative syntactic studies.  

    Among various interesting discussions, the most striking finding is probably the dependency distance 

minimization phenomena. After empirically examining the dependency distance distributions of differ-

ent human languages and comparing the results with different random baselines, Liu (2008, 2010) found 

that there is a universal trend of minimizing the dependency distance in human languages. Futrell et al. 

(2015) conducted a similar study which widened the language range and added one more random base-

line. Their results are coherent with Liu’s finding. Both Liu (2008) and Futrell et al. (2015) connect this 

phenomenon with the short-term memory (or working memory) storage of human beings and the least 

effort principle (Zipf 1949). Since long dependencies, which have longer distance, occupy more short-

term memory storage, they are more difficult or inefficient to process. Therefore, for lowering the pro-

cessing difficulty and boosting the efficiency of communications, short dependencies are preferable ac-

cording to the least effort principle.  

    Initially, the least effort principle was brought up by Zipf for explaining the observed power-law dis-

tributions of word frequencies. Later on, similar power-law frequency distributions have been repeatedly 

observed in various linguistic units, such as letters, phoneme, word length, and etc. (Altmann & Gerlach 

2016). The power law distribution, therefore, has been considered as a universal linguistic law. After 

investigating the relationships between different word features (such as length vs frequency, frequency 

vs polysemy, and etc.), people found out an interesting phenomenon. The relations between two highly 

correlated word features are usually non-linear and can be formulated as a power law function (Köhler 

2002). Kohler (1993) further proposed a word synergetic framework to model the interactions between 

different word features. This model has proved quite successful also then adapted to syntax features. 

The first studies mainly focused on the analysis of phrase structure treebanks (Köhler 2012), which 

naturally are limited in language types since phrase structure grammar is less suitable for describing free 

word order languages (Mel’čuk 1988). As the dependency treebanks are getting dominant, studies based 

on dependency grammar start to take lead. We can find recent studies discussing the relations between 

sentence lengths, tree heights, tree widths, and mean dependency distances (Jing & Liu 2017, Zhang & 

Liu 2018, Jiang & Liu 2015).  

                                                                                 
1Hudson’s original measures takes two adjacent words to have distance zero. We prefer the alternative definition where 

x=y ⟺ d(x,y)=0, i.e. a word has distance zero with itself, making the measure a metric in the mathematical sense. 



Knowing that short dependencies are preferable by languages due to the least effort principle and that 

syntax features behaviour similar to word features, we can easily draw our hypotheses: 

• The relation between dependency distance and frequency can be formulated as a non-linear 

function (probably also a power law function). 

Contrary to above-mentioned studies, our study here is not focusing on mean dependency distances 

but the distribution of the distance of every single dependency. In the dependency minimization studies 

or synergetic syntax studies, the observed feature is mean dependency distance per sentence. In a way, 

these observed dependency distances are treated as a dependent feature of dependency trees. This is a 

very reasonable choice since the dependency distance is defined as the linear distance between two 

words in the same sentence. In particular, when the studies discuss other tree-related features such as 

tree heights and widths, mean dependency distance is a more easily comparable feature than a group of 

individual dependency distances. However, we believe the value of individual dependency distances is 

neglected. Individual dependency distances (Liu 2010, Chen & Gerdes 2017, 2018) provide more details 

of the fluctuation than the average which would level-up differences of dependencies in a sentence and 

it should be given the same attention as the mean dependency distance. Therefore, our study here is 

trying to pick up the missing detail of previous studies by investigating the relations between individual 

dependency distances and their frequencies. 

The paper is structured as follows. Section 2 describes the data set, the Parallel Universal Dependen-

cies (PUD) English treebank of Universal Dependencies treebanks, and introduces our computing 

method for dependency distance and frequency. Section 3 presents the empirical results and discussions. 

Finally, Section 4 presents our conclusions. 

      

2 Material and Methods 

Universal Dependencies (UD) is a project of developing a cross-linguistically consistent treebank anno-

tation scheme for many languages, with the goal of facilitating multilingual parser development, cross-

lingual learning, and parsing research from a language typology perspective. The annotation scheme is 

based on an evolution of Stanford dependencies (De Marneffe et al., 2014), Google universal part-of-

speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). 

The general philosophy is to provide a universal inventory of categories and guidelines to facilitate 

consistent annotation of similar constructions across languages while allowing language-specific exten-

sions when necessary. UD is also an open resource which allows for easy replication and validation of 

the experiments (all Treebank data on its page is fully open and accessible to everyone). For the present 

paper, we used the PUD English Treebank from the UD 2.3 dataset for our study since English is a rather 

reasonable choice for a pilot study. Furthermore, PUD is a parallel treebank with a wide range of lan-

guages, namely Arabic, Chinese, Czech, English, Finnish, French, German, Hindi, Indonesian, Italian, 

Japanese, Korean, Portuguese, Russian, Spanish, Swedish, Thai, and Turkish. This makes PUD a good 

choice for future studies which would further test whether our finding here can be generalized into dif-

ferent human languages. We use the Surface-syntactic UD version of the treebank (Gerdes et al. 2018), 

which is more suitable for studies in distributional dependency syntax as it corrects the artificially long 

dependency distances of UD into a more standard syntactic analysis based on distributional criteria (Os-

borne & Gerdes 2019). 

We first compute the dependency distance for every single dependency in the treebank except the root 

relation. The dependency distance is computed as the absolute difference between the word ID and its 

head’s word ID. For instance, in Figure 1, there are 4 dependencies. We would take three of them into 

account except the root dependency. The dependency distances of these three dependencies are: abs (1-

2) =1 (for subj), abs (4-2) =2 (for comp), and abs (3-4) =1 (for det). 

 



 

Figure 1: Example dependency tree in SUD analysis. 

 

After computing all the dependency distances of the treebank, we then count the frequencies of each 

dependency distance, i.e. we count how many dependencies with dependency distance 1 occurred in the 

treebank, how many dependencies with distance 2 occurred, and so on. We then try to formulate the 

relation into a non-linear function. We will test different non-linear functions to see which one can pre-

dict the empirical data best. In other words, we try to see whether our data can be fitted by the power 

law function. This result can then either confirm or reject our hypothesis. 

We also introduce two random baselines to see whether we can observe similar phenomenon in ran-

dom dependency trees. Based on the PUD English treebank, we generate two random tree-banks. For 

the random treebank RT, we just randomly reorder the words of each sentence. For the random treebank 

PRT, we randomly reorder the words in a way that keeps the sentence’s dependencies projective (non-

crossing). 

3 Results and Discussion 

The PUD English treebank is part of the Parallel Universal Dependencies (PUD) treebanks created for 

the CoNLL 2017 shared task on multilingual parsing (Zeman et al. 2017). There are 1000 sentences in 

each language. The sentences are taken from the news domain and from Wikipedia. The PUD English 

treebank contains 21,176 tokens. See Appendix for the frequencies of dependency distances in the tree-

bank.  

    The scatter plot Figure 2 shows that the relationship between dependency distance and frequency is 

indeed non-linear.  

 
Figure 2: Scatter plot of dependency distance and frequency of PUD English treebank. 

Since the observed data points scatter as a L-ish shape, we tried to fit the data to four non-linear 

functions, namely quadratic, exponent, logarithm, and power law functions. Although there are different 

ways of measuring the goodness-of-fit (Mačutek & Wimmer 2013), we choose to use the most common 

Pearson chi-square goodness-of-fit test to evaluate the fitting results in this study. The formula of the 

test is defined as 

𝑅2 = ∑
(𝑓𝑖−𝑁𝑃𝑖)

2

𝑁𝑃𝑖

𝑛
𝑖=1                                                            (1) 
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with fi being the observed frequency of the value i, Pi being the expected probability of the value i, n 

being the number of different data values and N being the sample size. The obtained results of R-squared 

is presented in Table 2.2 

 

Non-linear Model Function R2 

Quadratic y=2963.44-206x+3.1x2 0.34 

Exponent  log(y)=7.11-0.16x 0.92 

Logarithm y=4100.8-1262log(x) 0.49 

Power Law log(y)=10.71-2.56log(x) 0.91 

Table 1: R2 of four non-linear models. 

The results show that the observed data can indeed be formulated as a power law function. However, 

it seems that the data also fits an exponent regression very well. This is a very common issue in quanti-

tative linguistic studies (Baixeries et al. 2013). In many situations, both exponent and power-law models 

can describe the data fluctuation reasonably well. One way to decide which model is better is by adding 

more observations from other languages. However, this is out of the scope of this pilot study. Another 

solution can be introducing baselines for comparison, which is our choice in this paper. By comparing 

the results in Table 1 with the results of two different random treebanks, we try to deliver the answer for 

this question, which model is better to represent the relation between dependency distance and fre-

quency, exponent or power law?  

For the two random English PUD treebank variations, RT and PRT, we replicate the same computation 

for the frequency and dependency distance, see Appendix. The scatter plots Figure 3 and 4 show that 

the relations between dependency distance and frequency in RT and PRT are both non-linear.  

 

 
Figure 3: Scatter plot of RT. 

 
Figure 4: Scatter plot of PRT. 

Similarly, we fit the data points to four non-linear models, see Tables 2 and 3 for results. We can see 

from Table 2 that RT fits to all non-linear models very well except to the power law function, which is 

very different from the PUD English treebank who fits to power law very well but does not fit to quad-

ratic and exponent models. When we add the projectivity restriction, the fitting results of PRT seems 

more ‘human language’ like. Similar to the results of PUD in Table 1, PRT fits to exponent and power-

law models better. However, the power law fitting result of PUD is clearly more satisfying than the result 

of PRT.  

Non-linear Model Function R2 

Quadratic  y=1883.88-106.28x+1.43x2 0.98 

Exponent  log(y)=8.42-0.17x 0.98 

Logarithm y=2220.88-611.66log(x) 0.96 

Power Law log(y)=11.23-2.37log(x) 0.74 

Table 2: R2 results of RT. 

 

 

                                                                                 
      2All parameter values in the models were obtained by R software. The same below. 
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Non-linear Model Function R2 

Quadratic y=2551.07-168.63x+2.49x2 0.62 

Exponent  log(y)=7.99-0.17x 0.97 

Logarithm y=3258.25-972.05log(x) 0.75 

Power Law log(y)=11.28-2.55log(x) 0.84 

Table 3: R2 results of PRT. 

Beyond considering the projectivity feature of dependency trees that deals with the crossing problem, 

we would also like to have a closer look at the role of syntax in this question. Our way of addressing 

this is to exclude less syntactic dependencies from the analysis. The UD/SUD annotation scheme in-

cludes predefined dependency structures for some constructions, in particular for MWE and punctua-

tion. The distance of relations such as fixed, compound, flat, and punct are not based on distributional 

criteria of the tokens involved. Therefore, we also tested the results when these dependencies are ex-

cluded from our analysis, taking into account only syntactic dependencies (subj, aux, cop, case, mark, 

cc, dislocated, vocative, expl, discourse, det, clf). See the Appendix for the details. We first tested these 

three data sets with a linear regression model, and the results are similar to the previous analysis (PUD 

R2=0.21, RT R2=0.77, PRT R2=0.34). We then repeated the same non-linear regression analysis on 

these three selected data sets and the results are presented in Table 4. 

Syntactic Data Set  Non-linear Model Function R2

PUD English

 

Quadratic y=1216.36-148.07x+3.82x2 0.44 

Exponent  log(y)=5.84-0.25x 0.81 

Logarithm y=1380.2-523.3log(x)  0.56 

Power Law log(y)=8.45-2.53log(x) 0.97 

RT

 

Quadratic y=434.78-25.62x+0.36x2 0.98 

Exponent  log(y)=6.78-0.16x 0.97 

Logarithm y=510.91-142.85log(x) 0.95 

Power Law log(y)=9.1-2.07log(x) 0.74 

PRT

 

Quadratic y=656.17-50.02x+0.86x2 0.6 

Exponent  log(y)=6.27-0.16x 0.95 

Logarithm y=810.18-251.99log(x)  0.73 

Power Law log(y)=8.89-2.13log(x)  0.89 

Table 4: R2 results for syntactic dependencies. 

Very similar to the results of the previous analysis, PRT is closer to the PUD English results. However, 

the results with syntactic dependencies demonstrate more clearly that a power law model is the better 

choice for representing the relation between dependency distance and frequency. First, the original PUD 

data fits to the power law function best, whereas in the previous analysis we could not easily draw such 

a conclusion due to the very similar R2 values for both power law and exponent models. Secondly, the 

goodness of the power law model fitting somehow can distinguish the natural PUD data from random 

baselines. 

4 Conclusion 

Our results are coherent with our hypothesis that there is indeed a non-linear relation between depend-

ency distance and frequency. Furthermore, this relation can be formulated as a power law function. 

However, the results in Table 1 show that the power-law model is not the only candidate for formu-

lating the relation, and we could also apply an exponential model to it. For figuring out which model is 

better for representing the relation, we introduce two random baselines. By randomly reordering the 

words in a sentence, while preserving the words’ dependencies, we generate random treebanks: PRT 

with and RT without the projectivity restriction, in which PRT possesses a more ‘natural’ structure re-

producing more closely the rarity of non-projective relations. We replicate the same analysis on these 

two random treebanks and compare the results with the PUD results. We found that we can distinguish 

the PUD from RT and PRT by looking at the results of power-law fitting. Therefore, we would like to 



cautiously draw our conclusion here that the power law model is probably a better choice for represent-

ing the relation between dependency distance and frequency, a hypothesis that is further strengthened 

by the results on purely syntactic dependency relations.  

 

5a: All functions. 

 

5b: Syntactic functions only. 

Figure 5: Joint plot of the frequency of dependency distance on a logarithmic scale 

showing the greater linearity of PUD compared to the random treebanks. 
Another interesting phenomenon we can observe from our data is that the projective random data-set 

has almost as good a fit to a power law function as the syntactically parsed true treebank. Although we 

need more samples to conduct a statistical significance testing for the difference, it seems that if we 

compare the natural PUD and the control PRT on the most relevant “syntactic functions only”, for ex-

ample in the logarithmic presentation of Figure 5b., there is practically no difference between the line-

arity of PRT and PUD. This shows that projectivity has a major role as the responsible factor for the 

power-law function of dependency distance. Of course, our conclusion based on this pilot study needs 

to be tested with more languages in the future. This leads to the open question to actually pinpoint the 

additional syntactic constraint of PUD, compared to random treebanks, that results in the power law 

distribution.   

    We believe the result presented here has several potential applications. We can use the power law 

model to predict the distribution of dependency distance in a treebank. Since natural language treebanks 

fit to power law model betters than random treebanks, we might even use it as an index for assessing 

the quality of parse results.    
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Appendix 

The table shows the complete dependency distance frequency data from the SUD version of the English 

PUD treebank. The first three frequency columns take into account all dependency relations of the tree-

bank. The last three frequency columns only count syntactic relations that correspond to actual head-

daughter relations, which are the following relations in SUD: appos, clf, comp, det, discourse, dislo-

cated, expl, mod, subj, vocative. 

 



Distance PUD_all PRT_all RT_all PUD_syntactic PRT_syntactic RT_syntactic 

1 10,236 5,473 1,912 6,866 3,742 1,194 

2 4,157 3,438 1,768 3,148 2,285 1,140 

3 1,887 2,270 1,646 1,295 1,434 1,021 

4 924 1,662 1,532 538 1,050 997 

5 544 1,292 1,468 285 809 951 

6 412 955 1,335 162 566 829 

7 292 747 1,222 112 459 807 

8 209 613 1,113 63 360 719 

9 192 536 1,009 55 306 650 

10 177 462 975 53 255 613 

11 139 400 824 39 206 497 

12 133 299 741 24 171 454 

13 98 287 701 22 152 433 

14 96 233 561 15 122 356 

15 97 225 521 13 123 319 

16 72 162 422 7 91 248 

17 52 175 386 5 90 238 

18 71 152 312 8 78 203 

19 52 124 276 0 66 168 

20 47 110 258 3 58 165 

21 43 100 226 1 51 147 

22 50 79 159 6 46 107 

23 27 62 162 1 35 91 

24 18 55 122 0 36 66 

25 26 44 91 1 21 53 

26 24 31 78 1 16 50 

27 22 38 78 0 20 48 

28 11 29 53 1 15 35 

29 18 22 53 0 9 32 

30 12 17 34 0 10 20 

31 3 13 29 0 7 15 

32 5 9 18 0 2 14 

33 2 6 21 0 3 9 

34 5 7 14 0 3 6 

35 3 8 13 0 7 5 

36 5 9 10 0 6 4 

37 4 3 2 0 0 2 

38 2 5 6 0 1 4 

39 2 3 5 0 1 3 

40 1 2 2 0 2 1 

41 1 3 1 0 2 1 

42 0 0 3 0 0 2 

43 1 3 2 0 2 2 

44 0 3 2 0 1 1 

45 1 1 3 0 1 1 

46 0 0 2 0 0 1 

47 0 3 2 0 2 1 

48 0 2 0 0 1 0 

49 1 0 2 0 0 1 

50 0 1 0 0 0 0 

53 1 0 1 0 0 0 

55 0 1 0 0 0 0 

56 1 1 0 0 1 0 

57 0 1 0 0 0 0 
 


