Alain Fernandez
email: alain.fernandez@cert.fr31036toulouse

Session 2A: Testing Model generation techniques to debug software

In this article, we consider the test of synchronous data flow software (written in SCADE) embedded in aircraft computers. The validation of such software is a complex process, which requires some tests in real conditions (e.g. flying conditions). During these tests, some variables of the software are recorded at a chosen frequency. The recorded data represent a partial observation of the state of the computer during the flight. When an unwanted behaviour of the aircraft is detected during the test, we need to identify the cause of this behaviour from the recorded data in order to choose the best way to correct the software. The cause of the observed behaviour can be determined by computing some scenarios consistent with the partial observation according to the specification of the system. The number of plausible scenario might be high and we have to identify a finite subset of the most relevant scenarios. Indeed, each computed scenario involves particular computation paths in the SCADE software. It is worth noting that a computation path can be activated by a class of scenarios. So we propose to compute a scenario per path to identify the part of the software which should be corrected. For these purposes, we have used GATEL tool. We show how to use this tool on an example taken from software of an A320 computer for which the engineers observed the detection of non meaningful alarms, and we compare the result obtained with each tool. For such experiment, the main difficulty is due to a problem of combinatorial explosion, and we show how these tools can take into account the engineer knowledge about the system in order to reduce the number of possible scenarios.

Introduction

The debugging of real time embedded software consists in finding out the cause of an unexpected behaviour from a generally partial observation of the calculator state. More precisely, we need to identify the input data value, which leads to erroneous value of the output data, or of any observed data (e.g. internal data of the software observed by a development tool). In a way, the activity of debugging can be seen as the dual of testing which consist in fixing the value of input data, and to check the corresponding output value against the specification.

In this paper, we suggest a technique to assist the debugging of embedded software like those used in avionics or car industries. Such software is generally written in a language, which mixes calculations, state-transition systems, boolean functions and temporal operators to generate some commands for some actuators. These commands are usually subjected to time constraints, the size of the software can be big (in term of number of software components, or lines of code), and the calculator is, most of the time, interacting with a complex environment.

In such a situation, the debugging can be fastidious and costly. The technique we describe here aims at highlighting the pieces of code by which an error is susceptible of having been propagated. Our approach concerns data flow software specifications like SCADE [Esterel2003] or SIMULINK. In these formalisms, the software is described as a net of operators. The nodes of the net correspond to operators (boolean gates, arithmetical operations, temporal gates, comparison operators), and the arcs represent software variables.

In this context, a piece of code propagating an error is a path from an input to an output of the net, such that: -We observe an error (unexpected value) on the output arc of the path.

-All operators along the path propagate on its output, the error present on its arc input, which belongs to the path. We use so, the concept of path predicate and arc predicate given in [START_REF] Ouabdesselam | Techniques de Test pour les Logiciels Réactifs Synchrones[END_REF], and the Gatel test case generator [START_REF] Marre | Test Sequences Generation from Lustre Descriptions: GATeL[END_REF] to compute the input/output values corresponding to each error propagation paths of the net.

Remark. Our technique does not concern the code verification. The code is supposed to meet its specification because it has been checked by structural tests for instance or, as in our case, because it is automatically generated from the SCADE specification. The problem we are tracking here corresponds to some mistakes in the model of the environment which lead to behaviour cases which are not taken into account by the specification. The computation of the error propagation path allows the identification of the inputs which cause these behaviour cases and gives some information to the software designers so they can choose an appropriate solution to correct the problem.

Data flow specification of real time software

The computation of a SCADE or SIMULINK operator net is performed periodically i.e. the runs of the operators are synchronised on the clock of the net. The arguments of the operators are data flows i.e. infinite sequences of values taken at each clock cycle. For example: -The variable x is the sequence : x(t 0), x(t 1), ..., x(t i), ... where x(t i) denote the value of x at the i-th clock cycle.

-The constant 1 is the sequence: 1, 1, ..., 1, ... -Operators are applied on the flows point to point : x ⊕ y is the sequence : x(t 0) ⊕ y(t 0), ..., x(t i) ⊕ y(t i), ... where ⊕ stand for an operator: ∧ (logic and), ∨ (logic or), ¬ (not), + (addition), ... -Temporal operators are defined as follow :

-Confirmation delay CONF(e, d):

s(t) ↔ (e(t-d) ∧ e(t-d+1) ∧ ... ∧ e(t))
Where e and s are respectively the input and the output of the operator, and d is the confirmation duration. -Set/reset SRQ(s, r):

q(t) ↔ (set(t) ∨ q(t-1)) ∧ ¬ reset(t)
Where q(t) is the value of the output of the set/reset operator at t The interested reader may find more details in papers related to Lustre, the textual language that underlay the SCADE notation [START_REF] Halbwachs | Lustre: a declarative language for programming synchronous systems[END_REF].

The example given in the figure below is a simplification of a part of Airbus A320 software dedicated to the monitoring of accelerometer sensors. x is an input values provided by a sensor. When the input x is greater than a threshold for more than 8 clock cycles (confirmation delay CONF i), an error is detected and stored by using the set/reset operators (node SRQ). The output flow z6 represents a 'confirmed error sensor' signal. For safety reason, this computation is duplicated on several lanes. When an error has been confirmed on a lane, the software sends a reset on the corresponding set/reset operator, and then it switches to a backup mode, which computes the acceleration value from a different set of sensors (not represented). Inputs p1, p2, p3 and p4 are used to take into account the current functioning mode of the lane. On this example, the values of the sensors were noisier than expected during particular behaviour cases (take off). This was leading to the detection of non-meaningful errors.

Monitoring of a sensor input

In the following sections, we show how we can find out a finite set of scenarios, which raise an alarm, i.e. put the value z6 to true. In order to get a representative subset of scenario, we propose to cover all computation paths which lead to z6=true. We first introduce the formal definition of such paths, and then we present how to generate scenarios covering the paths with Gatel. Finally, we give the results obtained for our example.

Error propagation path

An error is detected when some output has not the expected value within a given input context. In order to help debug, we want to find out on which inputs depend the faulty outputs and for these inputs of interest, what are the class of values that can cause the error.

In [START_REF] Ouabdesselam | Techniques de Test pour les Logiciels Réactifs Synchrones[END_REF], the authors introduced the concept of "arc predicate" in order to characterise dependency between an input and an output of one operator, whatever is the input value. Let op be an operator, ei one of op input and sj one of op output. Then, an arc predicate AP(ei, sj, op(e1, … en)) is the condition, which ensures that sj value depends on ei value. Let us examine an AND operator and a temporal operator SRQ. AND operator. We note s=AND(e1,e2). The first operand e1 is evaluated in any case. So activation condition is true. We note this as follows:

AP(e1, s,)=true. The second value e2 is propagated to s if e1 is not equal to false (else, s value is false, independently from e2 value). So AP(e2, s)=not(e1). SRQ operator. We note q=SQR(s,r). Reset r has the priority. So AP(r, q)=true. Set condition s will impact q if r is false. So AP(s, q)=not(r). During a computation, a path (e1, e2, … en) is active if all the predicates AP(ei, ei+1) are true. We want to exhibit the paths related to a given test objective by generating inputs that trigger these paths. So, we propose to use the arc predicate definitions as coverage criteria and ask a test case generator to cover a maximum of arc predicates.

In [START_REF] Bousquet | Technical notes for Vepre project[END_REF], the authors propose to extend the arc predicate coverage in order to take into account also the classes of values that go through operators. The new predicates can be illustrated in the following way. AND operator. s=AND(e1,e2). The predicates AP(e1, s,)=true and AP(e2, s)=not(e1) are complemented to identify the classes of propagated values (true or false in this case). We note this "arc-value-predicate" AVP. We got the following new criteria for the AND operator:

1. AVP(e1=true , s)=true and e1 = e1 2. AVP(e1=false, s)=true and not(e1) = not(e1) 3. AVP(e2=true , s)=not(e1) and e2 4. AVP(e2=false, s)=not(e1)and not(e2) The case 2 is covered by cases 3 and 4. So, the retained criteria are: AVP(e1=true , s)= e1 AVP(e2=true , s)=not(e1) and e2 AVP(e2=false, s)=not(e1)and not(e2).

Similarly, we retained the criteria below for the SRQ operator. AVP(r=true , q)=r AVP(s=true , q)=not(r) and s AVP(s=false, q)=not(r)and not(s).

Generation of scenario with Gatel

We need a scenario generator to compute the inputs that allows the coverage of AVP predicates with respect to a given test objective (error observed). We propose to use the Gatel tool [START_REF] Marre | Test Sequences Generation from Lustre Descriptions: GATeL[END_REF]. Gatel generates test sequences by solving a set of constraints derived from a Lustre specification and a test objective. Test objectives describe an execution context we want to reach by tests. These objectives are stated by Lustre boolean expressions. They might be simple expression like "z6=true". Such a formula characterizes memory states. They might also refer any temporal operator or any function written in Lustre in order to specify the partial runs we are interested in.

Gatel has two main functioning modes. In the fully automatic mode, it tries to generate one sequence of input values that leads to the situation described by the test objective. In the interactive mode, users guide the resolution in order to explore several scenarios. Moreover, users can stop the resolution in the interactive mode in order to point out classes of values that should satisfy the constraints. The interactive mode seems appropriated in our case but a difficulty is to avoid too much interactivity.

Lustre specifications are structured into hierarchy of nodes. So, in our example, the whole schema is a node consisting of six instances of more generic nodes. The five generic nodes are AND, OR, <, CONF, SRQ, which encode in Lustre the operators depicted previously. We want to interact at the level of the generic nodes and not go into the details of their Lustre encoding. We use the "split with" directive to work at this level. This directive can be associated to a node output. It imposes sub-cases that shall be considered when the tool searches possible values of the tagged outputs. In our example, we associated to the output of each generic node the AVP conditions presented before.

During the interactive resolution, Gatel proposes to split a selection of outputs (a subset of {z6, z5, z4, z3, z2, z1} in our example) at a clock cycle (the current cycle or older ones). Users choose one output of the selection and trigger a new resolution step by simply clicking on the chosen output. Thus a set of test cases is progressively built. The process is iterated until all test cases are completely built or until the users decide to stop the exploration. We used the following exploration strategies. Firsts, priority is given to the outputs computed at the current clock cycle. Secondly, at a given cycle, priority is given to the most external outputs in order to progressively go back to the inputs. Third, we stop the resolution of a branch when Gatel proposes to solve at an older clock cycle a set of constraints that were already solved at a more recent clock cycle. This means indeed that we privileged the coverage of path by the shortest scenario and do not want enter into useless loops. Finally, we also stop the resolution when Gatel proposes only to go into the detail of a generic node.

By such cuts, we reduce dramatically the number of scenarios. We risk getting partially solved scenarios, which do not lead to the test objective. Gatel offers the possibility to go back to the automatic mode in order to complete each partial scenario.

Example

In our example, we want to understand when an alarm is raised, i.e. we want to identify which paths are taken when the output z6 is true. We got the following scenarios thanks to the strategy described previously. In this case, the values of x and p1 impact z6 because they have particular values during 8 computation cycle. The notation 3..? means that x is an integer greater than 2. We stopped here the resolution before allocating an exact value to x and this allows the identification of a class value of interest. We stopped the resolution of this case because it explores new paths with respect to the time dimension. Indeed, it tries to trigger a set condition (as in the two previous cases) but at the previous clock cycle.

Conclusion

We proposed methods and tools to assist the debugging of dataflow synchronous software. More specifically, our proposal allows the exhibition of scenario classes, which lead to the observation of an erroneous behaviour. The number of such scenarios may be very high. We identified coverage criteria of interest for the debugging in order to reduce the scenario search: we aim at covering all computation paths within the net of dataflow operators and

 This Gatel result states : "p4 is true and z6 is true at the current time cycle 0". This result satisfies all the constraints derived from the specification, whatever are the values of the other input variables. This is a skeleton of admissible runs, which reach the test objective. Such skeletons are also called "models" of the specification and the test objective. Gatel can be seen as a "model" generator. Finally, we notice that the path of interest goes from p4 to z6 directly.In this case, the values of p2 and p3 impact z6 because p4 is false. It is worth noting that all cases are disjoint. The coverage criteria impose indeed this separation.

	%#CYCLE % ? p2 p3 0 _ _ true true p4 z6
	%#CYCLE % ? 0 true false false true p2 p3 p4 z6
	%#CYCLE % ? 9 8 3..? true x p1 _ _ 7 3..? true 6 3..? true 5 3..? true 4 3..? true 3 3..? true 2 3..? true 1 3..? true 0 3..? true false false false true p2 p3 p4 z6 _

-22 -23 January 2004