
HAL Id: hal-02270509
https://hal.science/hal-02270509

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware and Software Development Framework for
Embedded Automotive Electronics

P Mortara

To cite this version:
P Mortara. Hardware and Software Development Framework for Embedded Automotive Electronics.
2nd Embedded Real Time Software Congress (ERTS’04), 2004, Toulouse, France. �hal-02270509�

https://hal.science/hal-02270509
https://hal.archives-ouvertes.fr

2nd European Congress ERTS - 1 - 21 – 22 – 23 January 2004

Session 1B: Design Frameworks
Hardware and Software Development Framework

for Embedded Automotive Electronics

P. Mortara

 Ixfin Magneti Marelli Electronic Systems
10078 Venaria Reale – Torino – Italy

Abstract

Electronics in Automotive Applications is constantly growing
with an increasing quantity and complexity of their related
embedded software. Multiplexed networked architectures
give the possibility to implement different distributes
solutions thus allowing optimized partitioning.
This paper has the aim to describe the Hardware and
Software Development Framework conceived and realized in
Ixfin Magneti Marelli Electronic Systems in order to improve
and optimize design and prototypes implementation of
distributed electronics in the area of body applications.
Quick function re-allocation, solutions reuse, customer
function integration, time to market reduction and R&D
costs containment were the main objectives of this project.
The document starts with a brief overview of the
development process introducing the concept of the platform
approach.
Then both the Hardware and in particular the Software
development framework are described and discussed in
details.
Some examples of real applications of the framework,
performance indexes and balance metrics of the obtained
results are presented in the conclusion.

1. INTRODUCTION
Electronics in Automotive Application will grow strongly
in the future years. Concerning Body Car Applications
(body computer, doors / light / seats management, anti-
theft, climate control..) starting from new products
generation up to 2005-2006 is also expected that Multiplex
Systems will gradually move to a Sub-Systems integration
increasing in the meantime the number and the complexity
of functionalities.
Dialing with such a scenario, instead of an ECUs modules
development approach, a 360° System vision is necessary.
This will be useful to assure flexibility in hardware and
software design, to grant possibility of quick function re-
allocation, reuse of solution, reducing time to market and
containing R&D costs. Functional distribution on
different nodes allows the optimization of computing

power in the Multiplex Systems: algorithms, strategies,
and high level functions do not necessary need to be
resident in a specific ECU. Optimal function partitioning
improves flexibility in the multiplex system definition,
from low end up to high end configuration.

This article has not been conceived with the aim to discuss
engineering principles, but to illustrate with a real fact
description the concrete example of their application in
the R&D center of an industrial automotive electronic
component supplier.
The paper is principally focused on the hardware and
software development framework for prototyping platform
based design.
Nevertheless for more clearness a very short overview of
the process and the others main development stages are
recalled in Chapter 3
More details on system design and software engineering
concepts can be found in the articles listed in the
bibliographic reference.

2. PLATFORM CONCEPTS

Following the above considerations Ixfin Magneti Marelli
Electronic System has defined a Development Process
based on Platform approach with these main objectives:

• To anticipate the needs for functionality of customers
• To anticipate technological and methodological steps

aiming to take competitive differentials and to
improve product functionality

• To develop on the shelf available competitive
solutions

A product Platform is:

• A defined Hardware and Software System

Architecture

2nd European Congress ERTS - 2 - 21 – 22 – 23 January 2004

• A library of standard configurable Hardware and
Software validated components

• A set of test solutions, modules and tools
• A defined industrial process
• A workbench useful for the development of the first

functional prototypes of all applications

3. DEVELOPMENT PROCESS

The “Y” graph of the System Design approach is
synthetically represented in Fig. 1.
Modeling and Simulation, Architectures and Components
selection and the different possible instances mapped
solution provide the input to the Hardware and Software
develepment framework for prototype implementation.

Fig. 1 System Design – “Y” flow graph

3.1. MODELING & SIMULATION

This phase uses in input the set of functional
requirements coming from different customers as well as
internally defined preliminary specifications for new
innovative functionalities. This represents the functional
system perimeter that will address the platform
development approach.
With the modeling and simulation activity performed with
appropriate tools (continuous and discrete modeling,
network simulation) preliminary different possible
distributed architectures are verified.

3.2. ARCHITECTURES & COMPONENTS - MAPPING

To allow preliminary individuation of the optimal
hardware architecture and components able to satisfy the
requirements characterized in the previous analysis stage,
a dedicated internal company tool called F_DIAMOND
has been designed.
F_DIAMOND is the acronyms for Function Deployment
on Instances and Architecture Mapping Of Device.
It’s essentially a software database; it has been conceived
to collect technical, economics and availability time
information of new devices offered by semiconductor
market for automotive applications. Added to the database
feature there are some special functions that can help
designers to:

• Define a set of hardware requirements (elementary

resources)
• Find the available devices into the database that

satisfy partially or totally the requirements
• Choose a set of devices (one or more) that can

perform the required functions
• Compare different solutions in terms of performance,

cost and timing.
• Collect and summarize the results in standard format

report files

 Fig. 2 Database Components Library

The main goal of the database, was to create a supporting
tool compatible to the “Y development flow “ of system
architecture, described in Fig. 1, in order to evaluate
alternative electronic architectures.

F-DIAMOND provides to:

• Organize component’s information offered by the

market in a database. In Fig. 2 an example of the GUI
for micro-controllers data entry is represented.

2nd European Congress ERTS - 3 - 21 – 22 – 23 January 2004

• Support the definition of the electronic resources

required by the platform, starting from the functional
requirements.

• Give the support to associate these components in

architectures fulfilling the Platform’s requirements.
This means to help designer searching components
and collect them in a kit (named instance) that
satisfies the requirements (instance creations) (Fig. 3).

• Give support for comparison evaluations of alternative

instance solutions regarding technical performance,
cost and availability.

Fig. 3 Create Instances

4. HOW (HARDWARE OPEN WORKBENCH)

.
The HOW (Hardware Open Workbench) represented in
Fig. 4, as been designed with the aim to support in an
adequate way the hardware prototype development with
the following main objectives:

• Quick implementation of new functions
• Easy & quick function re-allocation / partitioning
• Test / Verification of different system architectures
• Test / Verification of different components/circuit

solutions
• Fast reusability in several projects and the possibility

to share circuit solution between different teams
• Direct use of hardware circuit solutions just re-

composing the electrical schematic, and build-up the
definitive Layout

• Use of the software platform running on workbench as
it is on the product

4.1. BIG BOARD

The Hardware part of the development framework is based
on a 590 x 470 mm four layers Big Boards PCB
implementing the basic layout interconnection between
every plug-in connectors (Logic and FPGA flat cables
connectors, Function Boards connectors, external
connectors...).
This is the fixed part of the Workbench that remain the
same for any implementation.
Big Boards may represent what in the actual Body
Multiplex Systems are normally called Body Computer
and Body Nodes (doors, roof, trunk..etc). Big Board hosts
connectors based Logic and Function Plug-in
interconnected by a FPGA (for logic signals) and manual
jumpers (for analog signals). The interface to the externals
sensors/actuators implemented in the laboratory Bench
Simulator or in the Car is provided with dedicated
connectors. Big Board has been designed in order to host
up to 21 Function Boards Plug-In.

Fig. 4 HOW (Hardware Open Workbench)

4.2. LOGIC BOARD

The Logic Board basically host the micro-controller and
his peripherals: Mux, glue logics..etc (Fig. 5)
The design approach has been addressed in order to
support the most complex I/O features for futures body
applications. All Body Computer actual and possible
futures functionalities as well as Body Nodes (doors,trunk
etc.) and Climate Control has been considered. The
obtained I/O features increased of 20% more or less,
represent what we’ve called SLB (Standard Logic Bus).

2nd European Congress ERTS - 4 - 21 – 22 – 23 January 2004

Fig. 5 Logic Board

The basic assumption is that any logic architecture for
platforms Nodes will use the same SLB; the quantity of
I/O features present on LSB will depend of course from
the complexity of the particular Node.
Completely different logic architectures, starting for
instance from the smallest Node to the most complex Body
Computer, based on different micro-controller, can be
implemented on the base of the same board boundary.

 Fig. 6 FPGA Board

4.3. FPGA BOARD

The FPGA Board implemented on a 150x150 mm PCB
(Fig. 6) has the aim to provide the mono-directional digital
I/O connection between the Logic Board and Plugs-In
Boards. This is designed using a BGA 600 FPGA giving a
flexible solution for easy and quick Logic and Functions
reallocation. In consideration of the high number of
signals, the connection to the Big Board is implemented
using 8 Flat Cables. For more stable environment such as
final platforms to be released to the Application team this
Board may be removed and substituted with direct
connections realized using a Wire Wrapped Harness: this
is also a cheaper solution respect the more flexible but also
high expensive FPGA approach.
The FPGA used in the body platform supports the in-
system programmability (ISP).
Configuration data are downloaded from the PC parallel
port via a download cable.

4.4. FUNCTION BOARDS

Function Boards implements the modularly Plug-In
concept.
They host the hardware features to be implemented around
the Logic core.
Each Function Board from the structural point of view is
designed in the same way and it is basically composed by
a 80 x 50 mm PCB, 14 pin Connector for the external I/O
and 20 pin Connector for the FCB.
All functionalities are implemented using this predefined
scheme and grouped in an homogeneous way. In case the
functionality exceeds the capability of the perimeter, it will
be splitted in more Plug-in.
Some examples of Function Boards Plug-in are: Analog
Input, Digital Input (Fig. 7), Relais Driver, SmartMOS
Driver, Serial Line Transceiver (CAN/LIN Driver), RF
modules…etc.

Fig. 7 Function Board Plug-In (Digital Inputs)

4.5. SUB-SYSTEM NODES

Sub-System Nodes host the smallest device oriented
functionality that take part for example in the sub-bus LIN
network.
Also in this case such a standard general purpose hardware
architecture has been designed. (Fig. 8)
Both Master / Slave LIN Nodes have been designed
around a low cost 8 bit micro-controller on a quite small
PCB.
The Master LIN node also provide the Gateway function
with the CAN.
Using this approach, different functions, from window
power lift to the seat management for instance, can be
quickly implemented on the same common base.
This implementation allow to tune both
Hardware/Software functionality and should be the output
for a custom IC / smart components design specifications.

2nd European Congress ERTS - 5 - 21 – 22 – 23 January 2004

Fig. 8 LIN Node

5. SOFTWARE ARCHITECTURE

Real Time Operating System and software Layered
Architectures are well know and used in the company
since more than ten years when we start in mass
production with our first 32bit Engine Management
Control Unit ([8])
Nevertheless the architectures were continuously refined,
taking into account the evolution in the automotive
standards and in the hardware and software components.
The today main scheme of the Software Architecture looks
like the Fig 9.

Fig. 9 Software Architecture
The low level is composed by the basic I/O modules
drivers for analog, digital and frequency signal
management. As discussed in [2] this part represent the
HAL (Hardware Abstraction Layer) that include all the
micro-controller and the Hardware devices dependent
Software.
Basic functions are integrated for the most part in a
developed in house environment called MOSAIC
(Modular Open Software Architecture, Integrated and
Configurable).
The skeleton of the Software Architecture is completed
with the OSEK compliant Communication Components
and the Operating System normally acquired from third
parts software suppliers.
The middleware with their internal standard A.P.I. provide
the mean for interaction with the high level application
functions.

5.1. THE SOFTWARE LAYER STRUCTURE

The Components and their related sub-modules of the
Software Architecture are mapped in 5 Layers (Fig. 10).

Fig. 10 Software Platform Layers

• Driver Layer: provides the access to the internal

micro-controller resources and peripherals

• Control Layer: provides the control of ECU

elements, management of physical values and
platform services such as the generation of time-base
or the transmission of one byte to the serial
communication interface.

• Presentation Layer: provides standard access to

process data.

• Application Layer: provides application dependent

function and some particular configurable services,
such as gateway function, periodic and/or event
messages transmission.

•
• System Layer: provides management of the overall

software. Operating system, scheduler, boot software
is here included. It provides the declaration of
common definition for all platform modules.

Each Layer communicates with the others by means of
internally defined standard API.

5.2. OSEK COMPONENTS

Fully configurable and OSEK compliant real time
Operating System and CAN driver with Keyword 2000
communication protocol and Transport Protocol are the
only third part software components used in the Gen. 2 of
our Platform Architecture.

2nd European Congress ERTS - 6 - 21 – 22 – 23 January 2004

The choice of the Operating System Conformance Class
depends of the characteristics/complexity of the node, but
basically for Body Applications the most used are BCC2
and ECC1.
KWP2000 and Diagnostics Services are usually
specialized in the respect of the OEM customers
requirement and implemented by the third part software
supplier itself.
The same for the Network Management even if for some
car manufacturer the component is directly implemented in
the Application Layer following the customer
specification.
The OSEK specifications was defined with the aim to
improve re-usability / portability of the embedded software
components. Nevertheless OSEK concerns the RTOS and
part of the network communication system, but does not
take in charge other input/output system interface with the
hardware subsystems. Thus the software implementation
only based around OSEK environment is not enough to
enable the completely re-use and portability of software
components.
This is the reason why the environment called MOSAIC in
which a specific API abstracts the interface between the
application software and the system platform has been
conceived and internally designed.
In the following an essential overview of this environment
is provided. More details can be found in [2].

5.3. MOSAIC

MOSAIC take in charge the software components that are
not provided by the OSEK/VDX standards. Basically
implements the abstraction layer from the logic boundary
hardware architecture (Fig.11) such as the internal micro-
controller peripheral devices (A/D converter, digital and
frequency I/O channels etc.) as well as the external
dependencies, typically sensors and actuators
management.
MOSAIC software pieces are implemented like a
components libraries that can be configured and
specialized using the MOSAIC manager. All I/Os of the
same type (e.g., analog inputs, PWM inputs, digital inputs,
digital outputs) are grouped together and managed by a
specific software component called the I/O engine.

Fig 11 MOSAIC Architecture

The main configuration scheme is represented in Fig. 12.
All configuration parameters are stored and maintained in
a relational database.
The database contains components data describing the
hardware platform and all sensors/actuators of the system
and application specific data of the I/Os configuration for a
specific control unit on the vehicle network .
The configuration Manager provides the interface between
the user and the database allowing the data introduction
and automatically implementing validity and consistency
checks.
By means of dedicated GUI sessions it is used to introduce
I/O hardware and software informations. Hardware
information includes component selection (micro-
controllers, analog and digital multiplexers, power
devices..) resource allocation including pin assignment,
I/O ports, registers and memory map.
Software information includes all the parameters necessary
for the acquisition or actuation of the I/O as well as for the
intermediate treatments defined at the API level.
For instance linearization tables for A/D treatments can be
introduced choosing between several structure type: linear,
step with hysteresis, dynamic and others (Fig.13).
The configuration manager today supports I/O modules
such as:
• Analog inputs;
• Digital inputs;
• Digital outputs (including power devices and PWM);
• Frequency inputs;
• LIN;
• Stepper and DC Motor controllers
• EEPROM Driver
The complete hardware and software informations set
introduced with the Configuration Manager represents the
configuration characteristics of a node. Several nodes can
be created, modified and managed with different versions.

2nd European Congress ERTS - 7 - 21 – 22 – 23 January 2004

A new node configuration can be created copying and
modifying from an existing one thus reducing the effort.
When the configuration phase is terminated the MOSAIC
environment will be able to provide the code generation.
In according to the rules defined in each I/O engine in the
template module, the configuration data are extracted by
the parser from the data base.
The configuration files to be included and linked with the
I/O engine modules and application software will then
automatically created by the code generator that will
provide with the configuration data insertion.
The specification of the implemented module can be
automatically produced by the documentation generator
that reports all the information contained in the database in
a formatted document.
The overhead introduced by this configurable layered
environment (5%-20% for ROM, below 5% for RAM and
less than 10% for CPU load) is tiny respect the acquired
benefits.
The effort needed for a complex node configuration is
today evaluated in hours instead of weeks for manually
written coding approach.
Only few minutes are required to make changes due to
significant hardware modifications.
.

Fig 12 MOSAIC Configuration

Fig. 13 MOSAIC – GUI Example

5.4. APPLICATION COMPONENTS

Application Components are located in the Application
Layer of the software Architecture and implements the
high level algorithms/function computation . The
communication with the lower Layer is assured by the use
of internal standard API.
Examples of Function Components are for instance the
Fuel Level Calculation, the internal Light management,
the door lock/unlock high level strategy management etc.

5.5. EXAMPLE OF A COMPLETE FUNCTION

In the Fig. 14 the example on how a complete UHF
receiver function is mapped in the four layers of the
software architecture is illustrated.
Using this layered structure, for instance in changing the
remote transmission device with a new one that use a
different data encapsulation, only the Presentation Layer
of the receiver function need to be changed, while
substituting the receiver components both the Driver and
Control Layer have to be modified; if this two level of the
software receiver management are implemented in the
MOSAIC environment the modification can be done only
using the configurator thus avoiding any direct
modification of the source code.
Any changes on the upper level strategies control will
require interventions in the Application Layer only.

2nd European Congress ERTS - 8 - 21 – 22 – 23 January 2004

Fig. 14 UHF Remote Control Function

6. EXAMPLE OF REAL APPLICATION

The Body Platform Gen 2 was the first implementation of
the integrated hardware and software development
framework. It has started following the system design
approach illustrated in Chapter 3 and has been based on an
extended functional perimeter that include “standard Body
functions” (ex. light, widows, doors management…) in
different OEMs visions as well as new expected but at that
time, not yet well defined new features (ex. Tire Pressure
Monitoring System, enhanced Passive and Remote
Keyless Enrty, doors, trunk and roof clusters sub-systems
..)

6.1. THE BODY PLATFORM

Hardware Open Workbench for both Central ECUs (i.e.
Body Computer) and Sub-system cluster node was
equipped with a wide range of function plug-in covering
the defined functional perimeter. Following criteria and
tools described in 3.2 several components solutions and
relative instances was created as a input for functions plug-
in design.
On the base of the software architecture features described
in Chapter 5 a lot of different software components have
been designed and swiftly configured using MOSAIC .
The body platform hardware environment looks like the
picture represented in Fig 15.
Beside a Central ECU Node a complete Door Cluster has
been be implemented including:

• Window Lift (Master LIN node)
• Mirror control (Slave LIN node)
• Door Lock control (Slave LIN node)
• Keyboard control (Slave LIN node)

 Fig. 15 The Body Platform

This prototyping development phase has allowed the final
concrete verification on both laboratory bench and in the
car the different solutions identified during the previous
Modeling and Simulation stage.
For instance the complete door management has been
really tested in two different solutions:
• the functions implemented in the central ECU
• the functions splitted in the LIN sub-system door

cluster
The strong word “final” means that the hardware circuitry
solution is the concrete one (make a real ECU only needs
to join schematics and build the layout for PCB) as well
as the software platform that will remain exactly then same
in the final product.
As illustrated in Fig 16-17 excluding the definitive
characterization, EMI/EMC Test .., the most part of the
hardware and software validation can be anticipated in a
early phase.
Moreover the Software architecture will easily allow
customer function integration in the application
development phase.
The use of the hardware and software framework allows to
save time money and improve quality for new
developments.
Hardware solution circuitry (Logic boards, Function plug-
in) can be reused and physically shared among different
development teams also located in different sites.
Obviously is the same for software: the configuration
feature provided by the OSEK components and in
particular by the MOSAIC environment, beside time and
money savings, will drastically reduce the possibility of
errors introduction of manual coding, thus improving
quality and reliability. Moreover the well structured
layered approach easily allow the function application
integration as well as their partial modification.

2nd European Congress ERTS - 9 - 21 – 22 – 23 January 2004

Fig. 16 “HOW” to build the product – Central Nodes

Fig. 17 “HOW” to build the product – Sub-System
Nodes

7. BALANCE METRICS
As an example of the benefits of the application of the
framework, the results of a porting activity due to the
change of a micro-controller in the Body Platform will be
described in the following.

A favorable contract with a silicon supplier entailing the
use of a new 16 bit micro-controller on Body Electronics
Applications was signed during the product development.
An hardware and software porting activity to micro-
controller B from the existent Body Platform based on a
micro-controller A was consequently swiftly addressed.

Due to the advanced development phase, time constraint
was very tight, and a detailed aggressive plan has been
drown up with the silicon supplier that was involved in the
porting activities and development tools reintegration.

Excluding the third part software components (OSEK OS
and COMM) the amount of implemented software at the
moment of the micro-controller change was 46 modules
for a total of 23452 pure line of code (without comments
and empty lines).

The actors in the porting activities were:

1. The Silicon Supplier

• To assure the HAL MOSAIC modules porting
and some others low level drivers, the micro-
controller B development environment and tools
support.

• To support Ixfin Magneti Marelli for the software
integration/verification till end of platform
delivery.

2. Third part Software Components Supplier

• To assure the availability of the complete software

suite (OSEK OS,COMM,TP & KWP2000) for the
specific micro-controller B

3. Ixfin Magneti Marelli

• To assure the porting of all the above layers and the

complete software integration/verification
• To integrate the third part software components with

remote support of the supplier.

From the hardware point of view, using the Open
Workbench only few days were spent to redesign the
Logic Board substituting the CPU and some glue logic
components. Interconnection with the plugs-in was made
with jumpers and a swift FPGA reprogramming.

Related to the Software only the 50% of modules required
modification. The remaining 23 modules have been reused
as their was just re-compiling the C source code for the
micro-controller B.
The percentage of modified code lines respect the total
(23452) was 28%.
We must point out that the micro-controller B was a
completely new one and the low level drivers of the
MOSAIC were not yet available in the library.
So, in terms of effort a significant part were related to the
HAL modules of MOSAIC (that includes the hardware
depended software and low level drivers) 35%, one
serial communication driver that has been rewritten in

2nd European Congress ERTS - 10 - 21 – 22 – 23 January 2004

software due to the absence of one more UART on the
new micro-controller 10%, third parts modules
integration/adaptation 15%, and the remaining effort
was spent for general environment troubleshooting
activities (Emulators,Compilers,…).
The porting activity begun in the second half of July 2001
and has been successfully finished in less than two
months.
This include the complete software integration and
verification at laboratory bench.
The structured layered architecture of the Body Platform
has allowed a good job partitioning and the possibility to
work in autonomous way in different separate sites.
Despite the fact that Platform Software, at that stage of
development didn’t yet include all the application and a
great part was quite near to the hardware dependencies, the
50% of totals modules didn’t need any modification and
have been reused as their was just re-compiling the source
C code.
The remaining porting of application functions to complete
all the Body features has not increased significantly the
effort already spent.
The effort spent for pure software porting was drastically
reduced: more than 60% less respect an equivalent less
structured and not Platform based previous porting.
Now the availability of many micro-controllers abstraction
layer integrated in MOSAIC allow us to gain another great
reduction in development time.
As asserted in [2], the time needed to implement changes
for different architectures is now really measured in days.

8. CONCLUSIONS
In this paper the development process and the Hardware
and Software Development Framework conceived and
realized in Ixfin Magneti Marelli Electronic Systems in
order to improve and optimize design and prototypes
implementation of distributed electronics in the area of
body applications have been presented.
This is a concrete example of the application of several
engineering techniques and in particular the platform
approach described in [2] ..
The application of the framework dials with new complex
scenarios in automotive electronics in which instead an
ECUs modules development approach, a 360° System
vision is necessary and a rational function partitioning is a
must to improve flexibility in the multiplex system
definition, from low end up to high end configuration.
Moreover quick function re-allocation, solutions reuse,
customer function integration, time to market reduction
and R&D costs containment take significant benefit with
the platform approach implemented in the framework.
As illustrated in the examples of application in the area of
Body Electronics, technical results was very good. The use
of the HOW give the advantage of rapid prototyping

environment but is very close to the final product : circuit
solution and software remain exactly the same.
Finally, the balance metric example of the porting activity
illustrated at the end confirm the validity of the approach.

9. ACKNOWLEDGMENTS

Thanks to Piero De La Pierre and Franco Salerno for their
contributions, and to Jean Lopez, Roberto Bettini and
Antonino Damiano that have constantly supported and
inspired the work.

10. REFERENCES

[1] A. Ferrari and A. Sangiovanni-Vincentelli,- System Design:
Traditional Concepts and New Paradigms, Proceedings of the 1999
Int. Conf. On Comp. Des., Austin, Oct. 1999

[2] R. Bettini, A. Damiano, A. Ferrari, A. Sangiovanni-Vincentelli, L.
Tonelli - A Configurable Software Platform for Embedded Systems
– In DATE 2001 – Munich – March 2001

[3] Wolfang Pree, Component-Based Software Development – A New
Paradigm in Software Engineering?, Software-Concepts and Tools,
Spring-Verlag, 1997

[4] C. J. Hagen and G. Brouwers, Reducing Software Life-Cycle Costs
by Developing Configurable Software, Aerospace and Electronics
Conference, 1994. NAECON 1994., Proceedings of the IEEE 1994
National , 1994 , Page(s): 1182 -1187 vol.2

[5] S.M.Wheater and M.C. Little, The Design and Implementation of a
Framework for Configurable Software, Configurable Distributed
Systems, 1996. Proceedings., Third International Conference on ,
1996 , Page(s): 136 –143

[6] OSEK/VDX System Generation, OSEK Implementation Language
(OIL), Version 2.4.1, Jan 30th 2003

[7] OSEK Implementation Language - Concept and Future Perspectives
of OIL, Goser, Janz, Schimpf – OSEK/VDX Open Systems in
Automotive Networks, 3rd Internation Workshop, February 2-3,
2000 - Bad Homburg

[8] P. Mortara , G. Mercalli - A New Automotive Real-Time Engine
Control System with 32 bit Micro_Controller -paper no. 945002 -
FISITA CONGRESS October 17-21, 1994 Beijing (China).

[9] E. Dilger , L.Å. Johansson , H. Kopetz , M. Krug , P. Lidén , G.
McCall , P. Mortara , B. Müller , U. Panizza , S. Poledna , A.V.
Schedl , J. Söderberg , M. Strömberg , T. Thurner TOWARDS AN
ARCHITECTURE FOR SAFETY RELATED FAULT
TOLERANT SYSTEMS IN VEHICLES – ESREL European
Conference on Safety and Reliability – LISBON 1997 .

[10] P. Mortara , A. Damiano - Problematiche Software nei Sistemi
Elettronici per Applicazioni Automotive – Alta Frequenza – Rivista
di Elettronica AEI – Vol..7 N.3 – Maggio-Giugno 1995.

[11] P. Mortara , A. Borin, G.M. Timossi - Sistemi Elettronici Distribuiti
per Applicazioni Automotive – Alta Frequenza – Rivista di
Elettronica AEI – Vol..10 N.5 – Settembre-Ottobre 1998.

[12] P. Mortara , S. Giuffrè, G. Maffei - Sistemi di Sicurezza in
Architettura Distribuita per Applicazioni Automotive – Alta
Frequenza – Rivista di Elettronica AEI – Vol..10 N.5 – Settembre-
Ottobre 1998.

