Jean-François Tilman

Axlog Ingénierie

Session 1B: Design Frameworks Improvement of the system engineering and use of an architecture description language

The embedded real-time systems are more and more complex, and the safety or reliability requirements are stronger and stronger. In this context, many projects are led to improve the development processes. They show that there is a need for a means to more formally describe the developed systems and share information during the whole development cycle. The use of an architecture description language (ADL) is a good solution. It enables easy communications between different teams, tools, methods.

AADL (Avionics Architecture Description Language

) is an ADL dedicated to the description of avionics, and more generally all the embedded real-time systems. It is based on MetaH, developed since 1991 in the United-States, and its international standardisation is in progress under the authority of the SAE (Society of Automotive Engineers). AADL has been evaluated in the space domain; it appears that it is an interesting ADL to support the future development processes, because of its strong semantics and its flexibility.

With the use of more formal approaches, the objective of the future development processes may be the proof-based system engineering. This provides many advantages: no break from the capture of the need to the validation of the system, early detection of the problems, proofs of the correctness, reduction of the test effort, possible automatic generation... The automotive domain has also the same objective as the aerospace industry, as illustrated by the EEA project, and its AIL-transport architecture description language. It should be profitable to compare the practices of these different domains which could mutually fertilize themselves.

Introduction

The embedded real-time systems encompass more and more components, and the part of the software is increasing exponentially. This complexity is always more difficult to manage at the whole system level, as shown by the failure, delay or cancellation of critical systems: Taurus (stock exchange), Relit (stock exchange), AAS (air traffic control), Confirm (on-line hotel and car reservation), Socrate (on-line railways seat reservation), Freedom (manned orbital station), P20 (nuclear power plants), Arial 5 Flight 501 (satellite launcher). In the same time, the requirements for high safety or reliability are stronger. But nevertheless the current practices in system engineering are exceedingly empirical, and prevent the system engineering sector to become industrially mature. So, the system engineering has to evolve.

The main actors in the domain become aware of this situation (e.g., what ESA calls the "software crisis" [START_REF] Kjeld | ESA Software Initiative[END_REF]), and several major projects have been initiated to deal with this situation and propose improvements in various domains [START_REF]COTRE project home page[END_REF] [3] [START_REF] East-Eea | Embedded Electronic Architecture[END_REF]. What appears when thinking about the possible improvements is that the solution will need the introduction of more formal approaches in the development process. This is the work direction followed by some of these projects.

The following sections present how innovative approaches may help to succeed in this challenge by using formal methods such as proofs, and how architecture description languages will have to play a role by supporting these new processes during the whole lifecycle. The importance of the tools will also be mentioned since their existence or lack may condition the diffusion of any method. After the presentation of these concepts, largely inspired by the avionics practices, a different point of view will also be given for the automotive domain, which presents interesting particularities.

Formal approaches

Many aspects of the development cycle in system engineering may be improved by more formal practices. A few counterexamples will illustrate this argument. When the communications between the different actors of a project are done in a natural language, some interpretation problems may appear, and the correct information is not well transmitted. How many times the need of the client is not well suited by the developed solution? The generalized use of a more formalised communication means between the actors may reduce this risk of misunderstanding. Another example illustrating the purpose is the failure of Ariane 501, which was due to a fault at the system level [START_REF] Gérard | The failure of satellite launcher Ariane 4.5[END_REF]. This fault could have been detected with a formalised method to check the fulfilness of the requirements when reusing an existing building block.

These two examples illustrate the fact that some common problems are due to informal practices, based on human experience, and then subject to human errors. More formal practices may help in the reduction of these problems of system engineering, by avoiding uncertainties. But formal approaches are not only interesting by reducing problems, they may also provide solutions to go further, for example by automating complete activities of the development lifecycle (code generation, test generation, etc.). As we will see later, the use of formal descriptions of the architectures are required to expect a powerful automation of these activities.

Use of proofs

Some formal techniques already exist for various system engineering activities. Among them, one of the well known, and perhaps also one of the less mastered and applied, is the use of proofs. The interest of a proof is obvious: what is proven correct does not need to be tested. Since the test phase often requires considerable efforts in term of time, manpower and money, each technique which could reduce this phase without loss of quality should be considered.

Nowadays the use of proofs is fairly common for particular and local parts of the project (real time properties such as schedulability, etc.). These practices are often associated with the use of dedicated formal languages (e.g., Lustre, Esterel, SDL) and their supporting tools, which provide proven solutions for specific problems. We can also note that these techniques often only appear at a detailed level of the development lifecycle, near the implementation phase. They generally use the formal model of a given building block and produce the code which implement it. This technique is interesting but there is not a specific method for each part of the system, and many parts of the code may be manually written for a long time again. On the other hand, techniques exist to prove other aspects, such as the generation of a set of tests with a proven complete coverage (e.g., InKa [START_REF] Axlog | InKa Project web page[END_REF], Agatha [START_REF] David | Validation and automatic test generation on UML models: the AGATHA approach[END_REF]). But these proofs are not largely applied.

The use of proofs at a global level is also possible, but is much more difficult, and may not be done in a similar approach. Indeed, the increasing complexity prevents from processing the same formal checks on a global system like on a well delimited subset. In return, some practices dealing with the whole system during other phases of the development, and mainly the top ones, may take advantage of proven approaches. Many proofs may be interesting at these levels: proof that all the needs of the client have been captured with no lack or ambiguity, and particularly with all the implied needs, proof that the resulting specifications are complete and coherent, proof that the composition of the system and the reuse of existing building blocks are correct and fulfil the requirements, proof that the integration tests completely cover the specifications, etc.

Proof-based system engineering

It is unrealistic to envisage the development of a completely proven system for the moment, and probably for a long time again. Indeed, too many problems have not yet known solutions, or the theoretical solutions are unpractical in a realistic case (e.g., theoretical worst case analyses may require enormous systems to tackle improbable fault situations). Nevertheless many other results of the theories exist but are not applied in the current practices. For example proven algorithms exist to solve common problems (e.g., distributed consensus and coordination algorithms), but they are not used and the same poor solutions are always implemented, and always generate the same failures.

The purpose of the proof-based system engineering (PBSE) is to provide improved processes for the system engineering where the known proven solutions will be used. Both technical solutions for particular problems (e.g., scheduling, resource management, etc.) and methods to deal with global aspects (e.g., production of a specification which is proven correct). Since it is probably too difficult to apply immediately a completely proof-based method, PBSE might stay a realistic middle term objective. The first steps towards PBSE will be the elaboration of good practices.

TRDF

TRDF , which means (in French), « real time, distributed treatments and fault tolerance », is one of the most mature, if not the only, PBSE methods [START_REF] Gérard | Proof-Based System Engineering and Embedded Systems[END_REF]. This method has been developed at INRIA for ten years and validated on industrial projects.

The TRDF process is organised in three essential phases: the capture of the problem, the system design, the system dimensioning. The first phase, also called the requirement capture, has an application problem description as input. This description may be incomplete and ambiguous. From this material, the purpose of the phase consists in the production of a complete and coherent specification of the problem and its requirements. One of the difficulties tackled by this phase is the capture of the implied needs of the client: from his point of view, some information is obvious for his domain and he does not give them explicitly.

The system design phase consists in the specification of a solution with respect to the requirements defined by the first phase. Each design stage needed to arrive at this solution is complete when correctness proof obligations are fulfilled. For example, a system may be composed by the reuse of existing building blocks, provided that the hypotheses to reuse it are verified. At the end of the design phase, a solution is specified for the problem, which is proven correct and complete with regard to the initial requirements. This solution may still contain parameters which may be adjusted with the particular needs. For example, some building blocks composing the system may be parametered (memory size, number of processors, etc.). So, the system dimensioning phase consists in the valuation of these parameters. Of course, the values given to these parameters may have consequences on other parts of the system: a high reliability may imply more replicas of a function, which may imply more processors, etc. All these constraints are checked during the dimensioning phase.

As any formal method, TRDF requires some training to be used by hand. Nevertheless, the use of tools supporting the different phases of the method may help the user and avoid this prerequisite to apply TRDF. For the moment these tools do not exist yet. This may explain why, although the method has been validated, it is not yet deployed in the industrial processes. However, some projects are currently starting and will fulfil this lack [START_REF]ASSERT: Automated proof based System and Software Engineering for Real-Time applications[END_REF].

Architecture description languages

In the previous sections we have seen the general interest of more formal practices for system engineering. We have also mentioned the problems resulting from the communications between actors when using a natural language. So, it seems normal to also search for a formal means to communicate about the system under development. This is where an architecture description language (ADL) may play a role.

Due to the very general meaning of the ADL acronym, plenty of different ADLs exist in the world, for a large variety of purposes. We are only interested here by those which are able to describe the complete architecture of the system, that is both the software part and the hardware supporting the software, and for general purposes.

With this restriction, only few ADLs currently exist and seam interesting for our purpose. One of them, called AADL, is under standardisation and has already been proposed for such a role in a major project, ASSERT [START_REF]ASSERT: Automated proof based System and Software Engineering for Real-Time applications[END_REF]. The other alternative, if needing an ADL, is to create a new one from scratch. Other projects have chosen this solution, but we sometimes observe a convergence with an existing ADL like AADL.

Interest of an ADL

An architecture description language (ADL) is a formal means to describe a system. Thus we immediately imagine that its use may favourably replace the use of natural languages between the different actors of a project, and then reduce the misunderstanding problems. The choice of an ADL is then coherent with the will of more formal practices. But an ADL is also a mean to communicate between the various tools used in a project, or to store and manipulate a coherent and unique representation of the system under development. The previous mention of the use of proofs has given the feeling that the same formal information may be used at different stages of the development, since the capture of the requirements to the specification of integration tests covering these requirements. The figure 1 shows many activities and tools which may use a common description of the system architecture during the lifecycle.

Figure 1Use of an ADL in the development lifecycle.

Another important interest of the ADLs does not well appear in the figure 1: the reusability. Indeed, since a building block has been completely defined, and formally described with the ADL, it may be stored in a data base. Then it may easily reused for a new development in the future. The risk when reusing an existing component is that it might be not exactly adapted to the problem. If this risk is not well taken into account, a failure such as Ariane 501 may occur. This shows the importance of the formal methods to check the compatibilities, as described before. And of course, the ADL used to describe the component must be able to contain all the needed information to perform these verifications (validity hypotheses, etc.).

Requirements

When choosing an ADL to provide the support of the system engineering process during the whole development lifecycle, we have to take into account several requirements. The use of an ADL is interesting if the same ADL is used during all the activities of the development lifecycle, and if the needs of each activity are fulfilled by the ADL. This implies that the whole system architecture may be described by the ADL (both software and hardware), and that the language must be generic enough to deal with various kinds of information. Each activity of the development lifecycle may have very specific needs in term of information related to the manipulated architecture and it is impossible for a given ADL to natively support all of them. So, the used ADL will have to provide extension mechanisms to support them. These mechanisms will be used to handle the needs of the different actors of the system engineering. Once an improved system engineering process has been defined by using an ADL, its dissemination will be related with the dissemination of the used ADL. So, an important aspect of any ADL is its standardisation. Indeed, the existence of a standard is a strong advantage to promote such a language. We will also see later that the existence of tools is very important to support the process. The tool vendors will be encouraged in the development or adaptation of tools for a given ADL if this language is a standard.

AADL

AADL [START_REF]Avionics Architecture Description Language", version 0.92[END_REF], whose name means "Avionics Architecture Description Language", is an ADL initially dedicated to avionics. It is based on MetaH [START_REF] Honeywell | MetaH home page[END_REF], which has demonstrated for more than ten years the quality of its concepts. AADL is currently in an international standardisation phase, under the authority of the SAE (Society of Automotive Engineers), and more precisely the Aerospace division. In spite of its name, the application field of AADL is the whole real time embedded system domain, not only the avionics one.

The main principle of AADL is to describe an architecture as a composition of components, and to describe these components. Each component description is divided into a "component type" and a "component implementation". The former represents the functional interface, that is, how the component is seen from outside, and the latter represents its internal description. This feature of the language is very interesting for the purpose of system engineering. Indeed, it is possible to separate the specification of the component, which is in fact its type, and its design which is the implementation. The coherence between the type and the implementation is automatically checked. In a well defined process, the author of the type description will probably not be the same as the author of the implementation description.

AADL also offers mechanisms to represent requirements in the (re)use of components into an architecture. For example, it is possible for a given component to require the existence of another component at the same level of the architecture to be instantiated. The purpose of this paper is not to give a complete description of AADL. For more details, see [START_REF] Axlog | Detailed presentation of AADL[END_REF].

AADL is interesting for our purpose since it is generic enough and offers extension mechanisms to support the needs of the different activities of the lifecycle. Moreover this language is currently standardised by an international committee, and some partners of the system engineering projects mentioned before are members of this committee. This is a good opportunity to integrate improvements directly in the specification, and then have a well suitable ADL.

Tools

We have seen what could be improvements in system engineering practices: more formal approaches, and particularly the use of formal descriptions. Now, let's have a look on the practices in the real life. Today, many activities are supported by dedicated tools to help the user in his work.

If the development process is improved to take advantage of new formalisms, the tool aspect will also have to be taken into account. Since the whole development lifecycle is considered here, we may also imagine new design frameworks covering all the development process.

Fundamental role

Whatever the quality of a system engineering method may be, it has no chance to be applied if not supported by tools. First, we need tools to help the user in the application of the new methods. For example, a requirement capture tool will help the developer in the collection of the information about the needs of the client. Second, the tools already used in the current processes must stay useable in the new processes, to avoid too many changes in the habits.

The tool aspect of the problem constitutes also a justification for the use of an architecture description language in system engineering. Indeed, since a single ADL is chosen for the whole process, any tool may use it as input or output to communicate. This approach also avoids many translations of the manipulated information at different steps of the development lifecycle.

Difficulties

As mentioned before, all the activities of the development lifecycle should be covered by the tools. For some of them the feasibility is already mastered, and the purpose is just an adaptation of existing tools. But other phases are completely new, and the associated tools must be invented: requirement capture, oracles checking the fulfilment of proof obligations, etc.

Another difficulty may be risk of incompatibilities between ADL extensions. Indeed, whatever ADL is chosen, it will have to be extended to support all the needs of the different activities. If each one develops its own extensions, two tools covering the same problem may be unable to share the same information. So it will be necessary to well organise this work during the projects, and search for factorisations between them.

Automotive context

The previous sections have presented a generic point of view, although it directly comes from the experience of the aeronautic and space industry. The automotive industry has also developed similar projects and ideas to improve its engineering processes. The general needs of this industry are about the same as the other embedded system ones. The "Xby-wire" (drive-by-wire, brake-by-wire, etc.) evolution imposes high reliable and safe systems, and the certification question is currently taken into consideration. The avionics practices may provide interesting solutions for this domain. However, other aspects are more particular such as the need to deal with many variants of a same project, depending on options and choices proposed to the client. The cost dimension is also probably more critical, in an industry where each cent is counted.

In this context, we can mention the EAST-EEA project [START_REF] East-Eea | Embedded Electronic Architecture[END_REF]. Its goal is to enable a proper integration through the definition of an open architecture, and then to improve the interoperability and reusability of the components. To reach this objective an ADL is currently developed, EAST-ADL. Since the project is inspired by the previous AEE project [START_REF] Aee | Architecture Électronique Embarquée[END_REF], EAST-ADL is inspired by AIL-transport, which is an ADL resulting from the AEE project. An overview of this ADL is given below.

AIL-transport

This ADL, coming from the AEE project, is a graphical architecture description language based on UML. It is dedicated to the car architectures. This language proposes many objects representing all the elements of the car architecture, both software and hardware ones: processors, devices, network, functions, messages, etc.

The use of AIL-transport is organised in several predefined levels, which enable the separation of the description into a specification point of view and a conception point of view.

The main difference between this approach and the one described before is that AEE is very specialised, and defines a strict frame to develop automotive architectures. This difference also appears between AIL-transport and another ADL such as AADL: AIL-transport defines a complete list of well defined components whereas AADL defines categories of components which may be extended by the user.

Conclusion

We have seen that current practices in system engineering may be improved by the use of formal methods and particularly by the use of formal descriptions. This conclusion has been drawn by major actors of the embedded domains such as aeronautic, space or automotive, and projects are led with this objective.

In this context the architecture description language may play an important role since they enable the needed formal descriptions of the manipulated system architectures during the development.

Lastly, the tool aspect must not be neglected since they are essential to support and promote good system engineering practices.

-22 -23 January 2004