Jean Souyris
email: jean.souyris@airbus.com

Towards the Product Based Assurance

Keywords: Avionics Programs, Abstract Interpretation, Dependability, Proof, RTE, Estimation of Stack Usage, WCET (worst-case execution time) Prediction

Introduction

The current state-of-the-practice of software assurance (that is ultimately confidence in correct execution behaviours) is based on the quality of development processes. Within this indirect assurance framework, verification is twofold: tests and intellectual -in the sense of non tool-based -analyses. Due to the rapid evolution of basic technologies and to the ever-increasing software implemented functions, the current state-of-the-art is foreseen to hardly scale up for engineering future avionics systems. A new approach, the Product Based Assurance, comes from the recent availability of Abstract Interpretation [START_REF] Cousot | Abstract Interpretation Frameworks[END_REF] based static analysers which make it possible to verify that program properties hold, exhaustively.

From the Process Based Assurance

In the Process Based Assurance, the confidence in the program being developed is based on the compliance of the development process with a certain state-of-the-art. DO178B is such a state-of-the-art reference for avionics programs. The rules it contains make the developers define a process which allows them -if respected -to claim that the required level of confidence in the behaviours of the program is reached. One should notice that, for a given program, the required effort for reaching the correct level of confidence varies according to the criticality of the avionics function implemented by this program. All activities of the development process are covered by DO178B, i.e., the "constructive" phases like specification, design and coding together with their relevant standards (defined by the developers) which define the rules to be followed by the specifiers, designers or coders; the verification activities like tests, intellectual analyses; the configuration management of the products of all the phases of the development; the management of the project; finally, the management of the quality. One can see that the confidence in the correct behaviour of the program execution is not only based on tests but on the full respect of a set of rules relative to all aspects of the development of an avionics program, that is the process.

A verification based on tests (by execution)

In this context a lot a efforts have been dedicated to the "descending" part of the development cycle, i.e., specification, design and coding, during the last decade whereas, in the same time, the verification techniques remained almost unchanged, at least in their principles. What are the limits of testing ? Firstly, let us separate all possible unexpected behaviours of a program into two groups: on one hand those leading to the non-respect of functional specifications without impact on the dependability of the system and, on the other hand, the ones invalidating dependability properties. For the functional aspects of the specification, testing has only the disadvantage of its limited coverage. Functional testing make it possible to select test cases whose execution give the developer a good idea of the quality of the implementation. With respect to the dependability properties, in the Process Based Assurance, the intrinsic limit of tests (limited coverage of the set of all possible executions) forces the developers to explicitly take into account as many as possible dependability properties at specification time, by adding software mechanisms which are in charge of detecting when a dependability property is violated. Indeed, when a dependability property is so "transformed" into a specification element (only if it is a safety property), it then can be handled within the Process Based Assurance framework. This enables the developers to test the above mentioned safety mechanisms. In absence of such safety oriented detection mechanisms and when testing is the only verification technique, it is not possible to prove that no undesired behaviour of the program will lead to the non-respect of a safety property. On the contrary, testing such safety mechanisms, when present, can give a good confidence in their reliability and then, if some pathological cases are not identified at test time, they will be trapped during real executions of the program. However, this approach is not fully satisfactory for two basic reasons: firstly, if a property cannot be converted into a specified monitoring mechanism or if the property is simply not considered at specification time (specifying is a difficult art…) then its verification is basically impossible; secondly, if the mechanism has been specified and coded, the potential existence of cases not covered by the tests, in which the mechanism will force the program to enter a failure mode thus limiting at least the availability of the system, cannot be excluded.

Introduction of the Product Based Assurance

The concept of Product Based Assurance is motivated by the emergence of Proof Capable Abstract Interpretation based tools which make it possible to overtake the limitation of testing, for the set of properties they deal with. The purpose is not to remove all the existing practices, but to improve them thanks to the exhaustivity of automatic static analyses. With respect to the two classes of properties introduced above, i.e., functional and dependability properties, Product Based Assurance is a lot more challenging for covering all the functional properties of a program rather than dealing with the dependability ones; and surely less urgent, for the reasons explained above. Then, in the rest of this paper, we will focus on Product Based Assurance enabled by static analysis of dependability properties.

A first set of static analysers for some dependability properties. For getting started with the Product Based Assurance, a first set of tools have been chosen; they all prove the following specificationindependent properties: resource consumption properties like stack maximum usage or Worst Case Execution Time and the absence of Run Time Errors, e.g., numerical overflows, access beyond the bounds of arrays, bad protection of shared variables, etc. Examples of such tools can be found in [START_REF] Thesing | An Abstract Interpretation-Based Timing Validation of hard Real-Time Avionics[END_REF], [START_REF] Blanchet | A Static Analyzer for Large Safety-Critical Software[END_REF].

Within the Process Based Assurance framework, these specification-independent properties are typically handled as described in section 2. Indeed, most of them lead to specify safety mechanisms which allow the detection of situations in which the properties are violated, at run-time. Nevertheless, for this set of properties, i.e., stack usage, WCET and RTE, the run-time detection of violations of these properties is not as safe as it might appear because they are often so bad for the availability that the problem becomes a safety one very quickly. Furthermore, system redundancies might be abused by such violations, which tend to be common failure modes quite easily. In this context, static analysis, with its ability to take into account all possible executions for proving that a given property holds, makes it possible to claim with more assurance that a program will never execute in less than the computed WCET, that this same program will never use more than the computed maximum stack usage and that it will not produce any RTE.

An industrial interest. The first interest of using these static analysers is mainly industrial. Indeed, at least for the first applications to real avionics programs, the safety mechanisms which act at run-time will not be removed from the code. The benefit will be an earlier detection of bugs like RTE or source of tricky bugs like stack or CPU overflows. However, one may think that, thanks to static analysis, the confidence in the program will be higher than the one obtained by only testing, specially when you consider the everincreasing size and complexity of the avionics software.

A method for each tool. A frequent misunderstanding of the usage of automatic static analysers is that their users simply "press a button". It is far form the reality. Firstly, before deciding to use such a tool on its program, the user must be aware of all the hypotheses the analyser relies on. Most of these hypotheses belong to the so-called Concrete Semantics [START_REF] Cousot | Abstract Interpretation Frameworks[END_REF]. For instance, in the case of a RTE analyser working at source code level, this semantics comprises, or takes into account, the semantics of the programming language, its particular implementation by the compiler, e.g., compiler-dependent aspects of the ANSI-C standard and, finally, some particular user requirements relative to the interpretation of some program behaviours. Secondly, before actually running a static analyser, or after a first very coarse analysis, the user must usually set some parameters, or provide the tool with additional information for fine tuning the analysis. Finally, the user has to exploit the results. Because most static analysers allow the user to start with coarse analysis and to progressively get more precise results by providing the tool with additional information, several runs, with their relevant preparation and analysis of intermediate results, are necessary for a particular type of analysis. As usual in the Process Based Assurance, in the scope of which we want to stay at least the beginning, the above activities must be well defined by methods, i.e., one per static analyser.

Conclusion

Towards a new overall proof-oriented development process. A new development process will "naturally" appear as a merge of both Process Based assurance and Product Based Assurance as the confidence in the existing and future Abstract Interpretation based static analysers will grow. Indeed, the sharing of the program verification between tests and static analysis will evolve to more proof and less test along with the conviction that taking into account all possible executions by means of abstraction is at least as important as executing a few of them on the real hardware. Moreover, an optimal complementarity between tests on the real target and static analyses will progressively be found, in order to keep the advantages of both techniques in a cost-effective way. Beyond this optimisation of the verification practices, one can imagine to relax some specification and design constraints, like removing some of the monitoring mechanisms.

In order to achieve this mutation, a new generation of Abstract Interpretation based static analysers must arise, i.e., tools aiming at the automatic proof of specification-dependent dependability properties specified by the user [START_REF] Cousot | Abstract Interpretation Based Program Testing[END_REF].

-22 -23 January 2004