
HAL Id: hal-02270501
https://hal.science/hal-02270501

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Analysis for Embedded Real-Time Systems
John Rushby

To cite this version:
John Rushby. Formal Analysis for Embedded Real-Time Systems. Conference ERTS’06, 2006,
Toulouse, France. �hal-02270501�

https://hal.science/hal-02270501
https://hal.archives-ouvertes.fr


Formal Analysis for Embedded Real-Time Systems

John Rushby
Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA

Abstract: Timed systems are notoriously hard to de-
bug and to verify because the continuous nature of
time allows vast numbers of different behaviors; em-
bedded systems must often deal with faults, and these
introduce another dimension of complexity. Simula-
tion and testing provide little assurance in these do-
mains because they can visit only a small fraction of
the possible behaviors. Formal methods of analysis
have some promise, but until recently they could deal
only with one dimension at a time: classical model
checking could cope with faults but could not model
continuous time; model checkers for timed automata
could deal with continuous time but not the “case ex-
plosion” due to faults.
Recently, a new class of “infinite bounded” model
checkers has been developed; these show promise
that they can cope simultaneously with both continu-
ous time and discrete faults.

Keywords: formal methods, model checking, auto-
mated verification

1. Introduction to Model Checking

Computer systems are hard to debug and to verify be-
cause the presence of decision points in the flow of
control introduces discontinuous behavior: we cannot
assume that “nearby” inputs and states should pro-
duce “nearby” outputs—and hence there is no justifi-
cation for extrapolating from tested cases to untested
ones. In the absence of continuity, the only way to fully
analyze the behavior of a computer system is explicitly
to consider every case (either by testing or by reason-
ing).
This is infeasible in general, but when the state and
input variables range over fairly small discrete sets of
values there is a technology called “model checking”
that can consider every case. The simplest form of
this technology is an explicit state model checker: this
is like a simulator for the programming or modeling
notation employed, except that it records every state
(i.e., assignment of values to state variables) encoun-
tered, explores all the successors to each state (by
considering all possible assignments to input variables
and by resolving nondeterminism in all possible ways),
and thereby systematically explores the entire space
of reachable states.
A model checker can verify that a given predicate is
satisfied in every reachable state (e.g., “at most one

process is in its critical region”), and it can verify more
complex properties (e.g., “every request is eventually
followed by a grant”) specified in a property language
that is usually based on some form of temporal logic.
When a property is violated, the model checker can
construct a counterexample, which is an explicit sce-
nario leading to the violation.
A modern explicit state model checker such as
SPIN [12] typically can explore tens of millions of
reachable states in an hour or so. On the other hand,
symbolic model checkers based on BDDs (reduced,
ordered Binary Decision Diagrams) can often explore
systems having 10200 states in a few hours. As
the name suggests, this class of model checkers
represents states and programs symbolically: this
is generally more compact and efficient than explicit
representations (for example, the set of explicit states
{(0, 1), (0, 2), . . . , (1, 2), (1, 3), . . . (2, 3), (2, 4), . . .} can
be represented symbolically as {(x, y) |x < y}).
NuSMV [4] and SAL [5] are examples of tool suites
that provide symbolic model checkers.
Bounded model checkers also use a symbolic rep-
resentation, and originally were specialized for find-
ing counterexamples: given an explicit bound (hence
the name) a bounded model checker decides whether
there is a counterexample to the specified property that
is no longer than the bound. Bounded model check-
ers use SAT solvers (tools that solve satisfiability prob-
lems for formulas in propositional logic) as their under-
lying engines; although SAT is the quintessential NP-
complete problem, modern SAT solvers are very ef-
fective and bounded model checkers can often handle
larger systems than symbolic model checkers. There
are a several methods for extending bounded model
checking from refutation (i.e., looking for counterexam-
ples) to verification: one such method is k-induction
(where the bound k is a small integer), which is a gen-
eralization of ordinary induction (which is 1-induction
in this framework). NuSMV and SAL both support
bounded model checking and k-induction.
Model checkers have their own idiosyncratic system
specification and property languages. Given a sys-
tem description in some other notation, it is first nec-
essary to translate it into the language of the model
checker concerned: there are several translators from
model-based design notations into the languages of
various model checkers. Next, the requirement must
be formulated in the property language of the model
checker; alternatively, the system description can be
augmented with a monitor that raises an error sig-



nal when a requirement is violated and the model
checker is then given the property “always not error.”
Finally, the chosen model checker can be invoked;
these usually have several command line options (e.g.,
the bound to be used in bounded model checking) but
their actual operation is automatic. The possible out-
comes are that the property is verified, or it is refuted
and a counterexample is provided (which may need to
be translated back to the notation of the original sys-
tem description), or the model checker exhausts mem-
ory or time (or the patience of its user). In the latter
case, it may be necessarily to downscale the system
description (i.e., to chop down the size of its data struc-
tures or other variable parameters, or to simplify it in
other ways), or to abstract it (a more principled form
of simplification). Excessive simplification may lead to
false counterexamples, which can then suggest how
the simplification can be made more precise: this pro-
cess is automated as “counterexample guided abstrac-
tion refinement” (CEGAR) in software model checkers
such as BLAST [11].
There are many examples of successful industrial ap-
plication of model checking to embedded and other
systems, for example [16]. Experience indicates that
we can learn more (and find more bugs) using model
checking to examine all the behaviors of a possibly
simplified model than we can by testing just some of
the behaviors of the real system.

2. Discrete Time

It is easy to extend model checking to timed systems
when activities are synchronized to a global clock that
provides discrete “ticks,” as in hardware circuits. We
simply add the clock to the system description and
specify properties in terms of elapsed clock ticks: e.g.,
“every request is followed by a grant after at least 3 but
no more than 7 ticks.”
In the simplest models, the clock advances by one tick
in every step and other components sit idle until it is
time for them to do something. A model checker may
then need to go infeasibly many steps deep to verify
or refute a property. An alternative approach has each
component indicate the number (which may be nonde-
terministically determined) of ticks into the future when
it will next do something. The clock can then advance
time all the way to the earliest such “timeout”; that com-
ponent then performs its action and sets its next time-
out. The modeled behavior thus alternates between
component actions (there may be several components
waiting on the same timeout) and the clock advancing
time to the next timeout. This modeling approach us-
ing timeout automata was developed by Dutertre and
Sorea [9] for continuous time, but Lamport uses a sim-
ilar approach for discrete time [13].
In some applications, the regular ticks of a discrete
clock can be replaced by irregular events: rather than
the clock generating ticks that are received by other

components, the components generate events that are
perceived by some observer and we count how many
events arrive until some interesting state is achieved. If
events are related to clocks local to each component,
then we may be able to verify timed properties of asyn-
chronous systems. This is done, for example, in anal-
ysis of the startup protocol for the Time Triggered Ar-
chitecture (TTA) [21], where we are able to verify that a
4-node TTA cluster will always start up within 23 TDMA
slots; by varying the bound, we are able to show that
23 is indeed the worst case.

3. Continuous Time

While discrete time is appropriate in some circum-
stances, accurate modeling of most real-time systems
requires that time is treated as a continuous variable.
This takes us out of the realm of classical model check-
ing because continuous variables can take an infinite
number of values and therefore lead to an infinite state
space, whereas classical model checking depends on
explicit or symbolic enumeration of a finite state space.
Of course, the continuous nature of time also makes
real-time systems very hard to design and to test, and
therefore makes some kind of automated analysis all
the more desirable.
Fortunately, it is possible to combine finite automata
and continuous time variables is a way that renders
their properties decidable. These are called timed au-
tomata [1] and methods for model checking their prop-
erties are based on efficient ways for solving systems
of linear inequalities. Of course, there are standard
methods such as the simplex algorithm for analyz-
ing systems of linear inequalities, but timed automata
lead to problems that are both simpler and more diffi-
cult than those considered in classical linear program-
ming: they are simpler because the inequalities are of
restricted forms, and they are more difficult because
different (discrete) states may have different behavior,
thereby requiring much case analysis. Model check-
ers for timed automata, such as Uppaal [14] and Kro-
nos [3] use special representations and data structures
that are optimized to the particular character of the
problems generated by timed automata.
There are several cases of successful application of
model checking for real-time systems using timed au-
tomata, for example [10]. However, there are few ex-
amples where real-time behavior is combined with fault
tolerance. For example, a real-time startup protocol is
verified in [15], but the analysis excludes the complex
fault scenarios considered in the discrete-time analy-
sis of [21]. We conjecture that the timed automata ap-
proach is unable to handle the massive case analy-
sis required by the large number of different fault sce-
narios; conversely, the treatment using discrete time
can handle the case analysis, but the treatment of
time is less realistic. We would like to be able to



handle both dimensions—continuous time and faults—
simultaneously.

4 Infinite Bounded Model Checking and
Real-Time Systems

A bounded model checker for finite state systems
works by translating the system description and prop-
erty specification into a propositional SAT problem.
The propositional translation encompasses both the
decision and control structure of the system descrip-
tion (i.e., the case analysis that needs to be performed)
and the operations performed on its state variables.
For example, to perform the operation x + y, the trans-
lator will generate the propositional formulas that de-
scribe a binary ripple-carry adder (in effect, the trans-
lator compiles the system description into a boolean
circuit). Suppose, instead, that we kept + as a mathe-
matical operation in some decidable theory (e.g., linear
arithmetic) and somehow made the SAT solver work in
combination with a decision procedure for the mathe-
matical theory. There would then be no need to restrict
the state variables x and y to finite integer ranges (i.e.,
fixed-width bitvectors): they could instead range over
the reals.
The combination just hypothesized of a SAT solver
with decision procedures is known as an SMT (Sat-
isfiability Modulo Theories) solver, and the construc-
tion of such solvers is a very active area of research.
There is an annual competition for SMT solvers [2] and
their performance is already impressive and is improv-
ing all the time. A bounded model checker that gen-
erates formulas for an SMT solver is called an infi-
nite bounded model checker (i.e., a bounded model
checker for infinite-state systems) [6]; just like an ordi-
nary bounded model checker, it can be used for refu-
tation and, via k-induction, for verification [7]. The SAL
tool suite provides an infinite bounded model checker
that is capable of k-induction.
If we could pose analysis of real-time systems as infi-
nite bounded model checking problems, we might be
able to solve some challenging problems: the SAT
solver would take care of the case analysis while the
decision procedures handle the properties of continu-
ous time. A suitable modeling approach is provided
by the timeout automata of Dutertre and Sorea men-
tioned earlier. They present some simple real-time
systems and show how these can be represented us-
ing timeout automata and analyzed using the infinite
bounded model checker of SAL [9]. The analysis is
not so fully automated as in timed automata: the user
must generally pose and verify a series of lemmas that
are combined to verify the property of interest, and that
property must be formulated in a way that is appro-
priate for k-induction. However, the development of
suitable lemmas and formulations is highly systematic
(using disjunctive invariants [20]), and is assisted by
the counterexamples produced for inadequate formu-

lations. The method yields very good performance; for
example, it can verify Fischer’s real-time mutual exclu-
sion protocol (a simple benchmark in this area) with
more than 50 processes, whereas most tools for timed
automata cannot get into double digits.
This approach has been applied and extended by oth-
ers. Pike [17] shows how the complexity of the verifi-
cation problem can be reduced by using synchronous
timeout automata, and by making the clock value im-
plicit. With Johnson, he uses this method to verify a
reintegration protocol [19]. The decision procedures
of an SMT solver allow uninterpreted constants, thus
protocols can be verified with respect to parameterized
quantities: instead of fixed delays such as 2 and 5 sec-
onds, we can verify a protocol with respect to delays of
Tmin and Tmax and some suitable relation between
these (e.g., 2 × Tmin < Tmax). Pike and Brown use
this capability to verify parameterized versions of the
Biphase Mark and 8N1 decoders [18].
Timeout automata must be extended when compo-
nents interact through the exchange of messages or
by synchronizing on actions, as well as by the passage
of time. Dutertre and Sorea refer to the extension as
calendar automata, after the event calendars that are
used in discrete event simulation systems. Using this
approach, they are able to verify real-time properties
of a simplified, but still fault-tolerant version of the TTA
startup protocol [8].

5. Prospects

I am very optimistic about the prospects for analysis
of embedded real-time systems using timeout and cal-
endar automata, SMT solvers, and k-induction. SMT
solvers are a general-purpose technology that already
delivers high performance and is undergoing rapid de-
velopment. The SAT solving component of an SMT
solver is able to cope with large amounts of case anal-
ysis; thus fault tolerance and other sources of “case
explosion” can be handled satisfactorily. Their deci-
sion procedures for linear arithmetic allow SMT solvers
to handle continuous time, and other numerical quanti-
ties. Additional decision procedures (e.g., for queues)
will allow automated verification for other kinds of in-
finite state systems. I look forward to the transfer of
this technology from research laboratories into indus-
trial practice in the near future.

6. Acknowledgments

The techniques and tools outlined here are the work
of my colleagues Leonardo de Moura, Bruno Dutertre,
Harald Rueß, Maria Sorea, and Natarajan Shankar.

7. References

[1] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235,



25 Apr. 1994.

[2] C. Barrett, L. de Moura, and A. Stump. SMT-
COMP: Satisfiability modulo theories competi-
tion. In K. Etessami and S. K. Rajamani, ed-
itors, Computer-Aided Verification, CAV ’2005,
volume 3576 of Lecture Notes in Computer Sci-
ence, pages 20–23, Edinburgh, Scotland, July
2005. Springer-Verlag.

[3] M. Bozga, C. Daws, O. Maler, A. Olivero,
S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In
A. J. Hu and M. Y. Vardi, editors, Proc.
10th International Conference on Computer
Aided Verification, Vancouver, Canada, volume
1427 of Lecture Notes in Computer Science,
pages 546–550. Springer-Verlag, 1998. Kronos
home page: http://www-verimag.imag.
fr/TEMPORISE/kronos/ .

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: A new symbolic model
verifier. In N. Halbwachs and D. Peled, edi-
tors, Computer-Aided Verification, CAV ’99, vol-
ume 1633 of Lecture Notes in Computer Science,
pages 495–499, Trento, Italy, July 1999. Springer-
Verlag. NuSMV home page: http://nusmv.
irst.itc.it/ .

[5] L. de Moura, S. Owre, H. Rueß, J. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. SAL 2.
In R. Alur and D. Peled, editors, Computer-Aided
Verification, CAV ’2004, volume 3114 of Lec-
ture Notes in Computer Science, pages 496–500,
Boston, MA, July 2004. Springer-Verlag. SAL
home page: http://sal.csl.sri.com/ .

[6] L. de Moura, H. Rueß, and M. Sorea. Lazy the-
orem proving for bounded model checking over
infinite domains. In A. Voronkov, editor, 18th In-
ternational Conference on Automated Deduction
(CADE), volume 2392 of Lecture Notes in Com-
puter Science, pages 438–455, Copenhagen,
Denmark, July 2002. Springer-Verlag.

[7] L. de Moura, H. Rueß, and M. Sorea. Bounded
model checking and induction: From refutation to
verification. In W. A. Hunt, Jr. and F. Somenzi,
editors, Computer-Aided Verification, CAV ’2003,
volume 2725 of Lecture Notes in Computer Sci-
ence, pages 14–26, Boulder, CO, July 2003.
Springer-Verlag.

[8] B. Dutertre and M. Sorea. Modeling and verifi-
cation of a fault-tolerant real-time startup proto-
col using calendar automata. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems,
volume 3253 of Lecture Notes in Computer Sci-
ence, Grenoble, France, Sept. 2004. Springer-
Verlag.

[9] B. Dutertre and M. Sorea. Timed systems in SAL.
Technical Report SRI-SDL-04-03, Computer Sci-

ence Laboratory, SRI International, Menlo Park,
CA, July 2004.

[10] K. Havelund, K. G. Larsen, K. Lund, and A. Skou.
Formal modelling and analysis of an audio/video
protocol: An industrial case study using uppaal.
In Real Time Systems Symposium, pages 2–13,
San Francisco, CA, Dec. 1997. IEEE Computer
Society.

[11] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software verification with BLAST.
In Proceedings of the Tenth International Work-
shop on Model Checking of Software (SPIN),
volume 2648 of Lecture Notes in Computer
Science, pages 235–239. Springer-Verlag, May
2003. BLAST home page: http://embedded.
eecs.berkeley.edu/blast/ .

[12] G. J. Holzmann. The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley,
2003. SPIN home page: http://spinroot.
com/ .

[13] L. Lamport. Real-time model checking is really
simple. In D. Borrione and W. Paul, editors, Cor-
rect Hardware Design and Verification Methods:
13th IFIP WG 10.5 Advanced Research Work-
ing Conference, CHARME 2005, volume 3725 of
Lecture Notes in Computer Science, pages 162–
175, Saarbrücken, Germany, Oct. 2005. Springer-
Verlag.

[14] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in
a nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, Oct. 1997. Up-
paal home page: http://www.uppaal.com .

[15] H. Lönn and P. Pettersson. Formal verification of
a TDMA protocol start-up mechanism. In Pacific
Rim International Symposium on Fault-Tolerant
Systems (PRFTS ’97), pages 235–242, Taipei,
Taiwan, Dec. 1997. IEEE Computer Society.

[16] S. P. Miller, A. C. Tribble, and M. P. E. Heim-
dahl. Proving the shalls. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, International Sympo-
sium of Formal Methods Europe, FME 2003, vol-
ume 2805 of Lecture Notes in Computer Science,
pages 75–93, Pisa, Italy, Mar. 2001. Springer-
Verlag.

[17] L. Pike. Real-time system verification by k-
induction. NASA Technical Memorandum TM-
2005-213751, NASA Langley Research Center,
Hampton, VA, May 2005.

[18] L. Pike and G. M. Brown. Easy parameterized
verification of biphase mark and 8N1 decoders.
In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’06), Lecture Notes
in Computer Science, Vienna, Austria, Apr. 2006.
Springer-Verlag. To appear.

[19] L. Pike and S. D. Johnson. The formal verifica-
tion of a reintegration protocol. In EMSOFT 2005:

http://www-verimag.imag.fr/TEMPORISE/kronos/
http://www-verimag.imag.fr/TEMPORISE/kronos/
http://nusmv.irst.itc.it/
http://nusmv.irst.itc.it/
http://sal.csl.sri.com/
http://embedded.eecs.berkeley.edu/blast/
http://embedded.eecs.berkeley.edu/blast/
http://spinroot.com/
http://spinroot.com/
http://www.uppaal.com


Proceedings of the Fifth ACM Workshop on Em-
bedded Software, pages 286–289, Jersey City,
NJ, 2005. Association for Computing Machinery.

[20] J. Rushby. Verification diagrams revisited: Dis-
junctive invariants for easy verification. In E. A.
Emerson and A. P. Sistla, editors, Computer-
Aided Verification, CAV ’2000, volume 1855 of
Lecture Notes in Computer Science, pages 508–
520, Chicago, IL, July 2000. Springer-Verlag.

[21] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer.
Model checking a fault-tolerant startup algorithm:
From design exploration to exhaustive fault sim-
ulation. In The International Conference on De-
pendable Systems and Networks, pages 189–
198, Florence, Italy, June 2004. IEEE Computer
Society.


	. Introduction to Model Checking
	. Discrete Time
	. Continuous Time
	Infinite Bounded Model Checking and Real-Time Systems
	. Prospects
	. Acknowledgments
	. References

