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Abstract

The introduction of any new technology in an existing
industrial process has a dual effect: on the one hand, it
is expected to bring some well-identified benefits, but
on the other hand, it also brings a certain number of
new risks. It is the role and responsibility of decision
makers, designers, and developers to estimate and
balance these two aspects, taking into account the
very specific characteristics of their industrial domain.
In the domain of software systems, for instance,
object-oriented technologies have been demonstrated
to increase software quality and productivity, but they
simultaneously bring some specific risks that must be
carefully characterized and handled, especially when
they are integrated in the development of software
applications for critical systems.

In the avionics domain, the OOTiA document proposes
a first and informal identification of some of these risks.
However this identification process misses the formal
background that would guarantee its consistency and
completeness.

In this paper, we suggest to fill this gap by considering
the management of software risk as a specific case
of industrial risk management. To achieve this goal,
we propose a generic model for the identification of
software risks. This model provides the information
required by the subsequent phases of risk management:
risk estimation, risk acceptance, and risk mitigation.
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1 Motivations

Today, systems are for a large and ever growing part con-
trolled by software sub-systems, and these sub-systems
undertake more and more complex, and more and more
critical functions.

As a consequence, non-functional requirements on
these sub-systems represent a growing proportion of all
requirements they have to comply with. Software com-
ponents must be flexible, maintainable, and reusable;

they must be able to cope and scale smoothly with
complexity, and they have to satisfy all safety and se-
curity objectives. Hence, suppliers of those systems
are faced with a multidimensional optimisation pro-
cess involving many criteria: production cost, perfor-
mance, resource consumption, reliability, portability,
maintainability, etc. This search for optimality is usu-
ally achieved by changing and enhancing processes, but
another possibility is to change the technologies involved
in these processes.

Usually, analyses of software risks focuses on functions
— for example to assess the effect of a software failure
on the system by means of a software FMECA —, but
rarely on the technologies used for the implementation
of these functions. The approach is somewhat differ-
ent in other technical domains where the technology it-
self is the subject of risk assessment. In the mechani-
cal domain, for instance, numerous studies are carried
out to determine the lightest, the most robust, or gen-
erally speaking, the most adapted new material that
will satisfy a given set of (non functional) requirements.
Similarly, it seems important that suppliers of critical
software systems benefit from the evolution of available
software technologies to improve the main quality crite-
ria of their products.

In the avionics domain, the introduction of a new
technology is a long-term financial stake: a product de-
velopment phase is long (around 5 years) and its life
span is around 30 years or more. It is consequently es-
sential to be innovative and to be able to foresee what
will be the next optimal software technologies to support
future airborne functions. For example, flight manage-
ment systems, maintenance systems, or data base man-
agement systems of future aircrafts will perform more
complex functions, but they will have to be more prof-
itable, easier to develop, less expensive, more portable,
more reliable, etc.

Java seems definitely to be one of these “new” tech-
nologies, as illustrated by the number of studies already
realised — and currently going on — concerning its use
in the context of critical embedded systems. Java ac-
tually shows many interesting features that makes it a
potential good candidate for the replacement of current
programming languages: true object-orientation, sim-
plicity, portability, richness of the application program-
ming interface and toolset, and last but not least, pop-



ularity. These features and their corresponding under-
lying concepts clearly improve various quality factors.
However, they also introduce new potential risks (e.g.,
new design fault patterns, etc.) that shall be estimated
and compared to potential benefits.

Furthermore, in the avionics domain, introducing
these new technologies raises specific compliance demon-
stration problems with the standard recommendations
for airborne software. These recommendations, ex-
pressed in the DO-178B standard — established more
than ten years ago when object-oriented technology was
not even considered in airborne systems — must be re-
interpreted in the Java context: how are traceability re-
quirements declined in the presence of polymorphism?,
what is a consistent code reuse in the presence of inher-
itance? how is test coverage estimated?, etc.

In this context, the avionics community (aircraft man-
ufacturers, equipment suppliers, research laboratories,
certification authorities, etc.) has elaborated a docu-
ment listing some of the issues raised by the introduction
of Object Oriented Technologies (OOT) in aviation, and
giving some solutions to address them (OOTiA, ref. [8]).
This document expresses the main concerns of avionics
domain experts on the compliance of OOT with DO-
178B objectives, and more generally with safety require-
ments at the origin of this objectives. It is worth noting
that the OOTiA is an input document of the on-going
DO-178 update process (towards DO-178C), which is
expected to be completed by the end of 2008. So, is
it likely that OOTiA’s recommendations will eventually
become new requirements for avionics software develop-
ers.

The current study is an effort towards a systematic
and exhaustive analysis of issues raised by OOT in gen-
eral and Java in particular. It will eventually serve as a
means to demonstrate the ability of Java to support the
delivery of services that can justifiably be trusted.

2 Framework of the Study

2.1 The Need for a Methodological
Framework

Neither the current DO-178B standard nor the OOTiA
document propose any methodological framework to ad-
dress OOT related problems in a systematic way. There-
fore, our objective is to elaborate such a framework to
complete the OOTiA’s intuitive and informal list of is-
sues on the basis of the well-founded risk management
concepts expressed in ISO’s Guide 73 [2] and other stan-
dards [1, 3.

2.2 Risk Management Process

The Risk Management process adopted in numerous in-
dustrial domains (e.g., chemistry, pharmacy, nuclear en-
ergy, etc.) is based on four tasks:

1. Risk analysis, i.e., risk identification and risk esti-
mation

2. Risk evaluation, i.e., hierarchical organisation of the
risks by establishing classes of risks

3. Risk acceptance: definition of a threshold of ac-
ceptability of the risk in the hierarchy established
previously (political choice)

4. Risk treatment: means of reduction of the risk to
make it acceptable, to reduce its estimation

This paper is focused on the first phase of the first task,
i.e., the risks identification.

2.3 Identification of sources

In the OOTiA document, problems are identified in a
list that describes briefly all issues, but very few infor-
mation is given on how this identification process has
been carried out. To complete this analysis, guarantee
its completeness, and find adequate mitigation means,
the first phase consists in identifying the sources of these
risks. To reach this goal, we propose a model that gives
a formal framework for the risks and sources identifica-
tion process. This model is presented in the next sec-
tion. Later, in Section 4, we illustrate its application
on one particular issue raised by the OOTiA. We con-
clude by introducing the perspectives and the way for
the following tasks to be led to pursue this process of
Object-Oriented Technology Risk Management.

3 The Identification Model

3.1 Introduction

A formal identification of risks sources requires an ab-
stract identification model which will be instantiated for
any specific risks. Currently, the elaboration of such
a model is the core of numerous discussions concern-
ing various industrial domains, notably under the aegis
of the French AFNOR (Association Francaise pour la
NORmalisation) and ISO (International Standardiza-
tion Organization). In this context, we consider that
we may benefit from results obtained in these different
domains to obtain a generic, rich, and stable model.

In what follows, we first propose a model resulting
from numerous discussions and confrontations with sit-
uations coming from various industrial domains. This
model constitutes a proposal for the workgroups that
elaborate and update the standards quoted previously.
Then, we will show that this model instantiates perfectly
for risks associated with software technologies.

In the sequel of the document, the identification
model is illustrated by a simple example in which a
building located in a mountainous area might be de-
stroyed by an avalanche.



3.2 General concepts

As illustrated on the example given in Figure 1, the
identification model is broken down in four components.

Environment
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Figure 1: The identification model phases

e The danger. In the example, the danger is related
to the presence of snow at the top of a mountain.
The mass of snow represents a large (potential) en-
ergy that might be transferred to another object
(e.g., a cottage, a skier, etc.), and lead to its de-
struction.

e The environment of the danger. In the exam-
ple, the environment is the geographic area possibly
touched by the avalanche. The area may be fur-
ther decomposed in several sub-areas correspond-
ing to various exposition levels to the danger. For
instance, a cottage located on the mountainside is
more likely to be damaged than a cottage more dis-
tant from the mountain.

e The dangerous situation. In the example, the
dangerous situation is the presence of a building in
a mountainous area. It is worth noting that this
situation is the result of the decision — or risk-
taking — to build the cottage in this environment.

e The consequence of the danger. In the example,
a possible consequence of the danger is the deteri-
oration of the building.

Those four components are detailed in the following
sections.

3.3 The danger

A danger is the element responsible for the negative
effects associated with a risk. It can be split up into
four main elements:

e The dangerous phenomenon is a physical or ab-
stract characteristic of an entity (the actor) that
can be "transferred” to another entity (the tar-
get). In our previous example, the dangerous phe-
nomenon is the potential energy of the snow. This
energy can be first transformed into a kinetic en-
ergy during the avalanche, and then transferred by
a shock to the building.

e The actor of the danger is the element that owns
the physical or abstract characteristic that deter-
mines the dangerous phenomenon. For instance,
the snow is the actor because it owns some poten-
tial energy due to its mass and relative height.

e The dangerous property is the actor’s character-
istic that determines the dangerous phenomenon.
In our example, the dangerous properties of the
snow are its mass and height, because this mass
and this height are at the origin of the potential
energy.

e The dangerous event (or initiator event) repre-
sents the activation of the danger. In our example,
the snow at the top of the mountain cannot lead
to any damage as long as it doesn’t move. The
event that activates the danger is the uncoupling
of the snow that makes it move, ”transforming” its
potential energy into kinetic energy.

3.4 The environment of the danger

The environment of the danger represents the ele-
ments that have an influence on the propagation of the
dangerous phenomenon.

In our example, the environment covers all geographic
elements (characterized by their height, slope, presence
of trees, etc.) that have an influence on the trajectory,
velocity, and energy transfer characteristics of the snow
mass.

3.5 The dangerous situation

The danger and its environment are not sufficient to de-
termine the presence of a risk. For a risk to occur, a
target must be placed in a dangerous situation char-
acterised by two elements:

e the target, which is the entity susceptible to be af-
fected by the effects of the danger. In the example,
the target is the building.

e the location of the target in the environment of
the danger. In our example, the exposition to the
danger increases as the building gets closer to the
mountain base.

3.6 The consequences

The consequences of a danger with respect to a given
dangerous situation are modelled by two elements:



e the harmful interaction (or harmful event) is
the interaction between the dangerous phenomenon
and the target in the dangerous situation. In our
example, it corresponds to the shock between the
moving mass of snow and the building.

e the damage represents the negative effects of the
harmful interaction on the target. In our example,
the damages are the more or less severe deteriora-
tions of the building.

4 An example in Java

In the next sections, the identification model is now in-
stantiated in the software domain and illustrated on one
particular issue identified in the OOTiA document.

4.1 OOTiA issue presentation

The identification model presented in the previous sec-
tions is applied on a problem first identified by Offutt
et al. (ref. [7]) in a paper dedicated to the design faults
related to sub-typing and polymorphism. This issue,
called the “State Definition Anomaly” (SDA), was later
integrated to the list of issues given in the OOTiA.

The risk associated with this example arises from the
following constraint defining the correct use of inheri-
tance (subtyping): “any property ¢ satisfied by a type
T, must be satisfied by every subtype of T”. This prin-
ciple was first stated by Liskov et al in [5]; it is now
known as the Liskov Substitutability Principle, or LSP.

In practice, this principle induces the following con-
straint on the redefinition of methods (overriding) in an
inheritance hierarchy: if a method m satisfies a contract
C (see [6]) when applied on any object t of type T, all
overriding methods of min subtypes of T must satisfy at
least the same contract, i.e.:

e pre-conditions of the overriding method must be as
strict as or less strict than those of the overridden
method, and

e post-conditions of the overriding method must be
as strict as or stricter than those of the overridden
method. For example, if the overridden method has
to return a result in a particular domain [a, b], the
overriding method has to return a value in a domain
[a', V'] such that [a’,b] C [a,b].

This principle also concerns other aspects of a method
specification such as the invariants, the history condi-
tions, the frame conditions, etc.

For example, if a method initialises a class attribute,
any overriding method has to perform an initialisation
so that any valid sequence of statements applied on an
object of the parent class remains valid when applied
on any object of any subclass. Indeed, a violation of
this rule can lead to disastrous system behaviour. For
example, an attribute not correctly initialised and used
by a subclass object may generate a run-time error.

This problem is one particular case of the general
“State Definition Anomaly” (Offutt et al), defined
as follows: “the refining methods implemented in the
descendant must leave the ancestor in a state that is
equivalent to the state that the ancestor’s overriden
method would have left the ancestor in” ([7]).

According to our identification model, the SDA can
be roughly modelled as follows:

e The danger is due to inheritance.

e The environment of the danger is the program, be-
cause it is through its structure that the potentially
harmful effects of the inheritance are propagated.

e The dangerous situation corresponds to the defini-
tion of an overriding method (the target) in a given
class (the location).

e The consequences represent the design fault (here,
a contract violation).

Figure 2 gives the initial structure of a program po-
tentially subject to a SDA.
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Figure 2: Initial program structure

Methods m() and n() defined in class A (noted A:m()
and A:n()), interact with the attribute X (noted A:X).
Method A:n() has a pre-condition X € [4,20], that
requires an explicit initialisation of attribute X before
method A:n() is invoked (the default value is not ac-
cepted). Method A:m() defines the attribute A:X in a
way consistent with the pre-condition of method A:n().
So, the following sequence of statements is valid:

main() {

a=f(; // return an object from the
class A, class B or class C.

a.mQ);

a.nQ);

If the programmer wants to override the method m()
in the class C, he is facing the risk of SDA. Indeed, if he
overrides A:m() in class C, and if C:m() does not ver-
ify the contract of interaction with the class attributes
(i.e., m doesn’t initialize attribute A:X), an inconsistent
sequence of instructions can occur (see Figure 3).

Execution of the following sequence of instructions



a.mQ);
a.n();

on an object a of type C, actually calls the methods:

a.C:m();
a.A:n()19

where A:n() uses the attribute A:X which is not cor-
rectly initialized previously by C:m().

A
X
m()
no A:X
T . A:m define
B g A:n use
f ’ C:m -
C
m() 7

Figure 3: Program after overriding m()

Now, let’s give the detailed identification model for
the SDA risk, and identify the sources of this risk.

4.2 The danger

Inheritance is at the origin of numerous design faults,
the SDA being one typical example. So, in what fol-
lows, inheritance is essentially considered as a “danger-
ous feature”, as emphasis is placed on its potential neg-
ative effects. However, this mechanism also shows many
advantages, and numerous positive effects (or benefits)
are expected in terms of productivity, safety, etc. The
balance between risks and benefits is considered during
the risk evaluation and risk acceptance phases (cf. sec-
tion 2.2), which are not considered any further in the
scope of this paper.

Now, let’s decline the risk identification model in the
context of software technologies, and illustrate its appli-
cation to the SDA case.

e The actor of the danger is a particular design or
programming language. In the SDA example, the
actor is any object-oriented language supporting in-
heritance, such as Java, for example.

e The dangerous property is a specific feature of the
actor (here, a language), such as a particular pro-
gramming paradigm, a particular construct, etc. In
our example, inheritance is the dangerous property
because it determines new and possibly complex
propagation of information (data and control trans-
fer) between various software components.

e The dangerous phenomenon is the propagation of
information as determined/allowed by the danger-
ous property. In our example, the transfer of infor-
mation concerns the propagation of state definition
contracts through the inheritance hierarchy.

e The harmful event is the usage of the language fea-
ture — in our example: inheritance — carrying the
dangerous property in a given program.

4.3 The environment

The environment of a particular software risk is the pro-
gram in which the dangerous feature is used. The struc-
ture of this program (in particular, the class inheritance
structure, the method number and complexity, etc.) is
one element of the environment that may influence the
propagation of a given dangerous phenomenon.

In the SDA example, the inheritance tree (notably the
long chains of inheritances and the numbers of inherited
methods) is an essential component of the risk environ-
ment, since it determines the propagation of information
concerning state definition.

4.4 The dangerous situation

The dangerous situation is the situation where a pro-
grammer modifies a program that uses a given danger-
ous property. This modification exposes a

e target method or class in

e a particular location in the program to the danger-
ous phenomenon (corresponding to the dangerous

property).

In our example, the dangerous situation is the one
where the programmer overrides method A:m() in a sub-
class C of A. The target is the overriding method C:m(),
and the location where the target is exposed to the dan-
ger is class C.

4.5 The consequences

The consequences of a risk are defined by two aspects:

e The harmful interaction represents the occurrence
of a conflict between the information transferred
by the dangerous phenomenon (inherited contracts)
and the information carried by the target (local con-
tract). This conflict leads to an inconsistency be-
tween the different informations. In our SDA ex-
ample, the harmful interaction corresponds to the
violation of the contract of method A:m() inherited
by its overriding method C:m(). More precisely,
it corresponds to the fact that C:m() does not ini-
tialise A:X, whereas A:m() does it.

e The damage represents the provision of an erro-
neous contract which will eventually lead to an erro-
neous code. In our example, the erroneous contract
translates to the following erronous sequence where
A:n() is called although A:X is not initialized:

a.m();
a.n();



It is worth noting that the damages severity could be de-
fined as the number of invocations of the faulty method,
or also as the difficulty to detect the design fault.

5 Conclusion

In this document, we have proposed an identification
model of the risks associated with a programming or
design language.

This model takes into account

e the dangerous language constructs (danger),
e the program structure (environment),

e the types and locations of the modifications per-
formed on the program and the programmer exper-
tise (dangerous situations).

e the problems generated by the modification (conse-
quences)

The identification of sources represents the first stage
of the overall risk management process. The next phase
consists in quantifying this risk. Indeed, controlling a
risk requires the identification of the dangerous property
and the estimation of its potential effects.

For this reason, we have defined a set of estimation
means on the previous model for each of the factors
contributing to a given risk:

e Means to estimate the magnitude of the dangerous
phenomenon,

e Means to estimate the occurrence level of a danger-
ous property and consequently its influence on the
programmer,

e Means to estimate the exposition level of the target
to the risk,

e Means to estimate the severity of the damages.

These estimation means allow designers to accept or
refuse risks on the basis of factual and quantified infor-
mation.

For a given software risk, a specific metric is associ-
ated with each estimation means. In the SDA example,
the magnitude of the dangerous phenomenon is mea-
sured by a function depending on (i) the number of in-
heritance levels, (ii) the number of inherited methods,
and (iii) the complexity of the methods’ contracts.

Acceptability thresholds are then defined based on
these metrics. We think that such thresholds should
be part of the recommendations of future avionics stan-
dards concerning OOT, the choice of a particular thresh-
old depending on the software application’s criticality.

If a risk is considered non acceptable (i.e., the accept-
ability threshold is reached), it shall be mitigated. In the
software domain, a possible technique consists in apply-
ing fault prevention techniques to lower the magnitude,
exposition, etc. A classical technique is the provision

for coding rules. An example of such a coding rule is
given in the OOTiA document where the authors sug-
gest to apply the “Six Deep Rule” that recommends the
depth of the inheritance tree to be lower than 6. Our
methodological framework supports the elaboration of
such recommendations, but on a firm and sound basis.

Our current activity leads to perform a systematic
analysis of the issues identified in the OOTiA, accord-
ing to our methodological framework. The next phase
will then consist in completing this study by an analy-
sis focused on the specific risks introduced by the Java
language [4].
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6 Glossary

FMECA: Failure Modes, Effects and Criticality
Analysis

ISO: International Standard Organisation
OOT: Object Oriented Technology
OOTiA: Object Oriented Technology in Aviation

SDA: State Definition Anomaly



