
HAL Id: hal-02270494
https://hal.science/hal-02270494v1

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open Source Software: Risk or Opportunity?
Sylvain Wallez

To cite this version:
Sylvain Wallez. Open Source Software: Risk or Opportunity?. Conference ERTS’06, Jan 2006,
Toulouse, France. �hal-02270494�

https://hal.science/hal-02270494v1
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/6

Open Source Software: Risk or Opportunity?
Sylvain Wallez

Anyware Technologies – http://www.anyware-tech.com/ – sylvain.wallez@anyware-tech.com
Apache Software Foundation – http://www.apache.org/ – sylvain@apache.org

Abstract: Open source software has changed large
parts of the software industry landscape in a few
years period, and is now emerging in the embedded
software domain.

After a definition of open source software, this paper
will explain why industrials use it and why software
publishers cannot ignore this evolution. We will also
discuss if open source software is a risk or
opportunity for software vendors.

In the light of what happened in the information
systems and middleware domain, we will see what
trends are likely to change the embedded software
industry in the coming years.

Keywords: open source, business model, tools,
software vendors

1. Open source software, its origins and its
achievements

Open source software is a generic term that
encompasses many different realities, from student
experiments to large industry-backed products that
power the Internet's infrastructure, revolutionizes the
desktop and reshape the development tools
marketplace.

2.1 Origins of open source software

Free software: In 1984, Richard Stallman, a
researcher at the MIT, started the GNU project. The
project's goal was, simply put, to make it so that no
one would ever have to pay for software. Stallman
launched the GNU project because essentially he
felt that the knowledge that constitutes a running
program – its source code – should be free. If it were
not, a very few, very powerful people would
dominate computing.

Contrarily to commercial software vendors that saw
trade secrets that must be tightly protected, Stallman
saw scientific knowledge that must be shared and
distributed for innovation to continue.

To avoid companies to reuse the public domain code
for their own profitability, Stallman set up the GNU
General Public License (GPL). It basically says that
you may copy and distribute the software licensed

under the GPL at will, provided you do not inhibit
others from doing the same. The GPL also requires
works derived from work licensed under the GPL to
be licensed under the GPL as well, thus forbidding
commercial proprietary use (and abuse) of free
software.

The word "free" has two meanings in English:
"liberty" and "at no cost", which is often explained as
"free as free speech" vs. "free as free beer".
Stallman was referring to the free speech. This
political message combined with the constraints of
the GPL led many software companies to reject free
software outright, as their primary goal is to make
money, and not the philanthropic action of adding to
the common knowledge.

Open source software: in 1997 a group of leaders in
the free software community tried to find a way to
promote the ideas surrounding free software to
people who had formerly shunned the concept. They
were concerned that the Free Software Foundation's
(GNU's umbrella organization) anti-business
message was keeping the world at large from really
be involved in free software.

One of the outcomes of the discussions was that
some marketing was needed to win mind share and
move away from the political meaning of "free" used
by the FSF. This is where the term "open source"
comes from (also written as OSS – Open Source
Software). A series of guidelines were crafted to
describe software that qualified as open source.

The Open Source Definition [1] allows greater
liberties with licensing than the GPL does. In
particular, the Open Source Definition allows greater
promiscuity when mixing proprietary and open-
source software.

Consequently, an open source license could
conceivably allow the use and redistribution of open
source software without compensation or even
credit. This allows companies to use open source
software in their proprietary products, but also allows
them to release some of their software as open
source.

But why would a companies release their source
code for free to the world, including their
competitors? For a number of reasons, but the most

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/7

compelling is that it gets greater market share for
their code. In this way, giving away source code is a
very good way to build a platform. We will largely
expand on this subject in the paper.

Nowadays, along with "Free Software" and "Open
Source Software", the "FLOSS" acronym (Free/Libre
and Open Source Software) is used to refer to both
types of software whose source code is available
publicly.

2.3 Achievements of open source software

FLOSS is something that cannot be ignored, as
everybody that uses a computer nowadays uses
open source software directly or indirectly.

The internet infrastructure: the GNU project's original
goal was to build a free version of Unix at a time
where the Internet was growing, and the first major
achievements are in the server infrastructure: the
Internet's domain name server infrastructure is
powered by BIND, and most email messages are
routed either by Sendmail or QMail

Separate from the GNU project, and leader of the
OSS movement, the Apache server powers more
than 2/3 of the web servers worldwide, and most of
these servers are running a FLOSS variant of Unix,
such as Linux, FreeBSD or OpenBSD.

Development tools: next to infrastructure servers
came development tools. It started with Emacs, a
versatile text editor that is so extensible that full-
fledged IDEs were built on top of it.

A very important project is GCC, the GNU C
Compiler that over the years has become a generic
purpose compiler for many languages and many
target hardware platforms, and is the base of GNAT,
a well-known Ada compiler.

More recently, the IDE market has seen the
emergence of serious open source contenders. This
started with NetBeans, a Java development
environment. Then in 2001, IBM decided to open-
source a large part of their commercial IDE, and
created the Eclipse project. This project is now
developed by an impressive number of companies
that contribute resources for free, and which led
Eclipse to now be the platform used by most of the
large-scale IDEs on the market.

Desktop software: this is a domain where FLOSS
started rather recently, but where it is quickly
growing. This includes tools such as the Mozilla web
browser and email clients, the OpenOffice suite that
is more and more chosen in public sectors and
administrations. Also, the Linux graphical
environments, Gnome and KDE have now reached a
quality that allow the use of Linux as the desktop
operating system in many enterprises, along with

being the operating system of choice of many
hobbyists and students. This last category is worth
considering seriously as they are tomorrow's
engineers and managers.

2.4 Open source licences

One of the first things to consider when it comes to
open source software is the licence. There is a wide
variety of licences that are approved by the Open
Source Initiative [2] that specify what you can do with
the software and the associated requirements you
must comply with.

These licences can be classified by the constraints
they impose to commercial users.

The GPL (General Public Licence): the original "free
software" licence. This is the most constraining, as it
states that GPL-licensed software must be
redistributed in source form, and that any work
derived (i.e. built with) GPL'ed code must also be
licensed under the GPL. This is why this licence is
said to be "viral". Practically, this means that no
closed proprietary products can be built with GPL-
licensed software.

There are some ways to build commercial value with
the GPL though:

• By using GPL-licensed code but not
redistributing it. This includes in-house use and
also selling services with the software. A number
of large e-commerce websites heavily use
GPL'ed software.

• By using "dual-licensing": a company that owns
the copyright of a product can distribute it under
the GPL for those people that accept its
constraints, and using a traditional commercial
licence for commercial users. This is a way for
companies to win market and mind share with
the free version while still making revenue with
the commercial version.

This dual-licensing model is used for example by
MySQL with the namesake database engine or
AdaCore with GNAT, the GNU Ada Translator.

The LGPL (Lesser General Public Licence): this is a
relaxed version of the GPL, which restricts its viral
nature to "extensions" of the software. LGPL-
licensed code can be used in proprietary software.

However, this license has a clause that states that
users should be able to upgrade LGPL-licensed part
of the software on their own, and that it may include
the ability to reverse-engineer the product.

The MPL (Mozilla Public License) and the EPL
(Eclipse Public Licence): these licences were written
by two companies, Netscape and IBM respectively,
to cover the large code bases they open-sourced.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/6

These licences put no constraints on derived works,
which can choose any license they like, including
closed-source commercial ones. It does require
though, that any modification of the original source
code be republished to the originating project.

The Apache and BSD licenses: these licenses allow
unlimited use and modification or the open source
code base, but require crediting the original author in
derived works.

These licenses are very commercial-friendly and
projects using this license often receive some
corporate investments.

2.5 Intellectual property and patent issues

An important point to consider when using open
source software is the patent issue. Many licences
have some clauses protecting users from being sued
for patent infringement because of their use of
software covered by that licence.

The Apache Licence, for example, states that each
contributor to the licensed software grants it users a
perpetual, worldwide and royalty free patent license
to use the software.

To allow this clause to be effective, most open
source groups and organizations require that, prior
to contributing code, contributors do sign a
"contributor licence agreement". Basically, this
agreement states that the contributor has the
authority to decide what should be contributed as
open source, and accepts the contribution to be
redistributed under the open source license. And
when the contributions are developed on paid time,
the employer also has to sign a "corporate
contributor license agreement".

It is to be noted that contributing code to an open
source organization doesn't mean giving away
authorship and copyright, but just a license to use
the code. The original authors keep the copyright on
their work (in some countries such as France, giving
its copyright is actually legally not possible) and thus
the right to do whatever they want with it.

3. Open Source ecosystems

An open source product cannot exist without a
community around it. This community not only takes
care of the product itself, but also builds a number of
peripheral activities that derive from the open source
product and nurture both its development and its
developers.

The parties involved and the process described here
below is what can be found at the Apache Software
Foundation [3], an organisation that is not only well-
known for the Apache web server, but also for being

one of the first and most successful open source
development groups.

Open source software: this is the result of the
common work of all members of the ecosystem.
Good software is not all that is needed to have a
successful project. A motto of the Apache Software
Foundation is that "the community is more important
than the code", meaning that without a surrounding
healthy group of people, a software product, as good
as it can be, is a dead end. Tim O'Reilly once
analysed some distinguishing features of successful
open source projects, and came to the conclusion
that architecture played an important role in allowing
people to contribute. This is the "architecture or
participation" [4]: the product must allow people to
quickly understand pieces of it and start contributing
on peripheral parts without having to know the inner
details of the whole product. So, a componentized
and decoupled architecture, along with being a good
technical practice, is also a key community growth
factor.

Users: they are obviously needed. Without users, a
project is dead. They first download and use the
product, then start asking questions on discussion
forums. Some will also start contributing either by
answering on the forums or by sending code
corrections and evolutions.

Users will also often ask for support that goes
beyond what the forums can provide, and then will
enter a traditional business relation with field
experts, most often employed by sponsoring
companies. They also will be interested by
commercial extensions to the open source software,
that allow them to achieve their project's goal and
deadlines faster while still benefiting of the
advantages of open source foundations for their
project.

Mailing-lists and Forums: open source projects are
developed in the open by teams that are
geographically distributed. The mailing lists and
forums are the virtual places where the projects live.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/7

There are often several discussion areas, dedicated
to users and developers.

The users forum is where people can ask questions
and get answers, which are given both by the
developers and other users. Compared to
commercial vendors support offerings, users forum
are free of charge, and allow people to get in touch
directly with the developers.

However, the users forums do have some limits
because of their free-of-charge nature. Questions
must be concise and precise, otherwise analysing
the problem takes too much time for a volunteer
effort. What that means is that these forums require
people to have the necessary skills to spot their
problems, and that questions of a more general
nature, such as architectural concerns cannot be
answered there. This is where sponsoring and
expert companies come in the game.

Developer forums are where actual development of
the open source product takes place. Design
discussion happen in public, which allows users to
know what happens, voice their concerns and bring
their ideas, participate and ultimately, after a number
of contributions, become part of the development
team.

Development team: also known as "committers"
because they have the rights to "commit"
modifications to the project's configuration
management system, they are those who write the
code of the open source product. Most open source
projects use a meritocratic process. The more
people participate, the more they earn merit and thus
rights. Developers are grown-up users that have
contributed on a regular basis and were therefore
invited to join the developer group.

Supporting companies: licences have an influence
on the nature of the development group:
commercial-friendly licenses allow companies to
have some of their employees working on open
source products. This is not a philanthropic act, but a
business strategy, as we'll see later, since it allows
companies both to have an influence on the
product's roadmap and be in a privileged position to
sell derived products and services.

In this regard, developers are for the company much
more than technicians: they are also strong
marketing assets and the link between users of the
open source product and the company's associated
offerings.

Open source organizations: last but not least, the
organization that hosts the project. Users too often
see this important actor in the system as a simple
web site. A successful project cannot exist without
some kind of structure, and over time some large

organizations have emerged, each specializing in its
own domain.

Open source organizations have several roles with
regard to the other elements of the ecosystem:

• Infrastructure: a project needs a website, a
configuration management system, some
mailing lists and forums. The hosting
organization provides hardware resources and
network bandwidth to the project. This is the
bare minimum that can be offered by the
organization.

• Legal framework: contributing and using some
open source code inevitably leads to the
question of patent issues. What if I accidentally
violate a patent with the code I contribute? What
about users that use that code? The role of the
organization is also to protect users and
contributors from legal issues by taking
responsibility of them.

• Oversight and guidance: as in all collective
human activities, personal problems and
conflicts can arise in a project. And since the
various contributors often have no authority on
each other, the role of the organisation is to take
appropriate actions when mediation has failed.
In some rare occasions, this can go up to
evicting some people from the development
team.

• Incubation: working on an open source project
doesn't follow the same rules are traditional in-
house development. Large organisations such
as the Apache Software Foundation or the
Eclipse Foundation have set up incubators [5]
where newborn or open-sourced projects start
their life and learn "the open source way".

4. Why industrials use open source software

About six years ago, the author's company started
an offering related to web application development in
the information systems (IS) area. This offering was
built using a number of open source products, but
we avoided mentioning "open source" when
showcasing our products to customers. At that time,
it conveyed a negative image of low-quality code,
written by insomniac students or academic
researchers. Today things have dramatically
changed, and stating that our offering is based on
well-known open source products, the development
of which we're actively involved in, is considered as
a real bonus by our customers.

This isn't a temporary fashion effect, but a real long-
term trend. Today, most of the infrastructure and
middleware software needed to build a project in the
IS domain are available for free. This is a side effect
of the standardization of protocols and service

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/7

interfaces that has happened over the last years in
this domain.

The growing complexity of IS systems had a number
of consequences. Rewriting everything from scratch
for each project wasn't economically viable, and
components had to be reused to speed up
development. Also, projects had to be an assembly
of products from various origins because no
company, except huge ones, were able to provide
all-in-one-product solutions.

4.1 The "commons" and the standardization process

Out of this came new needs and concerns:

• The need for "commons": these are the common
components that reused again and again to
avoid reinventing the wheel for each project.

• The need for interoperability. The various parts
of the project need to be interoperable, and
more importantly, interchangeable. This because
customers want to avoid being "locked-in" with a
given vendor.

The need for commons led some low-level open
source products to appear: these aren't finished
products that can be used out of the box, but
building blocks that allow to develop faster.

These commons have no strategic value in terms of
trade secrets or intellectual property for their users.
For example, an XML parser, a web server or even a
workflow engine are just "enablers" that allow to
implement the actual business logic.

So some people started to work on these commons
within open source projects, to share development
resources on these basic building blocks.

The need for interoperability led software vendors to
work together to define standard interfaces between
software layers, so that products from various origins
could easily be assembled together.

Some standardizing organisations have put open
source at the very centre of their process. For
example, the World Wide Web Consortium (W3C),
that defines the web standards, only makes a
specification final once at least two implementations
exist for it, so that the ability to actually implement it
is proven, and requires one of these
implementations to be open source. This ensures
that the specification won't stay in the hands of a
single vendor, and will be available for free to
everybody to evaluate it.

The same applies to the Java platform: the Java
Community Process (JCP), that gathers companies
and users involved in Java-related products, has to
provide a reference implementation of each new
specification. Most of these reference

implementations are developed as open source
products. A key point also is that users are involved
in the standardization process along with vendors,
thus ensuring that the specification meets their
actual needs.

So more and more in the IS domain, there is an
offering of open source products that allow new
specifications to quickly spread in the industry.

As we'll see later in this paper, this doesn't prevent
commercial business and even encourages it. The
open source product becomes a commodity
available for all, and vendors can provide value-
added complements to this commodity.

4.2 Choosing an open source product

Choosing an open source product must be done with
care, especially if this product is to have a central
role in a company's information system.

The evaluation criteria are both technical and non-
technical:

• Consistency with the existing environment: the
product must use the technologies that have
been chosen or already exist, and should be
easily connected, if needed, to the existing
environment.

• Maturity: how old is the product? How many
stable releases has there been already?

• Project health: what is the release frequency?
How many people are in the development team?

• Community health: what is the traffic on the user
and developer forums? How fast are user
questions answered?

• Commercial support: are there some companies
that employ developers or sponsor the project?
Do they provide support, services, training or
additional products?

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/7

These criteria aren't always easy to evaluate, and
there's no central directory where to find this
information. This likely to change soon with the
recent "Business Readiness Initiative" [6] which aims
at defining a standard model for rating open source
software.

5. Why software publishers move to open source

5.1 Commoditization and complements

When a specification exists for some software layer,
a lot of people rely on it, and can therefore join
forces to build a common open source
implementation of that layer. This implementation
then becomes commodity and allows companies to
build products of higher value and technological
interest on top of it. That's why a lot of software
publishers have based their offerings on open
source foundations, and participate to the
development of these foundations rather than
maintaining their own parallel branches. And their
participation strengthens the open source group in a
virtuous cycle.

A great example of this is IBM, whose Websphere
product uses a lot of open source products from the
Apache Software Foundation, while still providing
some distinctive features that justify its price. We
also see some vendors that invented a "non-
standard" technology deciding to open source it, or
at least its foundations. A good example is BEA with
the Beehive project [7], which they donated to
Apache. This allows them to avoid vendor-lock in
fears expressed by their customers, while still
allowing a sustainable business of tools, extensions
and services.

Joel Spolsky expands [8] on the effects of
commoditization on business strategies: demand for
a product increases when the prices of its
complements decreases. By collaborating to open
source projects, publishers actually reduce the price
of their product's complement to zero.

5.2 Dealing with obsolescence

Another phenomenon that drives software publishers
towards open source is the technological
obsolescence.

A software product is composed of several layers.
The bottom layer is the platform: the operating
system, the programming language and its standard
libraries. Then comes a set of reused components
that provide additional features to the platform.

The actual product is built on top of these lower-level
blocks, and each layer clearly brings different
features.

Now as time goes by, each of these layers evolves
and grows, which leads to some functional overlap.
These overlapping parts become obsolete, as the
lower-level blocks provide the same to a wider range
of users and at a lower cost. So how should this
overlap be dealt with?

The platform/OSS components overlap is easy to
manage: the OSS components that have been
obsoleted disappear after a transition period, since
there is no more community interest for them. It is to
be noted that this overlap is sometime caused by the
platform integrating some open source components,
such as what happens in Linux distributions or the
Java platform.

The OSS/proprietary components overlap is less
easy to manage, as it affects the intellectual property
and commercial assets of the company. And this is
actually one of the driving forces that lead publishers
to contribute to the open source software movement.

There are 3 types of answers to this overlap:

• Ignore it. This is probably the worst choice, as
the overlap will continue to grow, and at some
point in time, the open source solution will
destroy the market for the whole commercial
product.

• Replace the overlapped part by its open source
equivalent. This solution is to be adopted when
the open source solution is already mature and
well established.

• Embrace the open source solution by
contributing to it.

In the IS domain, more and more publishers are
going for this 3rd answer. Although it can at first look
like giving away some resources and intellectual
property, this is actually creating some beneficial
conditions for the proprietary product that then
becomes a complement to some commodity.

Also, it gives the company some influence in the
evolution of the open source components, so that

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/7

they can better fit the needs for the upper level
proprietary components.

Finally, and this is not to be neglected, it also gives
the company an enhanced visibility, and some
additional channels to market its offering.

5.3 Developing commons

Embracing open source foundations for a
commercial product is also a way to develop
commons that are shared between various
companies working or even competing in the same
domain.

The best example of this is the Eclipse Foundation
[9]: in 2001, IBM decided to open source a large part
of their commercial IDE, Websphere Studio
Application Developer and created the Eclipse
project. The reasoning being this move was that
modern IDEs were more about providing very
sophisticated tools such as project management,
requirement traceability, modelling and simulation
tools, etc, rather than about managing files in a
project and launching a compilation process.

In a few years, an impressive list of companies has
joined the Eclipse Foundation (which is now an
independent non-profit organization). Many of them
are editors of commercial IDEs that work together on
a common platform, each keeping its own added
value and commercial products on top of this
common platform.

This has been explained very well by Patrick Kerpan
from Borland in "the IDE is dead, long live the IDE"
[10]: for more than 20 years, Borland has been
writing IDEs, and each of them needed file
management, standard menus such as file/open,
file/save, etc. And each new generation of the IDE
requires rewriting these low-level features. So when
seeing the success of the Eclipse platform, Borland
made the strategic decision to collaborate with its
competitors on a common platform. This allows them
to concentrate on the higher-level distinguishing
features that are their real expertise and that
customers are interested in.

6. Open source trends in the embedded software
world

Open source software is now a key element in the
information systems world. Now what about the
embedded software world? It's coming. It even has
been already there for some years with the gcc
compiler, which is used in many cross-development
tools, and is the basis of the GNAT Ada compiler.

But the embedded software domain is also very
different from the information systems, as embedded

systems both need to be carefully optimised, and
often need to be certified.

That is why, contrarily to the IS domain, open source
is coming first through tools rather than runtime
components.

6.1 Tools as complements to realtime operating
systems

Realtime operating systems vendors mainly sell
runtime licenses of their operating systems. Tools
are there to help selling runtimes by making
development easier, but aren't their primary
differentiating feature on the market.

A few years ago, QNX decided to join the Eclipse
Foundation and build there the C/C++ development
environment. By doing this, just as Borland, they
benefited from a huge set of features brought by the
platform, and shared resources with other actors
interested in seeing support in Eclipse for these
programming languages. They of course kept their
commercial IDE offering, which is now a thin layer
dedicated to their particular operating system.

About one year ago, Windriver, a major player in the
realtime operating system arena, also joined the
Eclipse Foundation. And we now see QNX and
Windriver, competitors, working together on a
common platform, just as Borland did in the IS
domain.

6.2 Long lasting development environments

Embedded software often has a lifetime far more
longer than IS software, and maintenance has to be
possible for many years or even decades. So
industrials must ensure of the continuous availability
of the tools used to build the software, which can't be
guaranteed by proprietary tools sold by often-small
companies.

To solve this problem, we see the emergence of
projects such as Topcased [11], led by Airbus and
gathering companies working on a common and
open source toolset for the development of avionics
software.

Topcased is a generic modelling toolset based on
the Eclipse platform. It is actually a meta-modeller as
it allows to define the "model of a model" to quickly
build a graphical editor for a particular model. The
goal is to provide editors for all models that
participate in the design of an aircraft's software.
Without the open source commons provided by
Eclipse, this project would never have been started.

When presenting the project, people from Airbus are
often asked: "since it is open source, what if Boeing
decides to use Topcased too?" And the answer is

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

similar to the one from Borland in the previous
chapter: the competition is not on the modelling
tools, but on what is done with them. Also, only
standard models are open source. Airbus-specific
ones are kept proprietary.

Again we see the value of open source commons
that help go further in the upper levels where the
actual commercial competition is.

6.2 Embedded runtimes: the certification issue

Compared to other domains, embedded software
systems must be carefully certified before being
deployed, both because such software often has
some critical mission regarding human lives and
because it is not easily upgraded once distributed in
the wild at a large scale.

Certification is a very costly process that somehow
goes against the lightweight development model
used by open source organizations.

We see however some newcomers in the realtime
operating system landscape, that provide certified
versions of Linux for the embedded world. So
although the software isn't available for free, its cost
is dramatically reduced by its open source origins.
This cost covers not only the certification process,
but also the liability that the vendor endorses.

6.3 Standardizing interfaces

The complexity of embedded software is constantly
growing. Today's cars contain dozens of calculators,
smart DSL modems containing multimedia
applications are spreading in many houses, and
mobile phones are as powerful and featured as 10-
year old personal computers.

The result of this growing complexity is that not a
single company is able to provide the entire software
of a system, and also that final product
manufacturers no more want or can rely on a single
solution vendor.

That's what triggers standardization processes. Two
of them are worth mentioning: OSGi [12] and
AUTOSAR [13].

Started in 1999, OSGi is a specification for a runtime
platform based on the Java technology that can host
software services. It defines software contracts that
allow application and services developed
independently to coexist and cooperate on a single
device. OSGi is a consortium of companies from the
automotive and set-top-boxes domains, and only
members of the consortium were authorized to
produce a certified implementation of the
specification.

Then, some open source implementations of OSGi
emerged. They could not claim strict compliance with
the specification, but the fact was they were actually
full featured and robust. And this led more people to
using OSGi, for use cases that where not initially
foreseen. The effect is that although the open source
offering competes with commercial implementations,
it actually widens the OSGi market. The OSGi group
has taken this trend into account, and the latest
release of the specification is available under an
open source licence, allowing anybody to implement
it.

AUTOSAR is a recent initiative in the automotive
world that aims at defining an open standard
architecture for electronic and software modules. Its
purpose is to allow car manufacturers to easily
integrate parts from various vendors, to answer the
problem of the growing complexity of automotive
systems and allow interchangeability of equipments.

The automotive world is not as open as the
information systems world, and full open source
solutions are not likely to happen in the near future in
mission-critical software. However, it is very likely
that some strong influence from the open source
world will emerge.

A hardware device manufacturer my decide to
"share the source" of the associated software with its
users and integrators, to allow for faster roundtrips in
the software design and be more reactive at
integrating new needs coming from users.

Finally, there are a lot of software modules in a car
that aren't critical. These are for example all the
onboard entertainment features. In these areas,
standardized interfaces such as OSGi and
AUTOSAR will allow the emergence of open source
applications such as multimedia players, enhanced
GPS navigation software integrated with the driver's
address book, mail readers, etc.

7. Conclusion

In a few years time, open source software has
changed the industry landscape in the information
systems world. Open source projects are now
studied by researchers and management schools
[14] to understand how these self-organizing projects
achieve their goals and what lessons can be learned
from this.

The conclusion that can be drawn from the
experience of the information systems world and the
current trends in the embedded systems world is that
open source cannot be ignored.

Now is it a risk or an opportunity?

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/9

For industrials, it is clearly an opportunity, as it
allows the development of shared solid foundations
and fulfils the need for long-term maintainability.

For vendors, it is a risk if ignored, as it will likely cut
down sales. But it is an opportunity for those vendors
that will use open source foundations to provide
value-added offerings on top of them. But they also
have to be aware that business will have to include
more service and less runtime licenses.

This will change the embedded software industry
landscape. And it already has begun.

8. References

[1] Bruce Perens et al, "The Open Source
Definition"

http://www.opensource.org/docs/definition.php

[2] The Open Source Initiative: "Approved open
source licences"

 http://www.opensource.org/licenses/

[3] The Apache Software Foundation: "How the
ASF works"

 http://www.apache.org/foundation/how-it-
works.html

[4] Tim O'Reilly: "The architecture of participation",
April 2003

http://www.oreillynet.com/pub/wlg/3017

[5] The Apache Software Foundation Incubator

 http://incubator.apache.org/

[6] BRR – The Open Readiness Rating for Open
Source

 http://www.openbrr.org/

[7] Cliff Schmidt: "Beehive, A case study for new
open source business models", ObjectWebCon,
Lyon (France), 2005

 https://wiki.objectweb.org/ObjectWebCon05/atta
ch?page=Sessions%2Fbeehive.pdf

[8] Joel Spolsky, "Strategy Letter V", June 2002

 http://www.joelonsoftware.com/articles/Strategy
LetterV.html

[9] The Eclipse Foundation

 http://www.eclipse.org/

[10] Patrick Kerpan, David Intersimone: "The IDE is
dead, long live the IDE", EclipseCon,
Burlingame (USA), 2005

 http://www.eclipsecon.org/2005/presentations/E
clipseCon2005_7.3.pdf

[11] Topcased project

 http://www.topcased.org/

[12] OSGi – Open Systems Gateway Initiative

 http://www.osgi.org/

[13] AUTOSAR – AUTomotive Open System
ARchitecture

 http://www.autosar.org/

[14] Free/Open Source research community

 http://opensource.mit.edu/

9. Glossary

ASF Apache Software Foundation

FLOSS Free/Libre and Open Source Software

IS Information Systems

IDE Integrated Development Environment

GNAT GNU Ada Translator

GNU GNU's Not Unix (recursive definition)

GPL General Public Licence

OSS Open Source Software

