S Goronzy
email: silke.goronzy@3soft.de

R Kompe

R Holve

Fully exploiting the potential of speech dialog in automotive applications

Keywords: speech dialog, multimodal interfaces, integrated interface design

Today users are faced with infotainment devices and applications of increasing complexity. The design of easy-to-use and intuitive interfaces becomes a more and more challenging task. Users are usually not aware of the underlying applications and their restrictions when they want to use certain functionalities.

Therefore, hierarchical menu structures are difficult to handle especially in situations where eyes and hands are occupied with other tasks, such as driving. For quite a while speech-enabled interfaces have been used to solve this problem since they allow users to control various applications without occupying hands and eyes. However, state-of-the-art multimodal applications often do not exploit the full potential that speech dialog offers simply because this modality is not well integrated with the "traditional" modalities such as graphics and haptics. The resulting speech interfaces do not run smoothly, exhibit plenty of inconsistencies concerning the GUI and are thus more or less tedious to use. Such kind of interfaces result in low acceptance because users do not see the immediate benefit. In this paper we present an approach that develops multimodal interfaces in an integrated way, thus ensuring highly consistent interfaces that closely couple the involved modalities and are thus easier to use.

Introduction

It is commonly accepted that the use of multiple modalities for human machine interfaces (HMIs) potentially facilitates the handling of complex systems for users. Especially drivers of cars, who want to operate e.g. the infotainment system while driving need particularly designed interfaces that do not distract them from their main task -from driving. Therefore, speech dialog systems have been frequently added to the graphical/haptical interfaces because speech control potentially allows drivers to keep their hands on the wheel and their eyes on the street. Speech recognition technology itself was optimised over the past years for the usage in cars.

High recognition rates above 90% can be achieved even with considerable background noises. Still, many of the speech-enabled interfaces are not perceived as easy-to-use by most of the users. The reasons are manifold, ranging from design issues (such as 'boring' prompts being played over and over again) to severe inconsistencies between the GUI and the speech dialog (e.g. a hardware having 6 buttons for directly selecting a CD from the CD changer, only 3 of which being speech enabled).

Speech dialog interfaces are often designed separately from the GUI. This is also true for research prototypes for multimodal dialog systems such as SmartKom [START_REF]Project: Dialog-based Human-Technology Interaction by Coordinated Analysis and Generation of Multiple Modalities[END_REF][START_REF] Wahlster | SmartKom: Symmetric multimodality in an adaptive and reusable dialog shell[END_REF] or Embassi [START_REF] Elting | Modeling Output in the EMBASSI Multimodal Dialog System[END_REF]. In the former the integration of the different modalities was achieved by developing specially tailored modules for modality fusion and by using a special XMLbased language for information exchange between the different modules. Such an architecture, however, is prohibitive for most embedded applications so that in the embedded area no such integration exists. In this case separate development processes pose a severe problem. During speech dialog design (at least part of) the GUI's functionality and application flow is rebuilt using formalisms of different development environments, resulting in a considerable amount of different documents and/or files whose consistency has to be ensured at great costs. Change management is particularly difficult in this case. The danger of diverging application flows for GUI and speech dialog is thus very high.

The problems range from potentially 'simple mistakes' such as speech commands differing from what is displayed on the GUI to more severe inconsistencies such as different system behaviour depending on whether the user used a speech command or navigated via haptics. Another problem is that the multimodality is often rather restricted in a way that a dialog once started by speech cannot be continued by haptics. However, there are many situations where it would be beneficial if users could freely choose between the different modalities depending on personal preferences and/or the current situation. Such behaviour might confuse naïve users more than helping them.

In order to avoid inconsistencies and provide truly multimodal HMIs we developed a tool that allows a model-based specification and uses one data model for all modalities involved to describe the complete HMI. Such a common data model allows automatic consistency checks and helps to develop sound interfaces with the modalities really supplementing each other. The tool was originally developed as a tool for graphical/haptical user interface specification and development and was recently extended for speech dialog. Its architecture allows further extension if more modalities, like gesture recognition, are to be added. It can interface to various speech recognition and synthesis engines and can thus be flexibly employed for various applications.

HMI Specification and Development

The specification for HMIs of infotainment systems in the automotive domain typically involves the graphical layout design, the determination of menu logic, the speech dialog, and the administration and maintenance of different languages. In a first step it is usually defined how the different views or screens of the GUI look like, which kind of widgets are used and how these behave (e.g. how a button looks like if it gets pressed). In order to describe the system behaviour the menu logic or application flow must be determined in a way that the user can later easily navigate in the menus to find the desired functions of the infotainment system. In addition to potential user actions, like selecting radio stations or programming the navigation system, also internal system events, like incoming telephone calls, have to be considered. Finally, since HMIs need to be available in multiple languages, all language specific GUI texts and particularly speech dialog prompts, vocabulary, grammars etc. need to be administered in such a way that the change of the HMI language becomes possible at the runtime of the system. All these different tasks are usually carried out using different tools in different formats resulting in a HMI description that is spread among many different documents. As a result, it becomes particularly difficult to keep the HMI specification consistent, even if only the graphical/haptical part is involved.

A Tool for Generating GUIs

In order to avoid this problem a tool that allows a model-based specification and design of HMIs was developed. This model contains all HMI-related information and thus is the complete specification in one model. The core of the system is a data pool, in which all information that is relevant for the HMI is stored. Whenever HMI related information changes, e.g. because the user selected a title in the mp3 application or because the navigation application returned a list of matching destination cities, the corresponding information is written to the data pool and the affected HMI components are notified about the changes, so that they can display the updated information on the screen. The main advantage of the data pool architecture is that the HMI can be developed completely independent of the applications. It can be fully tested by manually writing HMI relevant data to the data pool, thus simulating the complete HMI without the need to integrate any application at that stage. However, integrating applications as well as e.g. hardware control panels is easily possible at any time.

Specialised Editors

The tool uses several editors for the different tasks at hand:

• View Editor: graphical layout design for each view • Event Editor: Definition of all events that influence the HMI • State-chart Editor: Definition of the application flow and specification of possible paths between states.

A state can be linked with a view to be displayed and the transitions between the states/views are triggered by events. The state-charts used are UML (Unified Modeling Language) compliant. This means in particular that functions like e.g. 'history' or 'deep history' nodes or the inheritance mechanism for events is available for specification. Another advantage of the model-based specification is that it allows to automatically generate code for the target platform to extents of 60-80%. The tool furthermore allows multiple users to work on the same HMI, which is particularly relevant in the case of speech dialog development.

In [START_REF] Holve | A model-based approach towards human-machine-interfaces[END_REF] a detailed description of the system architecture and features can be found.

Integrated Design of GUI and Speech Dialog

Speech dialog is nowadays very often added as a further modality to the HMIs, yielding multimodal interfaces. The look & feel and the behaviour of the speech dialog need to be appropriately specified.

We need to describe what kind of vocal interaction can be understood and how the system reaction should look like. For the graphics part, consistency is ensured by using one globally visible data model, which can be referenced by different parts of the GUI using specialised editors. Correspondingly, the speech dialog is integrated in exactly the same way, using yet another editor for specifying the speech dialog and its properties, which are stored in the global data model. As the basis for the dialog flow the previously defined application flow can be used.

If desired, also a dialog flow that deviates from the graphical dialog flow can be specified. In case the goal is to design very simple, command & controllike speech dialogs where users can "speak what they see" the desired prompts and speech commands can directly be connected to the GUI states. In this case, the speech commands often correspond directly to a haptic interaction such as pushing a button on the GUI. Therefore, it might make sense to also re-use the previously generated 'haptic events'.

If the speech dialog is somewhat more complex and also (at least) partly deviating from the graphical/haptical application flow (e.g. if special help dialogs or confirmations of user input needs to be designed) it makes sense to design the speech dialog flow separately. In this case a second state machine can be constructed that purely shows the speech dialog flow. Then special 'speech events' are used instead of re-using the graphical/haptical events. Still it can be ensured that both modalities are perfectly synchronous because

• both modalities have access to the data pool and can thus react on user actions no matter which modality was used for the previous input

• special events can be used in one state machine to elicit transitions to certain states in the other state machine This means that the speech dialog can trigger a certain view to be displayed as well as the haptic part can cause a certain speech dialog to start.

Figure 2

GUIDE+SPEECH: The Speech Dialog Editor

Just like a view of the GUI is associated with a state in the state-chart, speech dialog and its properties are attached to states. With a special dialog editor, the allowed user utterances can be defined.

To define a valid user utterance the words that can be understood in this state need to be defined as well as the allowed sentence structure, the so-called grammars. Here special care needs to be taken to select words (at least in the list of synonyms) in such a way that all commands that are currently displayed on the GUI are included in the speech recogniser's vocabulary. Users usually tend to use the commands they see on the screen and are confused if those words are not recognised in the speech dialog.

Base Vocabulary

A special feature that helps to ensure the consistency with the GUI is the generation of the socalled base vocabulary. It can be automatically generated from the corresponding view, suggesting all haptical commands for the recognition vocabulary. This base vocabulary can be extended by synonyms which can be manually added to the vocabulary to allow more freedom for the user. Also more complex grammars can be specified, defining optional words and phrases etc.

Prompting

For outputting information in speech dialog either pre-recorded prompts or text-to-speech (TTS) engines are used. During specification one can use both for prompt definition. Also multiple prompts can be defined per speech dialog state.

Dialog Building Blocks

When specifying speech dialogs, certain sub-dialogs might occur more than once in more or less the same form, e.g. in help dialogs. Here the structure of the message can be defined to be the same systemwide, e.g. it can be organised in three steps, in which each time an error occurs a little more help is provided. Other examples for such recurring dialog turns are e.g. entering sequences of numbers. For these sub-dialogs templates can be specified and reused throughout the whole dialog.

Concepts vs. Wording

The dialog flow is generally held independently of the actual wording, so that both can be administered separately. This is important for maintaining several languages for both GUI and speech dialog. This means that during dialog specification concepts like 'DIAL_TEL_NUM' are used. Which wording can actually be used is defined separately.

Dynamic Vocabularies

Very often the speech recognition vocabulary cannot be fully defined during system design because it contains dynamic content such as radio station names that are currently received, media content such as mp3 titles, or street names that are loaded in a navigation task once the destination city was chosen. The tool allows specifying such dynamic vocabularies. This is necessary to allow users to vocally reference information that is dynamically loaded by the different applications. Of course it depends on the recognition engine that is connected, whether it supports dynamic vocabularies or not. If the underlying recognition engine does not support such dynamic vocabularyespecially selecting mp3 titles by speech is a big problem because a title name might contain words from different languages -a special numbering scheme can be used to make the selection based on the position in the list ("first title").

Inheritance of Speech Commands

Commands/phrases/sentences that are defined at parent states in the state-chart can be inherited to the children states. Commands defined at children states are only valid at this particular state. Commands inherited from parent states can be deactivated explicitly if e.g. the vocabulary should be restricted to 'yes/no' answers in clarification dialogs. Also the inheritance of single commands instead of the whole set of commands is possible.

Multiple Dialog Strategies

In some applications it might be necessary to define different dialog strategies that e.g. distinguish whether the user is an expert in using the system or a novice user. On the one hand, novice users might need very detailed help messages telling them what actions are possible in the current state. On the other hand such lengthy explanation might be bothering for the expert user who does not need any or very little help. Thus, different dialog strategies that e.g. use different prompts and potentially also command sets can be defined.

Multimodality

Applications that integrate multiple modalities are not necessarily multimodal. Very often users cannot freely decide when to use which modality or they are restricted to use only one at a time. For example speech interfaces are often designed in such a way that once a dialog turn that requires several subsequent user utterances was started by speech, it also needs to be completed by speech, i.e., no haptic interaction is possible. If the user pushes a button nevertheless, the speech dialog is aborted. In our tool, in order to achieve genuine multimodality, all modalities access the data pool. Here all HMI relevant data is stored so that the speech dialog can access any HMI information and data the user previously entered by haptics and the other way round. As a consequence, speech dialog can be started in the middle of an interaction and also a dialog that was started by speech can be continued by haptics.

On-the-fly Simulation

Due to the data pool architecture and event mechanism chosen for this tool, an on-the-fly simulation of the HMI becomes immediately possible while designing the interface. This means that the look & feel of the overall HMI, i.e. all modalities at once, as well as the usability can be evaluated at very early design stages. Figure 3 shows an example simulation screen for an infotainment system. In this simulation both the haptic interaction and the speech dialog and how they interact with each other can be tested. Usually, if the speech dialog is designed separately from the GUI, also the simulations are separated. In one tool the GUI simulation is tested, in another the speech dialog is simulated. Both modalities are then integrated very late on the target. Inconsistencies can only be discovered then. This means that even if the GUI simulation and the speech dialog simulation work perfectly on their own, problems might arise when they are integrated.

In our simulation the overall HMI can be experienced immediately. This helps to optimise the HMI early enough if it comes to mass production. The resulting multimodal HMIs are thoroughly consistent and truly multimodal in a sense that the user can freely choose between the different modalities at any time.

Conclusion

Interfaces using different modalities often lack proper integration and consistency. This is a result of the design process that usually consists of separate development tracks of graphical/haptical interface and speech dialog. Due to these separate development processes many inconsistencies can arise.

We follow an integrated design of multimodal interfaces, where the complete HMI is kept in one model. This allows a close coupling of the different modalities. We use specialised editors for the GUI design as well as for speech dialog design, still keeping all data in one overall model. A key feature is the capability to do an on-the-fly simulation of the HMI model including all modalities. Thus, the behaviour of the different modalities in combination can be immediately simulated.

In such a way thoroughly consistent, multimodal interfaces can be developed that allow users at any time to switch between modalities. In this way speech dialog is realised as a fully-fledged input modality that can help users to intuitively control the different applications easily in situations where the use of other modalities is problematic.

Figure 1 :

 1 Figure 1: The HMI model used for graphical/haptical input and speech input

Figure 2 :

 2 Figure 2: Specification of speech dialog using a separate state-chart

Figure 3 :

 3 Figure 3: Simulation of an infotainment HMI using graphical/haptical input and speech input