
HAL Id: hal-02270472
https://hal.science/hal-02270472

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing Embedded Software using Simulated Hardware
Jakob Engblom, Guillaume Girard, Bengt Werner

To cite this version:
Jakob Engblom, Guillaume Girard, Bengt Werner. Testing Embedded Software using Simulated
Hardware. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-02270472�

https://hal.science/hal-02270472
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/9

Testing Embedded Software using Simulated Hardware
Jakob Engblom1, Guillaume Girard1, Bengt Werner1
1: Virtutech AB, Norrtullsgatan 15, 11327 Stockholm, Sweden

Abstract: This paper presents an approach to
testing software-intense embedded systems using
simulations of the target hardware instead of actual
target hardware. Simulation can be used as an
alternative to the actual target hardware for a
significant portion of the testing effort, saving
developers time and money, as well as increasing
test coverage and providing better debugging
facilities. We cover the technical issues involved in
creating simulated test systems, as well as the
business aspects and benefits.
Keywords: Verification, Validation, Simulation,
Business models

1. Introduction

Simulation as a tool for testing and debugging
software has a long history going back to the very
first electronic computers [1]. Simulating a system
has always carried the advantage of increased
insight and flexibility, at a cost in execution speed
and timing fidelity visavi the real machine. However,
until recently, use of simulation technology for large-
scale embedded systems software development and
testing has been fairly limited.
Hardware designers for processors, supporting chip
sets, systems-on-chip, and servers have always
made use of simulation in order to model hardware
early. Simulation is used for performance evaluation,
to test various ideas for implementation, and to
validate that a system works as intended [2][3].
Providers of software development systems
(especially for 8-bit and 16-bit processors) have
always provided instruction-set simulators (ISS) for
the target systems. However, such solutions have
been limited to only simulating the processor and not
the surrounding hardware, making them suitable for
simple initial software test but not for running
operating systems or software that interacts with
hardware.
Initial firmware bring-up and ports of operating
system codes to new embedded and other
computers is quite often performed using simulation
tools, as the real hardware is typically not available
early enough [4][5].
Some software work can be performed on the
developer workstation using API-level simulations of
the embedded operating system [6]. For final
verification of functionality, it is necessary to use the

actual binary that would be used in the real system,
which is not possible in an API-level simulation.
Overall, however, for the volume work of embedded
software development, embedded developers have
relied on development boards and instances of the
real target hardware boards1.
We introduce a simulation tool that can replace the
use of hardware to a large extent, by providing a
simulation model that is faithful enough that all
software for the target can run on it, and fast enough
that it can be used in daily work. This paper
describes this tool, Virtutech Simics, and how it is
applied to a number of tasks in embedded software
testing and development, with a focus on testing.

2. Simics

Our simulation tool, Virtutech Simics (see
www.virtutech.com), is capable of simulating large
computer-based systems and complete networks.
The simulation approach used is full-system
simulation, where the processor, memories,
peripheral devices, and environment of a target
computer system are all simulated in such detail that
the target software cannot tell the difference from a
real target system. The full-system model runs the
same binary software as would run on the real
target, including device drivers and firmware, as
illustrated in Figure 1.

Hardware

CPU

Operating system

User program

RAM FLASH

MiddlewareDBServer

Complete
production
software

LCD

ASICROM

I2C

Bus
CPU

Drivers Firmware

Network net

Timer

Disk
Simulated
hardware

Hardware

CPU

Operating system

User program

RAM FLASH

MiddlewareDBServer

Complete
production
software

LCD

ASICROM

I2C

Bus
CPU

Drivers Firmware

Network net

Timer

Disk
Simulated
hardware

Figure 1: The concept of full-system simulation

At its core, Simics is an event-driven simulator where
processors are treated specially for performance
reasons. All I/O and other peripheral devices on a

1 In this paper, we use the term “board” to mean any
complete computer unit used in an embedded
system. This can be a rack-mounted card, a stand-
alone box, or some other package.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/9

board (and thus all interconnects between boards in
a system) are simulated in a transaction-based style.
This means that accesses to devices are handled as
a synchronous unit, rather than simulating the actual
bus traffic required to perform the request in the real
hardware. Networks are simulated on a packet level,
where entire packets are sent and received as units.
This simplification is key to gaining simulation speed.
Simics is based on very fast instruction-set simu-
lators (ISS), which are bit-accurate in the results of
all instructions, including supervisor-level operations,
floating-point operations, and model- and hardware-
specific registers. The use of an ISS provides the
user with total virtualization of the target system; For
example, Simics can execute operating systems and
applications for PowerPC or MIPS targets on an x86
PC or a SPARC workstation, as illustrated in Figure
2. Simics handles endianness and word length
differences, and can simulate a 64-bit little-endian
system on a 32-bit big-endian host.

Host hardwareHost hardwareHost hardwareHost hardware

Host operating systemHost operating systemHost operating systemHost operating system

SimicsSimicsSimicsSimics

Simulated target hardware

Target operating system

User program

Simulated hardware
has no relation to or
dependence on the

host

Simics runs on any
standard platform

Figure 2: Simics provides full virtualization

Simics does not require any special hardware or
particular operating system; it is a pure software
application that can run on regular Solaris, Linux,
and Windows workstations and servers. This also
makes the virtual (simulated) hardware future-proof.
As illustrated in Figure 3, the same simulated hard-
ware will continue to be available as host machines
change and evolve, as long as Simics is available for
the new host.
The behaviour of the simulated hardware remains
the same over time, allowing for maintenance and
development of code for a platform for extended time
frames. Unlike real hardware, the simulated hard-
ware will not break or become unavailable.
Simics is designed to be a fast simulator, and can
currently achieve speeds exceeding 2000 MIPS
when running single-processor workloads on top of
full simulated systems with a real operating system
(measured when simulating a single PowerPC 750
processor running on a 2GHz Opteron PC). Such
high execution speed allows for real workloads to be
run in simulation, including operating systems,

network stacks, and complex applications. This is a
crucial enabler for using simulation in testing large
real-world codes and real-world test suites, in a
completely virtual environment [7].

Host hardwareToday: 32-bit PCHost hardwareToday: 32-bit PC

Host operating systemWindowsHost operating systemWindows

SimicsSimics for x86/winSimicsSimics for x86/win

PPC 750fx Card

Target OS

Applications

Host hardwareTomorrow: 64-bit PC

Host operating systemLinux

SimicsSimics for x86-64/linux

PPC 750fx Card

Target OS

Applications

Host hardwareTomorrow: 64-bit PCHost hardwareTomorrow: 64-bit PC

Host operating systemLinuxHost operating systemLinux

SimicsSimics for x86-64/linuxSimicsSimics for x86-64/linux

PPC 750fx Card

Target OS

Applications

Host hardwareFuture: X Hardware

Host operating systemY OS

SimicsSimics for X/Y

PPC 750fx Card

Target OS

Applications

Host hardwareFuture: X HardwareHost hardwareFuture: X Hardware

Host operating systemY OSHost operating systemY OS

SimicsSimics for X/YSimicsSimics for X/Y

PPC 750fx Card

Target OS

Applications

Time
Figure 3: Simics provides insulation to host change

2.1. Using Simics in Software Development

The Simics framework has been specifically
designed to facilitate software development and test
on simulated machines, and has a number of handy
features that aid in performing, automating, and
diagnosing tests.
Simulation in Simics is guaranteed to be deter-
ministic – from the same initial state, the simulation
will simulate the exact same execution path every
time the simulation is run. If variation is desired (in
order to test multiple code paths that depend on
target timing, for example), it can be provided by
adjusting simulation parameters for a particular run.
Simics supports checkpointing, where the complete
state of a system is written to disk. This checkpoint
can later be restarted at the precise instant where it
was saved. Together with determinism, this allows
for executions to be repeated any number of times,
using any workstation running Simics.
When simulating multiple processors and/or
machines (for example, in a distributed system),
Simics provides global synchronization and stop. If
one part of one machine is stopped, the entire
simulation is stopped. This makes it feasible to
single-step interrupt handlers and perform deter-
ministic debugging and analysis of multi-processor
and distributed systems [8].
Scripting in Simics is very powerful, with a full
Python language interpreter as well as an extensible
command-line interface. Scripts can react to output
from the simulated machine and to events inside the
simulated machine (breakpoints, exceptions, device
accesses, etc) and provide scripted intelligent input
to the simulation.
All target state is accessible without probe effects,
including information which is hidden and hard to get
to on real hardware, such as TLB tags and the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/9

contents of supervisor-level registers. This ability to
observe also provides the ability to trace and log
everything that happens in the system.
Tracing can be used to profile and perform code
coverage analysis without having to instrument the
target code. Even very detailed code coverage
analyses like decision and condition coverage can
be implemented transparently to the code being
executed; it is all handled by looking at the execution
trace and noticing which instructions are executed
(and which are not).
All target state can be manipulated. If the state can
be observed it can also be changed. For example,
for fault injection, transient and permanent faults can
be easily simulated [9][10].
Simics supports source-level debugging of software
running on the simulated machine, including firm-
ware and operating systems. Any code can be
debugged, as the simulator has complete control
over the state and execution.

2.2. Network Simulation

As noted above, Simics simulates not only individual
machines but also networks of machines. Each
machine in this instance runs a complete software
stack, including operating-system drivers for the
network devices. In network simulation, network
traffic is sent as entire packets. It is possible to
inspect (and modify or destroy) network packets as
they travel across the network, as illustrated in
Figure 4.

Simics

Simulated machine

OS

Application

Simulated machine

OS

Application

Simulated machine

OS

Application

Simulated machine
sends packets onto

the simulated
network

Simulated machine
sends packets onto

the simulated
network

Simics
Network Link

Simulation

Simulated machine

OS

Application

OS exposes the
same network

API as in the real
world

OS exposes the
same network

API as in the real
world

OS talks to the
network device, like
on a real machine

OS talks to the
network device, like
on a real machine

Simics

Simulated machine

OS

Application

Simulated machine

OS

Application

Simulated machine

OS

Application

Simulated machine
sends packets onto

the simulated
network

Simulated machine
sends packets onto

the simulated
network

Simics
Network Link

Simulation

Simulated machine

OS

Application

OS exposes the
same network

API as in the real
world

OS exposes the
same network

API as in the real
world

OS talks to the
network device, like
on a real machine

OS talks to the
network device, like
on a real machine

Figure 4: Network simulation with Simics

There are no limitations as to how machines can be
combined in a simulated network: it is possible to
combine many different machines of different types
and speeds, and Simics simulates the relative
execution speed of the different machines. For more
information on Simics network simulation, we refer to
[8].

2.3. Simulation Timing

In order to gain simulation speed, Simics simplifies
the timing of the target system. In the basic model,
processor instructions are assumed to have a fixed
execution time, and device accesses provide simple
time models for when transactions complete. The
function is identical to a real machine (which is
necessary in order to run real binaries), but the
timing might be different.
This makes Simics suitable for testing the functional
correctness of code, and coarse-grained timing.
Simics is not intended to analyze or predict the
precise cycle timing of processor pipelines or
caches. Since building precise timing models of real
hardware is very difficult, such detailed timing
analysis has to be validated on the real target
platform [11].
Simics provides a single global virtual time. All
processors and device models are synchronized to
this time base, across processors and machines in a
simulated network.
The progress of this time in relation to the real-world
time is variable. It is quite possible for a simulation of
a slow system to be many times faster than the real
world. Also, if a system is mostly idle, simulation can
run very quickly. For example, we have run a
network of 100 small sensor nodes2 at five times
real-world speed. In the tested case, the software
tested had the sensor nodes spend about 99% of
their time sleeping, making it possible for the total
simulation to run faster than the real world, as very
little processing was done in each node.
The simulated system might also run slower than a
real system if the simulation is heavily loaded or
contains many processors. It is obviously very hard
to simulate ten high-speed processors as fast as
real-time on a single host processor. In the most
extreme case, simulation execution can be paused
for some reason, in which case time does not
advanced at all.
Real-time simulations where simulated boards are
mixed with real-world systems are possible, as long
as the simulated system is slow enough that the
simulation will always run faster than real life. Then,
the simulation can be stalled when it runs ahead of
real-time, creating a simulation which runs at real-
time speed [12].

2.4. System Model Creation

A key part of using Simics for a particular target
system is creating the model of the target hardware.
As noted above, Simics models the full system
hardware, and thus more than just a processor ISS

2 A ”Telos Mote” is a small wireless sensor node
containing an 8Mhz 16-bit processor [14].

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/9

is needed in order to create a working simulated
system.
First, any components already available for Simics
can be reused. In processor arena, Simics has fast
models available for all the most common embedded
processor families, including PowerPC, MIPS,
MIPS64, ARM, x86, and SPARC, along with system
controllers, FLASH memories, IDE disks, I2C buses,
network controllers, serial ports, timers, and other
common components.
Second, any new components present in the system
in question have to be modelled. This task can be
performed by Virtutech, the Simics user, or by a third
party. In order to speed and simplify the modelling of
new systems, a domain-specific language called
DML has been created for writing Simics device
models. DML is many times more productive than
using C or C++ for model construction.

2.5. Simics Uses

Simics is currently in use at many commercial
customers and more than 1000 universities world-
wide. Simics has been used for a large spectrum of
activities, including computer architecture research &
design, firmware development and test, operating
system ports to new hardware, application develop-
ment for distributed systems, and system testing for
telecoms systems. Simics has been a commercial
product since 1998. Version 3.0 shipped in October
of 2005 [13], and development and enhancement of
the product continues.

Figure 5: Screenshot of a Simics session

The technology has proven very flexible and
scalable, being used for simulation of everything
from single aerospace boards to networks of storage
boxes to multiprocessor database servers and rack-
based telecom systems with tens of processors.
As an example, Figure 5 shows a screenshot of
Simics running a network containing one x86-based
PC with Linux, one PowerPC 750-based embedded
computer with Linux, and one PowerPC 440GP-

based development card running Linux. Each target
machine has its own text console available for
interaction, and there is also the main Simics window
from which the simulation is controlled.
In the remainder of this paper, we will primarily
address the uses of Simics in testing of embedded
software, with an eye towards general embedded
software development.

3. Unit Testing

A straightforward use of Simics is to replace real
target hardware for unit testing of programs. This is
done either with or without deploying an operating
system on the target machine, depending on the
characteristics of the code and system being tested.
In the simplest case, a simplified target system is
setup containing only a single processor ISS with
memory (to store code and input data), and a special
test output device. The program under test has to be
able to run on a naked machine with no operating
system, and to write its results to a “port” in memory.
Typically, the input data is loaded into the simulated
machine together with the program, while the result
is a stream of characters which is collected into a file
on the host machine, and then analyzed in a
separate post-processing phase. The proposed
setup is illustrated in Figure 6.

Host hardwareHost hardwareHost hardwareHost hardware

Host operating systemHost operating systemHost operating systemHost operating system

SimicsSimicsSimicsSimics

Simulated target hardware

Program under test

Program under test is
put into simulated

memory

Program under test is
put into simulated

memory

test IOCPU RAM

The program writes a
stream of results to a

special device in memory

The program writes a
stream of results to a

special device in memory

Results are collected on a
file on the host machine

for processing

Results are collected on a
file on the host machine

for processing

Figure 6: Setup for simple unit testing

In this setting, simulation is used as a replacement
for development cards used to perform unit testing of
binaries for a specific target architecture, without
using any operating-system calls or particular input
or output. The goal is to ascertain the correct
function of a small unit of compiled target code,
using some a test bench compiled into or with the
program.
An alternative setup is to run an operating system on
a complete simulated machine, mimicking the setup
of a real development board. In this case, the
simulated target will be connected using simulated
networking to the driver application on the host, and
interfaced and used just like a real development
board. If the test cases use operating-system calls,

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/9

such a setup is obviously necessary. An illustration
of this setup is given below in Figure 7.

3.1. Benefits of simulation

Using simulation for unit testing has several benefits
compared to using real hardware.
First of all, loading and executing tests is more
convenient than on real hardware. Code to be tested
is put in place when the simulation starts by writing it
directly to simulated memory. There is thus no need
to download code over a serial line or network and
running a monitor on the target.
The simulated hardware is also perfectly
controllable; resetting the state of the target is
achieved by simply restarting the simulation, without
a need to physically touch any hardware. Test
scripts can supervise the execution and use time-
outs to kill off any tests that seem to have crashed
and not produced any results.
Tests can be easily automated and scripted. A test is
started by running a program or script on a host
workstation, and the entire test runs under control
from the simulator. A test engine can easily run a
series of tests without user intervention. There is no
need for manual intervention to reset the target
hardware between tests or when a test crashes, thus
freeing test engineer time for more productive work.
As test execution is performed by starting a regular
software program (the simulator) on the host
workstation, the execution of test suites containing
many individual test cases can be easily parallelized
across multiple host machines. As each test is run in
isolation, we can expect perfect linear speedup in
overall test suite execution time. The only overhead
in such parallel simulation is the work involved in
starting Simics on remote machines. This makes it
possible to run large test suites faster than in real
life, shortening test turn-around time.
Simics determinism makes it easy to run regressions
tests. Any change in the output of an execution
compared to previous executions of other versions of
the same program can only be caused by
differences in the tested program, not by hardware
glitches or other random variations.
As pointed out above, Simics can also do code
coverage analysis and execution profiling on the test
cases, without instrumenting the code.

4. Function Testing

Broadening the scope from unit tests, the next step
is typically to test a complete function consisting of
several software units working in concert. Here, we
assume that such testing is carried out for a single
target board at a time (testing networked systems in
a network configuration is addressed later).

For function testing, Simics is used with a full simula-
ted machine running an operating system (and
various supporting libraries or middleware systems,
where such are employed), as illustrated above in
Figure 1. Thus, the program under test is expected
to be using OS and library API calls. Interrupt
occurrences and OS scheduling will behave as on a
real machine, allowing the test of tasks prioritization
and execution modes. Memory management and
usage can be tested, as well as the interaction
between parallel tasks or threads in a system.
The testing can be driven by test bench code loaded
with the program under test, or it can use external
testing tools that communicate with the program. In
both cases, testing is performed in the same way it
would be on a real target board. The simulation does
not necessitate changes to methodology or tool use
for testing, it just changes the means used to
execute the code.
For example, a networked target machine can be
tested by connecting existing network testing tools to
the simulated network, communicating with the
simulated board just like with a real board. Both in
the real and simulated cases, the testing tool is given
a network address to communicate with (typically, an
IP address + port number), and is thus oblivious to
the nature of the target (whether it is real or simula-
ted). The test program and simulated board with the
program under test can both be run on the same
host workstation, as illustrated in Figure 7.

Host hardwareHost hardwareHost hardwareHost hardware

Host operating systemHost operating systemHost operating systemHost operating system

SimicsSimicsSimicsSimics

Simulated Target HW

OS

Program under test

Network
simulation

Simics

Network
testing
program

Simics

Network
testing
program

Figure 7: Network test on a single machine

Note some care regarding timing is needed when
mixing real-world testers with simulated machines.
Timeouts for determining when a crash has occurred
in the program under test are usually set in terms of
real-world time, and this is not always appropriate for
a simulated system. As noted above in Section 2.3,
the timing of the simulation is different from that of a
real system. Thus, for best results, testing tools
should use a time feed from the simulated system to
determine time-out conditions based on the virtual
time of the simulation [8].

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/9

4.1. Benefits of Simulation

All the benefits of simulation that apply to unit testing
also apply to function testing. In addition, some new
benefits apply.
Thanks to the easy configuration of a simulated sys-
tem, multiple versions of a run-time environment can
be used in testing. Different versions of the operating
system and other supporting software can be
canned as memory images or disk images, and
instantaneously brought up for use.
Deterministic simulation offers a very powerful tool in
a multithreaded environment. Rerunning a test case
will result in the same sequence of interrupts, task
switches, and inter-task communications every time
a test is run. This greatly simplifies diagnosing errors
found in testing, and in communicating errors to the
developers from the test group. A failed test case will
fail on the developer’s workstation just like it failed in
the test lab, making error reproduction trivial.
Testing can begin before the hardware is available.
A common use of full-system simulation is to provide
a development and software test environment for
hardware in development, allowing for parallel soft-
ware and hardware work for new generation sys-
tems; such use of Simics is common [2][7][15].

5. System Testing

Beyond the testing of individual units or functions,
simulation can also be used to test the functionality
and correctness of a complete system involving
multiple processors and networked boards
[2][3][7][8].
In this case, full-system models are constructed for
all nodes in a network, and several target board
models connected using a simulated network, as
discussed in Section 2.2. The machine models
themselves are the same as used for function
testing, but typically using multiple instances of a
particular type of simulated machine, with identical or
different software loads.
In system testing, the simulation is used to execute a
complete real software load, including multiple
programs running in parallel and software relying on
communicating with other machines in a network. A
complete distributed system is easily simulated,
providing a realistic environment for the software on
each node in the system.
For embedded systems controlling physical systems,
mechanical or physical simulations of the environ-
ment can be interfaced to the Simics simulation of
the computer system. Such models rely on the
virtual time in Simics, computing the evolution of the
environment in the same time-domain as Simics
executes the software.
In order to enable the simulation of large systems,
Simics can distribute the simulation of a network

across multiple host processors or host machines.
This lets large simulation take advantage of added
CPU cycles and memory resources to handle really
large simulated systems [8].
A recent example of system testing with Simics is
the simulation of Iridium satellites. Using virtual
satellites, software is developed and tested on the
ground in an environment corresponding to what it
would meet in an actual satellite in orbit [16].

5.1. Stimulus

When doing full-system testing, the problem of how
to inject stimulus to the system becomes very
important. The goal is to execute the software in use
cases taken from the real world, and this is realized
by providing relevant stimulus as input to the system.
The system configuration itself can be the stimulus.
One example of this is a real-world case where
Simics was used to test self-configuration of large
networks by simulating several hundred network
nodes connected in various ways. Booting up all the
machines on the network tested that they correctly
elected leaders, obtained network addresses, and
established communication.
A simulation of the physical environment provides
good test input for control software, as discussed
above.
In network simulation, stimuli can be provided by
traffic generators in the classic sense that provide a
stream of packets from a given distribution. It is also
possible to use behavioural models of network
nodes, i.e. small programs describing the network
behaviour of a node without all internal details.
Existing network testers can also be interfaced with
the simulated system. Figure 8 shows how these
types of stimuli are combined with regular Simics
simulations running complete software stacks.

Simics

Simulated machine

OS

Application

Simulated machine

OS

Application

Simulated machine

OS

Application

Network connect

Network connect

Behavior
model

Behavior
model

Traffic generator

Network
Simulation

Real-world
connection

Network
testing
program

Figure 8: Network testing using a variety of

simulation styles for different nodes

5.2. Benefits of Simulation

Using simulation, the setup time for system-level
tests can be greatly reduced. Configuring a network
using a set of scripts is much faster than plugging in
cables and configuring network devices. Once a
setup has been created, it can be stored and reused

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/9

instantly. This saves significant amounts of setup
and turn-around time.
The test coverage will increase, as more systems
become available for testing thanks to the cost
savings and flexibility of simulation (see also Section
7 below). Network tests are typically difficult and
expensive to perform on real hardware, as each test
requires multiple development or prototype boards
and long system setup times. Also, network testing
usually requires booking time in a special lab, which
also makes turn-around times longer.
With simulation, hardware availability is no longer a
problem, system setup is much faster, and tests can
be performed on any workstation, making it much
easier and cheaper to perform full-network tests.
Just like for function testing, deterministic simulation
makes it easier to communicate between testing and
development groups.
Since simulation provides full control over all data
exchange and input and output of a system, it is also
possible to record and replay input and output
(network traffic, user interaction, other external
events) in a simulation. This makes it possible to
perform isolated error diagnosis on a single machine
in a multi-machine setup, by recording the whole
system and replaying the external events for a single
machine in the system.

SimicsSimicsSimicsSimics

Machine 1

OS

Program
Machine 2

OS

Program

Machine 3

OS

Program

Network simulation

SimicsSimicsSimicsSimics

Machine 2

OS

Program

Replay

(a) Record all input & output of a machine (b) Replay recording
Figure 9: Record and replay in a network

Figure 9 illustrates this idea. Machine 2 in the three-
machine network has all its input and output
recorded, later to be replayed using just a simulation
of machine 2. This can also be done for all machines
simultaneously, allowing for analysis of the network-
ed behaviour of each machine in isolation following a
single networked simulation run.

6. Fault Injection Testing

Simulation can also be used to test the behaviour of
a system in the presence of faults [9][10].
Fault injection in simulation requires the creation of
appropriate fault-injection modules inside the
simulated system, modules that are attached to
buses, networks, memories, devices, and
processors, and perform the actual injection of faults.
These fault-injection modules have to be tailored for
each component, but it is easy to reuse models for
memory components, processors, networks, and

similar common devices. In addition, it is necessary
to establish a way to specify which faults occur
when, so that fault injection campaigns can be
specified and executed using a single point of
control. Usually, a master fault injection module is
used which reads a file specifying which faults are to
be injected where and when.
Some faults can only be reasonably studied on real
hardware, for example electrical effects of pulling
cables and cards out of racks and radio disturbances
caused by interference from electrical systems.
Similarly, radiation effects on chips have to be tested
in irradiation chambers.
However, once physical studies of fault behaviour
have been performed, simulation can be used to
replicate the effects on the computer system. Data
from the physical experiments, such as the
frequency and nature of transient and permanent
faults, can be used to guide the faults to be tested in
simulated fault injection campaigns.
Fault injection in simulation is typically used to check
that fault detection and recovery mechanisms work
as designed. This might mean testing voting
mechanisms or redundant failover, or just that a
system correctly logs errors. Fault injection can also
be used to diagnose problems – it allows an
engineer to test a hypothesis as to which hardware
problem causes a particular software error.

6.1. Benefits of Simulation

Simulation has a range of advantages for fault
injection studies compared to using real hardware.
Simulated fault injection is non-destructive. The
system under test does not suffer permanent
damage from being tested with faults, unlike physical
experiments where hardware components are quite
often damaged (intentionally and unintentionally) in
testing.
Simulation offers repeatability of fault injection, as
replaying the same fault injection script will inject the
precise same faults and the precise same point in
time. Achieving precise repetition with physical fault
injection is very difficult.
Fault injection in simulation will allows increased
fault-injection coverage, as faults are easy to
program and introduce, and fault-injection
campaigns are simple to execute; just run the
simulator, no special lab needed.
Since faults are easy and precise to program and
tailor, corner-case testing is enabled. With the help
of simulation, it is thus possible to script and repeat
known hard cases in the system, such as multiple
board failures close in time and babbling idiot
failures.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/9

7. Business Aspects

Using simulation for testing in a real production
environment requires considering the business
aspects of simulation as a testing tool.

7.1. Costs

The costs involved in introducing simulation consist
of four parts. First, the development of the simulation
framework, which should not be needed as it can be
bought off-the-shelf.
Second, the cost of developing the necessary
hardware models to model the system or systems of
interest. Depending on the nature of the system,
many standard parts are typically available from the
simulation vendor. Developing new standard parts of
custom parts requires a one-time investment by the
vendor or the customer.
Third, there is a licensing and continued support cost
associated with the simulation tool.
Fourth, there is an initial need to train users on the
simulation tool and introduce the simulation into the
workflow. As we have already noted, simulation in
testing can often slip into an existing workflow, using
the same methodologies and tools as used with real
hardware. Full-system simulation really does provide
virtual hardware that can be used instead of real
hardware.

7.2. Benefits

The benefits from introducing simulation are both
direct costs savings, and indirect economic benefits
from faster development and better quality products.
First, buying a single simulation license is usually
cheaper than buying a single development card or
custom product board. Since several boards can be
simulated in a single simulation instance, there are
obvious cost reductions from simulation. These cost
savings can either translate to lower overall costs or
more systems deployed at the same cost.
Simulation also provides increased flexibility. There
is no fixed inventory of available boards. Any users
can setup any board or combination of boards,
without allocating physical boards. Any workstation
can be used to run target code for any target system,
greatly improving hardware availability for develop-
ers and test engineers. There is no need to ship
hardware around to supply each developer with the
particular hardware needed at a given moment.
Second, simulation makes it possible to develop
software in parallel with the hardware, and to deploy
more hardware earlier in the development cycle.
This translates to a shorter time to market for new
products, as the software teams can start working
earlier than if they have to wait for hardware.
Removing the dependence on hardware also means
that more developers can work in parallel on the

same project, as hardware availability is no longer a
bottleneck.
Third, simulation brings a number of technical
benefits for the actual execution of tests, as detailed
above. These cumulative benefits lead to better
product quality thanks to more and better testing and
easier fault identification and correction. Shorter
setup times and turn-around times, as well as more
convenient execution environment makes test
engineers more efficient.
Our experience is that the cost of introducing a
simulation are usually far outweighed by the
advantages it offers, especially for companies
building and integrating complex embedded systems
based on custom hardware and with large value
deriving from the software running on these systems.

8. Summary

This article has presented the use of simulation in
general (and the Simics simulation product in
particular) for testing and developing embedded
software.
Simulation does not replace all testing on real
hardware, but it offers a very good complement to
real hardware, with potential for great improvements
in development and test process efficiency and
overall cost. Simulation can be used within existing
work flows and tool environments, making such
benefits quite easy to realize.
We have reviewed a number of typical usages of
simulation for embedded software testing, and for
each case, how the simulation would be setup and
the resulting benefits.

9. Acknowledgement

The authors would like to thank all our colleagues at
Virtutech for having created a great tool and applied
it to real-world problems.

10. References

[1] S. Gill: “The Diagnosis of Mistakes in
Programmes on the EDSAC”, Proceedings of
the Royal Society of London. Series A,
Mathematical and Physical Sciences, Vol. 206,
No. 1087, May 1951.

[2] P. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, G. Hållberg, J. Högberg, F. Larsson,
A. Moestedt, B. Werner. “Simics: A Full System
Simulation Platform”, IEEE Computer, Feb 2002.

[3] A. Alameldeen, M. Martin, C. Mauer, K. Moore,
M. Xu, D. Sorin, M. Hill and D. Wood.
“Simulating a $2M Commercial Server on a $2K
PC”, IEEE Computer, Feb 2003.

[4] M. Stetter, J. von Buttlar, P. T. Chan, D. Decker,
H. Elfering, P. M. Gioquindo, T. Hess, S.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/9

Koerner, A. Kohler, H. Lindner, K. Petri, and M.
Zee: “IBM eServer z990 improvements in
firmware simulation “, IBM Journal of Research
and Development, Vol. 48, No. 3/4, 2004

[5] J. Connell, B. Johnson: “Early
Hardware/Software Integration Using SystemC
2.0”, Proc. Embedded Systems Conference, San
Francisco, USA, 2002.

[6] A. Möller, “A Simulation Technology for CAN-
based Systems”, CAN Newsletter, Dec 2004.

[7] P. Magnusson: “The Virtual Test Lab”, IEEE
Computer, May 2005.

[8] J. Engblom, D. Kågedal, A. Moestedt, and J.
Runeson: “Developing Embedded Networked
Products using the Simics Full-System
Simulator”, Proc. 16th IEEE International
Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC 2005), Berlin,
Germany, Sep 2005.

[9] Myhrman and Svärd: ”Studying Fault Injection in
WCDMA Base Station Processors Using Simics
Simulator”, MSc Thesis, Chalmers Institute of
Technology, Department of Computer Science
and Engineering, 2005.

[10] B. Bastien: “A Technique for Performing Fault
Injection in System Level Simulations for
Dependability Assessment”, MSc Thesis, Uni-
versity of Virginia, School of Applied Science,
Jan 2004.

[11] J. Engblom: “On Hardware and Hardware
Models for Embedded Real-Time Systems”,
Proc. IEEE Workshop on Real-Time Embedded
Systems (WRTES 2001), London, Dec 2001.

[12] J. Engblom and M. Nilsson. Time Accurate
Simulation: Making a PC Behave Like a 8-bit
Embedded CPU, Technical Report 2002-024,
Dept. of Information Technology, Uppsala
University, 2002.

[13] D. McGrath: “Virtutech system-level simulator
features Hindsight technology”, Electronic
Engineering Times (www.eetimes.com), Oct 4,
2005.

[14] Moteiv Corporation, Telos (Rev B) Datasheet,
May 2004.

[15] A. Ernst: “New CEO John Lambert on Virtutech
Present and Future”, Virtual Strategy Magazine,
Oct 4, 2005

[16] J. K. Waters: “Iridium Simulates Space Software
with Simics”, Application Development Trends
Magazine (www.adtmag.com), Oct 31, 2005.

11. Glossary

API Application-Programming Interface
DML Device Modelling Language
HW Hardware

ISS Instruction-Set Simulation
OS Operating System
SW Software

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

