D Peters

Object

Object Oriented Framework for Test Automation

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

By means of several abstraction layers the operation of the platform is simplified for the user. This is implemented by providing a set of classes and methods.

Platform and CMMI® Process

From the beginning the test automation platform TA3 has been developed in accordance with the CMMI® test process. Because of the open and flexible architecture of TA3 the platform can be adapted fast to new process requirements.

The development of an engine or transmission control unit (ECU) lasts from two to three years. Already during the development SW versions have to be delivered by the ECU suppliers to the car manufacturers in regular intervals. Already at that time SW quality has to meet the requirements. As a consequence a development life cycle is not only described with one V-cycle but with V-cycles for each version recurring behind each other.

The CMMI® SW test process in our organization defines, among other things, three phases which can be found in each V-cycle again: All test phases can be separated into the following classification:

• static and dynamic testing • manual and automatic testing

The test automation platform TA3 is used for all dynamic automatic SW tests under real-time conditions. In case of module verification TA3 is only used for special applications, whereas an external tool is used for standard unit testing.

The functionality of a control unit is permanently enlarged and changed. Already integrated and tested functionalities have to be checked again in each V-cycle. Because of that automatic regression tests are very important.

The tests with TA3 aren't pure black-box-tests but rather grey-box-tests. The internal structure of a SW module is not considered but, with the help of the application systems, the interfaces of a module are made visible and measurable. Furthermore the behavior of every function can be changed for testing by calibration systems. Due to this certain system states can be reached easier for testing. The validation of the calibration data is done by application engineers or by the car manufacturers.

Test Presentation Formats

In general test description formats can be subdivided into three categories:

• tabular test presentation • graphical test presentation • textual test presentation TTCN-3, the Testing and Test Control Notation, offers standard solutions for this area. It is used mainly in telecommunication area, but it also has the demand to be applicable for other areas.

All three TTCN-3 presentation formats are no execution languages. This means that each format has to be compiled to an execution language. Most tool suppliers use C++ or Java as execution language.

The tabular format of TTCN-3 was integrated only for compatibility reasons, i.e. for older TTCN versions, but no future is certified to it yet. Very often tabular test design is realized with Microsoft® Excel. An interpreter or compiler translates the Excel information into an execution language. This solution enables only sequential test flow. Control flow requirements (loops, decisions) are difficult to define in Excel, but this isn't target-oriented. Excel is a spreadsheet, not a program or script language. A further disadvantage of the tabular test design is that for every new feature a corresponding Excel syntax had to be defined first and the interpreter or compiler has to be enlarged. Therefore every new feature can be made available only after some weeks for the users.

The graphical presentation format of TTCN-3 is similar to UML TM , the modified modeling language. Due to the widespread use of UML TM and the new version UML TM -2.0 with the subset 'Testing profile' this solution is expected to be a standard. The use of UML TM as a graphic test design is primarily meaningful if UML TM is already used as standard method for SW development. Currently the TA3 framework does not offer the possibility to design tests with UML TM but, as preparation for this step, the frameworks may be developed with UML TM . The textual presentation format of TTCN-3 was analyzed in detail. Concrete test scripts were written in TTCN-3 and compared with other approaches. The evaluation showed a clear result. The TTCN-3 test scripts were cryptically and difficult to read. Some requirements could be fulfilled only with compromises. The strengths of TTCN-3, test of network communications, couldn't be used. The focus of TA3 when testing is the functionality of one ECU and not the networking of ECUs.

Standardization

Python is another script language which is widely used within in the automotive industries. But it cannot be described as standard textual description language.

At present there is no standard in the automotive industries, also not the three presentation formats of TTCN-3. UML TM-2.0 with the subset 'Testing Profile' has the potential to be a standard for the graphic description formats in the future.

For an organization it is very important to standardize the test presentation formats between their own development departments. This is a basic precondition for the reuse of tests and for considerable cost saving.

A general standard is important if tests have to be exchanged between organizations, e.g. between a car manufacturer and their suppliers. For instance, certain conditions, which have led to an abnormal behavior at the manufacturer, are to be reproduced at the supplier. These possibilities would be useful but are difficult to achieve.

The missing of a standardized exchange format is the minor problem. More important is that the HIL test systems and the closed-loop-models have to be identical. The manufacturers use different HIL test systems of different tool suppliers. These systems are no turnkey solutions. They are very specific configurations with extensive engineering services. Furthermore the complex closed-loop-models are not always accessible for the suppliers.

The identical installation of the car manufacturer test platforms at the suppliers cannot be the target. As there are numerous customers this would lead to a variety of systems at the ECU supplier, which cannot be maintained any longer. In addition, the reuse of tests within the own organization is more difficult.

The test focus of the car manufacturers should primarily differ from the test focus of the ECU suppliers. This means, the tests shall complete one another and not overlap. As a consequence of the exchange of tests should be a minor aim. Nevertheless there will be further efforts to support possible standards in the future. With a flexible architecture, the test automation platform can be extended by further presentation formats, thus also by possible future exchange formats. (see Figure 3: Expandability of TA3') Finally, there are other more important reasons for standardization: The control interfaces of the used tools are currently not standardized, not stable enough and functionally not completed. In the end standardization saves development efforts on driver layer.

Object-Oriented Framework

For the realization of a flexible test automation solution an object-oriented framework is one approach. A framework as a rule provides an application architecture unlike a pure class library. An objectoriented framework fixes the structure of essential classes and objects as well as a model of the control flow in the application. In this case frameworks are developed and used essentially with the aim to reuse architectural samples.

On the one hand a framework offers the possibility of general implementation of different requirements in the context of the test automation. The user is guided during the development of scripts regarding method. The target is fast realization from a test case to a running test execution script. On the other hand a framework is flexible. Special requirements can directly be implemented by the user themselves.

Test Class

The kernel of each test script is the test class. The tester derivates an own test class from the test base class and overwrites the four abstract methods 'init', 'stimulation', 'reset' and 'evaluation'. These four methods define the general test control flow and they are scheduled by the test base class. The tester defines only the test specific commands inside the overwritten methods. Therefore methods and classes are available in the framework.

Init

One group of classes and methods controls the test devices like HIL test systems, calibration and application systems or diagnostic tools. The classes on this level are independent from the particular use tool. In general the devices are addressed as follows: HIL-device, CAL-device or DIAG-device.

The test scripts therefore can be executed on different tools without adaptations. The classes of the framework relieve the tester as far as possible from administrative tasks, e.g. generation report entries, exception handling.

The other group of classes supports the tester in evaluation and generating reports.

The following example shows a test script and test report. These are the general steps:

• set of physical engine speed signal parameter on the HIL test system to 1000 rpm • set of physical pedal value signal parameter on the HIL test system to 50% • set of physical coolant temperature signal parameter on the HIL test system to 90°C • wait 5 seconds Test Script Presentation: The separation simplifies the generation of generic test scripts. One test script can be combined with different data sets to test, e.g. different variants of a SW configuration.

In addition, values of calibration constants and maps of the ECU can be parameterized via XML. They are loaded during runtime into the ECU.

Test Evaluation and Reporting

The automatic evaluation of dynamic signals is a specific challenge. The test scripts and especially the stimulation of test objects are running on the PC and with a non-real-time operating system. Furthermore, valid tolerances of the ECU operating system and sampling tolerances of the measuring system lead to divergent signal vectors.

These tolerances can be avoided by a relative temporal analysis of the signals. The complete evaluation is subdivided into evaluation sections. Due to separation the tolerance dependent parts can be excluded from the evaluation.

For most use cases a library of evaluation methods is available. If special requirements are necessary the developer can realize own evaluation algorithms HIL_C_N_PHY.set(1000, 'set engine speed for idle speed') HIL_C_PVS_PHY.set(50, 'set driver request for idle speed ') HIL_C_TCO_PHY.set(90, 'test of interface TCO') wait(5.0, 'wait for stable idle speed engine state') directly by means of Python. This is a further advantage of the Python language. Complex algorithm can be written but also easier test script control flows.

The expected behavior of the signal is passed to a method as list of parameters. The test is 'Passed' if the expected behavior of the signal lies within the defined tolerances. The method evaluates the current measured signal and generates a corresponding report entry. The test report information is saved as XML format during the test run. The test script itself doesn't contain report layout. It transfers only the test information into XML. The report layout is defined in so called 'style sheets'. Thus the report layout can easily be changed afterwards without any adaptations of the test scripts.

Modular Stimulation and Reuse

The economic success of the test automation depends very much on a possible reuse of automatic tests. The use of generic SW components doesn't immediately enable the use of generic tests.

During a test of generic functionality within a project the test has to consider the specific environment. The reuse can be improved by a consequent modular structure of the test scripts. The stimulation of a test object is not described completely in one test script. The stimulation is distributed in different stimulation classes in dependence of its functionality. This concept can be realized for example for SW integration tests. The modular structure of the SW is mapped one-to-one to the test script structure. The stimulation of an interface that is to be tested is carried out via a chain of stimulation classes.

Test Management

TA3 primarily is a test execution platform, but also covers test management aspects which are pointed out in the following:

The test script development process mentioned above is similar to the SW development process. Due to this the test scripts can be administrated with the same methods and tools regarding change and configuration management.

For further test management aspects the connection of the platform to an integrated product life cycle management is necessary. This results from the CMMI® demands on the product development. The open and flexible architecture of the platform supports this requirement.

Conclusion

Since the introduction of the Test Automation Platform TA3 in our organization the numbers of test automation projects and the numbers of users has jumped up. This trend results, among other reasons, in the ability to tailor the test automation platform to the specific processes and user profiles.

Efficient

Figure 1 :

 1 Figure 1: Architecture of TA3

Figure 2 :

 2 Figure 2: CMMI® SW Test Process

Figure 3 :

 3 Figure 3: Expandability of TA3

Figure

 Figure 5: Test Class Diagram

Figure 7 :

 7 Figure 7: Test Report Stimulation Example

Figure 8 :

 8 Figure 8: Test Report Example

Figure 9 :

 9 Figure 9: Modular Stimulation and Reuse Example', describes the difference between a non-modular and modular test script structure. Furthermore, the reuse of tests and stimulation scripts within a project and between two projects (Project A, Project B) is shown below.

 For test script development Python interpreter and debugger are used. Further utilities support the developer in generating test scripts. Test scripts can be parameterized with XML files; and test reports are generated automatically in XML format. The test hardware (test device) is controlled by call of corresponding instance methods in the test scripts. For this the test author doesn't need specific knowledge about the used test devices. Furthermore test scripts can be used unchanged on comparable systems from other suppliers.

Testing Automation Framework TAF User Test Scripts (textual presentation)

		other
		organizations
	UML: graphical presentation	Exchange Formats

 test script development is absolutely necessary because automatic tests don't selffinance. The high initialization efforts are compensated by the improved SW quality at a later date.Due to the open architecture the test automation platform is prepared to handle further requirements. Both, the embedding of new test equipment and the use of new test presentation formats can be realized quickly. The framework grows permanently with the new requirements.

		12. Author Biography
		Dipl.-Ing.(FH)	Dietmar
		Peters has been working for
		Siemens VDO since 1996.
		He is group and project
		leader and responsible for
		the	development	and
		introduction of the common
		test automation platform for
		all Siemens VDO Powertrain
		SW development locations
		worldwide.
		13. Glossary
	CMMI®	Capability Maturity Model
		Integration®	
	CAL	Calibration	
	DIAG	Diagnostic	
	ECU	electronic control unit
	HIL	Hardware-in-the-Loop
	HW	Hardware	
	Python	Script language	
	MS Excel	Microsoft® Excel
	SW	Software	
	TA3:	Siemens VDO SW Test Automation
		Platform	
	TTCN:	Testing & Test Control Notation
	UML		

TM : Unified Modeling Language TM V-Cycle Development Process Model XML Extensible Markup Language