
HAL Id: hal-02270467
https://hal.science/hal-02270467

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testability Analysis for Graphically Described
Algorithms of Reactive Systems
H V Do, C Robach, M Delaunay, J.-S Cruz

To cite this version:
H V Do, C Robach, M Delaunay, J.-S Cruz. Testability Analysis for Graphically Described Algorithms
of Reactive Systems. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-02270467�

https://hal.science/hal-02270467
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

Testability Analysis for Graphically Described Algorithms of
Reactive Systems

H. V. Do1, C. Robach1, M. Delaunay2, J.-S. Cruz3

1: LCIS – ESISAR, BP 54, 50 rue Barthélémy de Laffemas, 26902 Valence Cedex 09, France
2: LSR – IMAG, BP72, 681 rue de la Passerelle, 38402 St Martin d’Hères, France

3: MBDA, BP 84, 2 rue Béranger, 92323 Châtillon Cedex, France

Abstract: Reactive Real-Time Systems require very
high level of confidence. The validation, which
ensures the confidence of these systems, is often
difficult and expensive. A testability analysis at the
design phase of a system can identify parts that are
difficult for system testing. Such an analysis helps
the designer to improve the design, reduces the cost
of the validation, and increases the confidence of the
system.

During the development of Reactive Real-Time
systems, graphic environments are often used to
design systems. Our approach allows analyzing
automatically the testability of systems from their
graphical descriptions.

Keywords: Reactive Real-Time system, Data-Flow
design, Testability Analysis

1. Introduction

Reactive Real-Time Systems are largely utilized in
many safety-critical domains, for instance: avionics,
automotive, aerospace. For the development of
these sorts of systems, validation plays an important
role to ensure confidence in these systems. The
validation process is divided into two main activities:
the proof of some parts of the system, which verifies
safety properties of these parts of system; and the
testing phase that reveals faults in the system.
Testing of complex reactive real-time systems is very
expensive. Hence, a testability analysis, which takes
into account the validation as soon as the
specification phase, is very promising.

Many languages and graphical environments are
used in the development of reactive real-time
systems: the Simulink [1] and Scicos [2] languages
are utilized classically to describe discrete (or/and
continuous) data’s operations, the StateChart [3]
language useful for constructing behavior models.
UML 2.0 notations [4] define the numerical system
and can be used to describe the software, or
software and hardware components. The AADL [5]
language makes the mapping on the hardware: this
language using a description of the software, or of
the software and hardware and to include the
interface between those components with the tasks,
the processes, the buses, and the communications.
In this way, synchronous languages are successfully

used: the Lustre [6] language for data-flow design,
the Signal [7] language for the control of data-flow
(consistency with a GALS [7] approach) for system
level design.

In order to simplify the development process,
graphical environments (such as Scade/Lustre,
Scade/Esterel, Sildex/Signal or Polychrony/Signal,
Simulink/Matlab, StateFlow/StateChart or
Statemate/Statechart) supply important utilities:
simulators, provers, certified code generators, test
data generators. In this sort of environment, recently
the Advanced System Development Environment
(ASDE) [8] provides a complete set of CASE tools,
which support development activities and meet the
high dependability needs of safety-critical reactive
real-time systems that support DO178B requirement.
Resuming, graphical environments facilitate the
complexity control of system by providing a graphical
hierarchical view. These environments allow
designers: to describe complex algorithms and their
data-flow, control-flow; to simulate and/or prove
them. In this way, code can be generated from
validated algorithms by certified code generators.
Hence, the overall design process is reduced.

In the algorithms design, designers can use these
graphical environments to describe computation
components and the data-flow or control-flow of
systems. A data-flow or control-flow design is a
diagram of operators or subsystems. A subsystem is
also a data-flow design. However, in real complex
systems, it is difficult to analyse the weaknesses of
their architecture, mainly because faults can be
hidden inside subsystems. In order to solve this
difficulty, we propose an automated method of
analysing the testability of data-flow designs of such
reactive systems, which are designed by using
graphical environments (Scade, Sildex, Simulink,
Scicos, Rapsody or Rose / UML 2.0, Stood/AADL).
Our method, which is based on the SATAN
technology (System’s Automatic Testability Analysis)
[9], consists in analysing the data flow of systems.
This technology allows: 1) identifying elementary
functions of the system; 2) determining test
objectives through strategies; 3) computing
testability measures of each component in the
system. The testability measures in the SATAN
technology are based on the information theory [10].

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

In order to reach our objectives, we use an
Information Transfer Graph (ITG) to model a data-
flow design. From this ITG, once elementary
functions of the system are identified, test objectives
can then be obtained by applying one of two
strategies: the Start-Small strategy and the Multiple-
Clue strategy.

The testability is defined as a combination of two
measures: controllability and observability. We use
an Information Transfer Net (ITN) to simulate the
information circulation in the data-flow design. Thus,
the testability measures are calculated by evaluating
the information loss in the ITN, where each operator
contributes to this loss. The information loss of an
operator can be calculated exactly (for logical
operators) or statistically (for other operators).

This paper proceeds as follows: section 2 introduces
some criteria of reactive real-time systems, which
affect the testability analysis. Section 3 presents the
SATAN technology. Section 4 outlines our statistical
evaluation of ILC. Section 5 details our testability
analysis process of data-flow designs. A case study
is illustrated in Section 6. Finally, some conclusions
and perspectives are given in Section 7.

2. Criteria of Reactive Real-Time Systems

In this section, we study some criteria of reactive
real-time systems that have influence on the use of
the SATAN technology.

A reactive system can be viewed as a set of
functions that specify the relationship between its
inputs, outputs, states and time (see Figure 1).

u (input)

x

(states)

y (output)

Figure 1: Reactive real-time system

The system functions include: an output function fo,
an update function fu. The fo function computes the
system’s output from time, states and inputs. The fu
function computes the future values of the system’s
states from the current time, inputs and state.

The states of a reactive system are related to the
automat modelling that system. In our method, we
analyze just the data flow of systems. So we
concentrate on the output function fo.

The synchronous approach [11] is largely used in
safety-critical reactive system. In this approach, the
time is divided into discrete instants defined by a
global clock. At instant t, the system receives input it
from its external environment, and computes output
ot.

Figure 2: Operation of a synchronous system

The synchronous hypothesis expresses that the
computation of the output values is made
instantaneously at the same instant t. The operation
of a synchronous system is illustrated in Figure 2.
Our approach analyzes the static aspect of
synchronous systems, i.e. the data-flow of a system
at an instant t.

We use a graphically described algorithm called
GRS as the main example in this paper. The GRS
example has been designed in the Simulink
environment. It contains eight inputs, a subsystem
followed by several basic operators, and two outputs
(see Figure 3).

Figure 3: The GRS example

The algorithms described graphically have a
hierarchical structure. Thus, a reactive system is
generally modeled in different levels. In each level of
specification, the system is a diagram of operators or
subsystems. For example, the GRS design has two
levels of specification. Because the SATAN
technology supports one-level structure, before
applying the SATAN technology, the system must be
flattened into a one-level structure, as depicted in
Figure 4.

t

z y x

t
x y

z

Figure 4: Flattening the hierarchical structure

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

3. The SATAN technology

The SATAN technology was originally proposed for
hardware systems. It was then shown to be
applicable for data-flow designs in [12, 13].

In the operator diagram of a system, each operator
is associated with a testability model that represents
the information flow of this operator. The diagram of
operators is then transformed into a global model by
combining each model of operators. The testability
model is called Information Transfer Graph (or ITG).

The test objectives of a system can be determined
from the information flows in the ITG.

3.1 Information Transfer Graph

An ITG is a bipartite directed graph defined by a set
of places, transitions and edges. The places are:
• The inputs of the system, but also the control

points of the system where testing data can be
sent;

• The modules, which are functional modules of
operators of the system;

• The outputs of the system, but also the points of
observation of testing results.

The transitions between places express the
conditions allowing the information transfer between
those places, together with the transfer modes.
There are three modes of information transfer
(Figure 5):
• The junction mode: the destination place needs

information from all source places.
• The attribution mode: the destination place

needs information from one of several source
places.

• The selection mode: the same information is
sent from the source place to some destination
places.

Figure 5: Information transfer modes

The edges connecting places and transitions
represent the information media throughout the
system. In the graphic representation, inputs and
outputs are depicted by semicircles, modules by
circles, and transitions by bars.

The ITG contains all control points, like a
conventional control flow graph. And it also contains
all relations between definitions and uses of
variables, like a conventional data-flow graph.
Hence, the ITG is suitable for data-flow designs.

The ITG associated to the GRS example is given in
Figure 6.

Figure 6: The ITG of the GRS example

3.2 Information Flows

An information flow (or flow) guides information from
one or several inputs, through several modules and
transitions, to one output. Hence, each flow
corresponds to an elementary function of the
system. Every flow is determined such that:
• If an output place of a junction is in the flow, all

its predecessors belong to the flow;
• If an output place of an attribution is in the flow,

one of its predecessors belongs to the flow;
• If an input place of a selection is in the flow, one

of its successors belongs to the flow;
• No flow is the union of other flows.

Two important facts to consider:

1) All edges arriving at a place allow
controlling all data necessary for testing this
place;

2) All edges leaving from a place allow
observing all results produced by this place.

All flows in an ITG are identified automatically by the
SATAN technology.

The ITG of the top level of the GRS example
contains four flows. Each flow Fi is described by all
its modules and its output:

F1 = {model, Abs, comp, sign, sw.then | o1}

F2 = {model, Abs, comp, sw.else | o1}

F3 = {model, Abs, comp, sw1.then | o2}

F4 = {model, Abs, comp, Product, sw1.else | o2}

3.3 Test strategies

Once all flows of the ITG are identified, a test
strategy can be applied to determine a set of test

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

objectives for the software. In fact, a test strategy is
a way to choose flows, which respects the following
criterion: every place in the graph must be activated
at least once, to ensure the coverage of all modules.

Two test strategies are supported by the SATAN
technology: the progressive structural strategy
(Start-Small) and the cross-checking strategy
(Multiple-Clue) [14].

The Start-Small strategy covers gradually the
modules by choosing flows with an increasing
number of covered modules. The main idea of this
strategy is to minimize the effort of diagnosis. The
first flow to be tested must contains the minimal
quantity of modules. The next flow to be tested
contains a minimal quantity of modules that are not
activated yet. In this strategy, a new flow is tested
only if all faults detected in previous flows are
corrected, as depicted in Figure 7. This strategy is
suitable for the progressive detection of faults during
the validation process.

Figure 7: The Start-Small strategy

The Multiple-Clue strategy is based on choosing the
minimum subset of flows that covers all modules.
This strategy refers to the notion of differential
matrix. In this strategy, all flows chosen are
executed, and diagnostic is realized on possible fault
information, see Figure 8. This strategy is suitable
for diagnosis during maintenance.

Figure 8: Analysis of testing results with Multiple
Clue

These two strategies are complementary: the Start-
Small strategy can be used to detect multiple faults;
on the other hand, the Multiple-Clue strategy gives

the best fault localisation for single fault (it can treat
undistinguishable fault information found by the
Start-Small strategy).

These two strategies allow the number of test
objectives to be minimized while ensuring that all
components of the system are activated. By applying
these two strategies, the validation and the
maintenance are taken into account very soon at the
design phase.

3.4 Information Transfer Net

The Information Transfer Net (ITN) is used to
simulate the transfer of information in the diagram of
operators. The ITN is a weighted ITG, whose
elements are associated with their information
capacities.

The information capacities of inputs and outputs of
the system are evaluated from their data types.

The capacity of a functional module is the product of
the capacity of its output and the Information Loss
Coefficient.

The capacity of an edge leaving from a place is
equal to the capacity of that place.

The capacity of an edge arriving at an output place is
equal to the capacity of this output place.

In the junction mode, the capacity of the edge that
leaves the transition is the sum of capacities of all
edges arriving at the transition.

In the selection mode, the capacity of each edge
leaving from the source place is the capacity of the
source place.

In the attribution mode, the capacity of the
destination place is the maximum value of capacities
of every edges arriving at that place.

3.5 Constructing ITG and ITN

The ITG of a design is built by concatenating
elementary ITGs of its operators. An elementary ITG
represents the data-flow of the corresponding
operator.

The ITN of a design is built from the ITG and
elementary ITNs of its operators. An elementary ITN
represents the information circulation and
information loss of the corresponding operator.

For example, the elementary ITG and ITN of the
AND operator is presented in figure 9.

We use SATAN libraries to manage elementary ITGs
and elementary ITGs of operators. These elements
are obtained from the description and the use of
operators. A SATAN library corresponds to a
graphical library of the development environment.

3.6 Testability Measures

In this approach, the testability is based on the
controllability and the observability of a module for

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

each flow that contains this module. The
controllability expresses how ease the input values
of an internal component can be controlled through
the input values of the system. The observability
expresses how ease the results of an internal
component can be observed at the outputs of the
system (Figure 10).

Figure 9: Elementary ITG and ITN of the AND
operator.

With our approach, the SATAN technology computes
testability measures only for flows chosen by a
strategy, because the coverage of elementary
functions is ensured.

 controllability

module observability

Data-flow design

Figure 10: Controllability and observability of a
module

Next, we describe the computation of testability
measures. Suppose that F is a flow in the ITG, and
M is a module in the flow F, the variables of F are
denoted as follows:

• XM is the input variable of module M

• YM is the output variable of module M

• IF is the source variable of flow F

• OF is the destination variable of flow F

We compute the controllability measure of the
module M in the flow F as follow:

If module M is isolated, all the possible combinations
of its inputs can be produced. And the information

capacity of M is the maximum information of its
inputs: C (XM).

If the module M belongs to the flow F, the
information quantity that can be brought to its inputs
is: T(OF ; XM). This information quantity is the
maximal flow from the inputs OF to the module M.
The controllability of the module M in F is computed
by the following equation:

!

Cont
F
(M) =

T(O
F
;X

M
)

C(X
M
)

In the same way, we compute the observability
measures of the module M in the flow F as follow:
the total information quantity that the module M can
produce is C(YM). The maximum information quantity
that the module M can deliver to the destinations of
F is: T(YM ; OF). The observability of the module M in
F is computed by the following equation:

!

Obs
F
(M) =

T(Y
M
;O

F
)

C(Y
M
)

4. Statistical Evaluation of the ILC

The testability measures are calculated by
evaluating the information loss in the diagram of
operators, where each operator contributes to this
loss. The estimation of the intrinsic losses of
information of each operator determines the
relevance of the computation of testability
measures.

The information loss of an operator is related to the
effective information capacity of its outputs. To
facilitate the construction of the ITN, we introduce
the concept of Information Loss Coefficient, which is
the ratio between the effective capacity and the
maximum capacity of the output.

If the input domain I and the output domain O of an
operator are finite sets, A. Dammak [15] proposes a
formula to compute the information capacity of
operator.

For the logical operators, the input domain and the
output domain are finite sets. The ILC of the logical
operators can be evaluated exactly from the truth
tables. For the other operators, we propose a
statistical evaluation of ILC.

The three principal tasks of the statistical evaluation
are:

• Determination of finite data domains;

• Execution of the operator in consideration;

• Computation of the approximate capacity of the
operator.

4.1 Determination of finite data domains

Many operators have non-finite input and output
domains. For example: the output domain of the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

operator sin is bounded but continuous [-1, 1]; the
output domain of the operator Rounding is discrete
but not bounded. To evaluate the ILC of these
operators, we must have finite data domains (i.e.
bounded and discrete).

Information of data domains (lower bound, upper
bound, interval) can be found in the specification of
the system. In case this information is absent, a
study must be done to find the most suitable default
domain.

A non-finite domain is transformed into finite domain
as follows: if a domain is not bounded, it is
necessary to determine a lower bound and an upper
bound; if a domain is continuous, it is necessary to
subdivide this domain in disjoint intervals. In fact, a
non-bounded domain is always limited by
MIN_REAL and MAX_REAL, which depend on
processors.

4.2 Simulation of operators with random data

The operator in consideration is simulated with
random data generated from the finite input domain.

The simulation can be done according to two
approaches:

1) A system, which contains the operator, is
simulated. The input and output values of
the operator are used for the evaluation of
the ILC. The advantage of this approach is
that one can obtain an ILC value more
realistic. But, the singular values can be
omitted. And ILC obtained depends on
selected architecture.

2) The simulation of the operator is done
independently, i.e. this operator is isolated.
This approach is relatively simple if the
function of this operator and the data
domains are known.

The simulation of the operator or the system
containing this operator can be done in two ways:

1) We use the simulator of the development
environments to simulate the operator (or
system) in consideration.

2) We have the code C of the operator (or
system), and this code C can be simulated
out side of the development environment.

The simulation results are then used to evaluate the
ILC value.

4.3 Evaluation of the ILC

Two important factors of the simulation are: the input
domains, and the number of executions. In several
SIMULINK descriptions, the data domains are not
specified. In this case, a research of default domain
for each application category should be done.

Suppose that O is the operator in consideration, and
YO is the output variable of O. The maximum

information of its output is

!

C
max

Y
O() . The effective

information that the operator O produces during the
simulation is

!

C
sim
Y
O(). The ILC value of the operator

O is calculated by the following equation:

!

ILC(O) =
C
sim
Y
O()

C
max
(Y

O
)

With various numbers of executions, we obtain
different values of ILC. The purpose of the study on
several numbers of executions is: a) to calculate the
standard deviation and the average value of ILC; b)
to choose a “reasonable” number of executions that
is then used systematically for the statistical
evaluation of ILC.

4.4 ILC values of some simple operators

The statistical ILC values of some basic operators
that we evaluated are represented in the table 1.

Table 1: ILC values of some basic operators

Operator Subfunction ILC
Trigonometry
 Sin 0.951563
 Cos 0.949281
 Tan 0.466776
 Cosh 0.629261
 Sinh 0.691421
 Tanh 0.683351
 Asin 0.396719
 Acos 0. 397585
 Atan 0.371132
Relational Operator
 == 0.045415
 ~= 0.080793
 < 0.997402
 <= 0.995378
 > 0.995378
 >= 0.997402

These ILC values are integrated into our SATAN
libraries.

5. Testability analysis process

In this section, we talk about our testability analysis
process. This process was implemented in the MAC
tool [16].
Data-flow designs of reactive systems, which are
produced by using several development
environments (Scade, Sildex, Simulink), are
transformed into a common graphical format (dot
format): one graph per subsystem of the hierarchical
structure.
The hierarchical structure is then flattened into a
one-level structure before building the SATAN
testability model. In case some operators are not

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

defined in the SATAN library, the signatures of these
operators are used to complete the SATAN library.
The ILC value of each operator can be evaluated
statistically or manually.
From the elementary ITGs and the flattened
diagram, the Satan technology creates the ITG of
the design. All flows in the ITG are automatically
identified by the SATAN technology. A test strategy
is applied to determine the test objectives that are a
subset of flows in the ITG.
The ITN of the design is then constructed from the
ITG and elementary ITNs. From the ITN and the test
objectives, the controllability measure and the
observability measure of each functional module in
the ITG are computed by simulating the information
transfer.
The testability analysis results are represented in a
HTML report that supports hierarchical navigation.
This report contains a hierarchical table of the
testability measurements and labeled operator
diagrams. Each labeled operator diagram
corresponds to an operator diagram of the system.
In this report, users can easily find individual result
for each component, and global result for each sub-
system of the operator diagram.

Figure 11: The testability analysis process

6. Case Study

We apply our approach to the top level of the GRS
example. Testability measures are presented in
Table 2.

Table 2: Testability measures of the GRS example

 Controllability Observability
Abs 0.9139 0.1246
Comp 0.4978 1.0
Model 1.0 0.8912
Product 1.0 0.8827
Sign 0.9139 0.8954
Sw 0.9704 1.0
sw1 1.0 1.0

Three operators model, Product and sw1 have the
ideal value of controllability equal to 1. We can say
that these three operators are totally controllable.
The operator comp has the minimum value of
controllability equal to 0.4978. It means that in the
worst case, only 49.78% of its input domain can be
controlled from a flow.

Two operators sw and sw1 are totally observable,
because their outputs are directly connected to the
two outputs of the system. The observability value of
the comp operator is equal to 1, because the
capacity of its output is too small compared with the
capacity of the two outputs of the system. The Abs
operator has the minimum value of observability
equal to 0.1246. This very week value is due to the
fact that the output of the Abs operator is hidden by
the Boolean output of the comp operator. In order to
increase the observability of the Abs operator, the
designer can add an observation point to observe
the output of this operator at the output level of the
system.

We also validate our method on five industrial
examples provided by the MBDA Company.
These examples were produced in the Simulink
and Scade environments. After applying our
method, the numbers of test objectives of these
examples are considerably reduced: for the
biggest example, this number is reduced from
1039 to 41.

7. Conclusion

Our approach allows an automated testability
analysis of graphical data-flow designs of reactive
systems. This testability analysis, which is applied
very soon at the specification phase, helps the
designer to identify parts of system that are difficult
for testing. Designer can use testability measures to
compare different architectures. The test generation
is minimized through strategies while ensuring that
all operators in the design are covered. Hence, the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

validation cost can be reduced. Testability measures
can also be used as an indicator in testing resource
allocation: tester should pay more attention to parts
of system that have low testability measures.

At the moment, we design an “intelligent” filtering to
help the engineer in the exploitation of the analysis
results with a coding of colors (red and yellow). The
colors will give the indication of a relativeness
excess of complexity. In the future, we tend to
integrate our method into graphic development
environments, such as OSATE [17] plug-in in the
Eclipse platform, to help developers in reducing the
time and the cost of the validation, and in enhancing
the confidence of systems.

8. Acknowledgement

The authors thank the Linbox Company (A.
Laprevote and C. Delfosse) for their industrialization
tasks and helpful advices. The Linbox Company is
the editor of the interface wrappers technologies with
the Satan technology and the report synthesizer in
HTML language.

9. References

[1] http://www.mathworks.com.

[2] http://www.scicos.org.

[3] D. Harel, “Statecharts: A Visual Formalism for
Complex Systems”, Sci. Computer Prog., July
1987, pp. 231-274; also see Tech. Report CS84-
05, The Weizmann Inst. Of Science, Rehovot,
Israel, 1984.

[4] http://www.uml.org.

[5] Peter Feiler, Ed Colbert: "The SAE AADL Standard
-An Architecture Analysis & Design Language for
Embedded Real-Time Systems", Model-Integrated
Computing Workshop, Arlington, VA, USA, October
12-15, 2004.

 [6] N.Halbwachs, P. Caspi, P. Raymond and D. Pilaud:
“The synchronous dataflow programing language
LUSTRE”, Proceedings of the IEEE, 79(9): 1305-
1320, September 1991.

[7] P. Baufreton, H. Granier, J.-S. Cruz, F. Dupond:
“Visual Notations Bases On Synchronous
Languages for Dynamic Validation of GALS
Systems“, CCCT’04, Austin, USA, August 14-17,
2004.

[8] H. G. Chalé-Góngora, P. Baufreton, D. Goshen-
Meskin, J.-S. Cruz, F. Dupont, R. Leviathan, M.
Segelken, K. Winkelmann, N. Halbwachs: “Safeair
II Project Advanced Systems development
Environment: A methodology and a tool-set
designed to develop aeronautics, automotive and
space safety-critical systems”,CONVERGENCE’04,
Detroit Mi, USA, October 18-20, 2004.

[9] C. Robach and P. Wodey: “Linking design and test
tools: an implementation”, IEEE Transactions on
Industrial Electronics, vol. 36, pp. 286-295, 1989.

[10] David J.C. Mackay, “Information Theory, Inference,
and Learning Algorithms”, Cambridge University
Press, 2003.

[11] A. Benveniste, G. Berry: “The Synchronous
Approach to Reactive and Real-Time Systems”,
Proceedings of the IEEE, 79(9), 1991.

[12] Y. Le Traon and C. Robach: “Testability
measurements for data flow designs”, International
Software Metrics Symposium, Albuquerque (New
Mexico-USA), pp. 91-98, November 5-7, 1997.

[13] H.V. Do, M. Delaunay, C. Robach, J.-S. Cruz, “A
Testability Analysis for Data-Flow Designs of
Reactive Real-Time Systems”, Proceedings of the
Eighth IASTED International Conference on
Software Engineering and Applications, pages 318-
323, MIT, Cambridge, USA, November 9-11, 2004.

[14] C. Robach: “Test et testabilité de système
informatiques”, PhD Thesis, 1979.

[15] A. Dammak: “Etude de Mesures de Testabilité de
Systèmes Logiques”, PhD Thesis, 1985.

[16] H. V. Do, M. Delaunay, C. Robach, J.-S. Cruz:
“MaC : A Testability Analysis Tool for Reactive
Real-Time Systems”, ERCIM News No.58, Special
theme: Automated Software Engineering, July
2004.

[17] The SEI AADL Team: “An Extensible Open Source
AADL Tool Environment (OSATE)”, Release 1.0,
May 23, 2005.

10. Glossary

ILC: Information Loss Coefficient

ITG: Information Transfer Graph

ITN: Information Transfer Net

SATAN: System’s Automatic Testability ANalysis

