
HAL Id: hal-02270461
https://hal.science/hal-02270461

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The TOPCASED project: a Toolkit in Open source for
Critical Aeronautic SystEms Design

Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David
Sciamma, Pierre Michel, Xavier Crégut, Marc Pantel

To cite this version:
Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Camus, David Sciamma, et al.. The
TOPCASED project: a Toolkit in Open source for Critical Aeronautic SystEms Design. Conference
ERTS’06, Jan 2006, Toulouse, France. �hal-02270461�

https://hal.science/hal-02270461
https://hal.archives-ouvertes.fr

The TOPCASED project: a Toolkit in Open source for Critical
Aeronautic SystEms Design

Patrick Farail1, Pierre Gaufillet1, Agusti Canals2, Christophe Le Camus2, David Sciamma3,
Pierre Michel4, Xavier Crégut5, Marc Pantel5

1: AIRBUS FRANCE, 316, route de Bayonne F-31060 Toulouse - France

2: C/S, ZAC de la Grande Plaine - Rue Brindejonc des Moulinais - BP 5872 - 31506 Toulouse cedex 5 - France

3: Anyware Technologies, Prologue 2 - Rue Ampère - BP 87216 - 31672 Labège Cedex - France

4: FéRIA-ONERA, -DTIM, 2, avenue Edouard Belin, F-31400 Toulouse - France

5: FéRIA-IRIT-ENSEEIHT, 2, rue Charles Camichel, BP 7122, F-31071 Toulouse cedex 7 - France

Abstract: The TOPCASED project aims at
developing an open source CASE environment for
critical applications and systems development. Its
main benefits should be to perpetuate the methods
and tools for software development, minimize
ownership costs, ensure independence of
development platform, integrate, as soon as
possible, methodological changes and advances
made in academic world, be able to adapt tools to
the process instead of the opposite, take into
account qualification constraints. This paper focuses
on the meta-modelling principles used in the
TOPCASED CASE environment. It includes a tool to
automatically generate graphical editors for specific
languages based on their meta-model. This
generation includes a customization stage before
and after the generation. It has been used to develop
editors for UML2, Ecore, SAM and AADL meta-
models. Models are also the way tools of the
environment communicate with each other thanks to
a model bus. Importing models created with external
tools is possible thanks to transformation of external
models to TOPCASED ones. Transformations are
made using ATL. This paper describes the MDE
approach used in TOPCASED and gives insights on
the whole project.

Keywords: Open source, Model driven engineering,
Critical systems design, Meta-modelling, Model
editor generator, Model bus

1. Introduction

The creation of industrial systems relies on
numerous tools on which it is essential to capitalize
in order to optimise development costs. However, the
lifetime of critical systems such as aerospace
products is often about 10 to 30 years, and currently,
no software editor is able to commit for such a long
time at an acceptable cost. To counter these risks,
the CNRT [1] (National Center for Research &
Technology) Aeronautic & Space partners have put
forward the TOPCASED project (standing for Toolkit
in Open source for Critical Applications and SystEms
Development) which aims to develop an open source
CASE environment with the following goals :

• to perpetuate methods and tools used for
software developments,

• to minimize ownership costs,
• to ensure independence of development

platforms,
• to integrate, as soon as possible,

methodological changes and advances made in
the academic world,

• to be able to adapt the tools to the process, and
not the opposite,

• to take into account qualification constraints.

This article describes the TOPCASED project, es-
pecially its architecture – platform, how the tools are
built, how they communicate, ... – and technical
choices – a meta-modelling approach [2], the use of
Eclipse [3], EMF [4], Model Bus [5], ... The
relationship with some other projects (ASSERT [6],
ModelWare [7], TopModL [8], Cotre [9]) are also
discussed. We then present the current status of the
project and the tools developed during the first
semester of 2005. At last, the roadmap of the coming
developments will be presented.

2. Requirements and TOPCASED architecture

The design of critical systems and softwares
currently requires the use of many different models
at the various steps of both the system development
process and its life-cycle. These models allow to
express the various aspects of the system : both
static and dynamic, functional and non-functional, at
the systems and at the components level, software
and hardware, clients and providers, ...
Many kind of tools have to be available to handle
these models: textual and graphical editors;
translators from one model type to an other; code,
test and documentation generators, version control
systems, model validation tools, ...

The main technical requirement for a modern
extensible and evolutive CASE tool is that it should
be able to provide users with an easy access to the
various models of a given system and to their
associated tools.

The TOPCASED project is based on Model Driven
Engineering [10] (MDE) for this purpose:

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

• meta-modeling allows to describe all the
modeling languages in a common framework;

• model bus allows to access easily to the various
tools;

• model transformations allows to relate the
various models and adapt models to the various
tools involved in a project;

• generative programming allows to easily
produce both textual and graphical model
editors.

In the current industrial processes, these software
tools will have clearly a more and more important
place. Unfortunately, experience shows that it is
really difficult for enterprises to keep mastering their
software tools for the whole lifetime of their own
products (lifetime which can be as long as several
dozen of years). Indeed, the current industrial plan
consists in sub-contracting the implementation and
diffusion of the tools to specialized editors which are
de facto the owners. Ownership problems usually
arise when the interests of the industrial user and of
the editor diverge, or when the editor is bought by an
other company or disappears, or when the
technology evolves. It is mainly for this reason that
the TOPCASED project has turned to free (like in
freedom, not in costless) and open source software.

The fact that the tools documentation and source
codes are open guarantees that it will be
successfully maintained, possibly, in the worst case,
at the price of creating a specific development
branch, depending on the requirements of the
industrial users.

Working with open source software brings also some
other advantages :

• it allows to adapt the tools to the processes,
where it is today required to do the opposite
most of the time.

• the availability of the software interfaces
ensures a good interoperability.

• the supported platforms are not limited, like it is
often the case, to the most common platforms
at a given time.

• the tools and their source code being available,
the academic actors can integrate very quickly
their new techniques, and use the tools for the
training courses.

The cost of the tools becomes the cost of
development, deployment and maintenance, where
today the most common proprietary tools are
invoiced in proportion to the number of users.
Moreover, this cost can be shared between the
users, and be reduced by the reuse of existing open
source components.

The implementation of the TOPCASED project relies
on the open source plugin-based Eclipse CASE
platform. The first tools developed are therefore
Eclipse plugins. Nevertheless, the TOPCASED
architecture also allows to integrate smoothly
external tools.

Of course, as TOPCASED addresses critical
systems and software design, it has to take into
account the processes which imply some products
and tools qualification constraints, processes which
are quite frequent in the embedded systems domain
(DO-178B, DO-254, ECSS, etc.).

3. Model Driven Engineering and meta-modelling

The “Object Management Group” (OMG:
http://www.omg.org/) was created in 1989 to provide
frameworks and standards for the integration of
object-oriented applications, mainly the CORBA [11]
and UML [12] technologies.

The growing diversity of techniques and platforms
used in software developments, as well as the
emergence of non-CORBA based middlewares, like
EJB from Sun and .NET from Microsoft, have taken
the pre-eminent role away from CORBA. Then, OMG
refocused its strategy and standards to support the
MDA approach [13,14].

MDA addresses the complete life cycle analysis
design and programming aspects, providing an
interoperability framework for defining modular and
interconnected systems, and with the will to offer
more flexibility in system integration and system
evolution. A system design is organized around a set
of models and a series of transformations between
models, into a layered architecture.

Central to MDA is the principle of defining different
models at different levels of abstraction and linking
them together to form an implementation. MDA
separates the conceptual elements of an application
from the representation of these elements on
particular implementations technologies. For that
purpose a distinction is made between “Platform
Independent Models” (PIMs), representing the
conceptual design of the application, and “Platform
Specific Models” (PSMs) which are more solution
oriented.

Transformations between models are key elements
in the MDA approach: vertical transformations
between PIMs and PSMs to express realizations, or
horizontal transformations between PSMs for
integration features.

Underlying these model representations and
transformations is the notion of “meta-model”. The
ability to express and transform models requires a
rigorous definition of the (textual or graphical)
notations supporting these models. Therefore, the
notations to express models must themselves be
described into models, which are called “meta-
models”. For example, the UML meta-model formally
describes the notation of the different UML diagrams,
giving so an unambiguous and precious common
base to all tool providers and users.

The importance of meta-models has been
recognized by OMG who proposed the “Meta Object
Facility” (MOF). The MOF [14, 15] provides a meta-
modeling hierarchy as well as a standard language

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

http://www.omg.org/

for expressing meta-models. It proposes a structure
of data in four different levels, so called the “four-
layer meta-model architecture”:

• the bottom M0 level, or Application level gives
the data values i.e. the extension of an
application,

• the M1 level defines the model i.e. the intension
for an application,

• the M2 allows to define a schema, or language,
for the application model: it is the meta-model
level,

• the M3 level, or MOF level, proposes general
concepts, defining the MOF meta-language, i.e.
a schema for a meta-model: it is the meta-
language level.

The four-layer meta-model architecture is now widely
accepted and was proposed (before the OMG MDA-
MOF proposals) in other standards like the ISO/IEC
standard for IRDS (“Information Resource Dictionary
System”) [16] and CDIF (“CASE Data Interchange
Format”) from EIA [17].

Figure1: The four-layer meta-model architecture.

As TOPCASED relies on the Eclipse platform, the
M3 meta-modeling language used is Ecore provided
by the EMF (“Eclipse modeling Framework”) project
[4] which is strongly related to Essential MOF 2.0 as
specified by the OMG [15] . Several M2 modeling
language editors have been developed (ECORE,
UML2, SAM, AADL) and others will follow (SYSML,
SPEM, ...). The M1 level then corresponds to specific
system models (an UML use case, activity or class
diagram) and the M0 level to instances of the models
(a real execution of the system).

4. Communication and Basic services

According to MDA, models are treated as first-class
elements in software development. MDA application
requires a wide range of model operations such as
model edition, model storage, model manipulation,
code generation and model transformation.

A lot of tools are now available commercially or as
open source and provide various model operations. It
has been widely observed that a single tool is not
sufficient to realise a complete MDA software pro-

duction. This is because the MDA software
production requires a wide range of model
operations to be used in different software
development activities (e.g. analysis phase, design
phase, test phase, implementation phase).

Therefore, the fact that model operations are not
supported by the same tool must not prevent models
to be processed by all the operations required in the
MDA software production. For this reason, when
users need to use two tools conjointly, they must be
able to send an output model produced by an
operation of tool T1 as an input to an operation of
tool T2. The term “operation connection” is used to
denote the action of linking an operation’s output to
another operation’s input.

Model Bus is an architecture defined by X. Blanc at
LIP6 [6] in the IST ModelWare project which allows
model operations to be connected. TOPCASED has
currently defined and implemented a simple yet
effective model bus and will later on be also
connected to X. Blanc model bus.

Several basic services are required in the
TOPCASED platform mainly for the deployment and
management of the various Eclipse plugins through
the Eclipse platform and the model bus.

Based on the OSGi Eclipse mechanisms the
TOPCASED bus allows to retrieve all the services
registered on the bus. TOPCASED services
deployed as plugins can then be tested using a basic
console, which allows to run locally registered
services providing parameters values. Services can
be retrieved using a basic ontology, so that developer
does not need to know the exact interface.
Furthermore, the user can chain functional
treatments which need intermediate output results.

TOPCASED facilities can be split in two groups :

• deployment and management plugins,
• communication plugins.

First objectives in the TOPCASED project has lead
us to assign most of the efforts on the plugins
deployment and development project management.
TOPCASED offers today plugins that ease the
deployment :

• for an eclipse adapted platform from a local or
network full installed Eclipse reference. This
feature allows to build a specific Eclipse
environment centred on the user's selection of
targeted plugins – mandatory plugins to
selected ones are automatically retrieved and
packaged according to user requirements and
Eclipse constraints.

• for a specific project through the build of a
specific Eclipse feature from already done set
of deployable jar.

• by generating a master configuration file in
order to run Eclipse with a referenced
configuration and share the same preferences.

and the management of a project :

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

Modeling
languages

Models

« The real world »

MOF
The meta-language level

The languages (meta-models)
 level

The models level

The instances
 levelM0

M1

M2

3
M

• allowing to build project templates from an
Eclipse project (Java, ...).

• allowing to reuse existing project templates to
create new projects following the given
architecture.

Communication between TOPCASED and external
tools may occur in both ways. On one hand, from
TOPCASED to external tools, it proposes to
generate part of an adaptator which registers the
new functionality as a new TOPCASED service. It
can then be invoked through a wizard that can help
the developer in providing parameters and generate
the structure of the new plugin. Other mechanisms
will also be implemented in the future. The developer
can then implement the part that is specific to the
tool, and takes benefits of all the registered services.

The sequence diagram in figure 2 explains how the
communication between TOPCASED and an
external tool has been considered.

Figure 2: Communication from TOPCASED to
an external tool.

On the other hand, from an external tool to
TOPCASED, it offers a HTTP Web server, whose
port is customizable and which allows restrictions
over the authorized connections through preferences
page. This Web server is launched at the
TOPCASED start and wait for SOAP requests.
Available web services can be accessed through a
getServices request. To allow to retrieve available
web services, TOPCASED bus offers the same
mechanism as for its local services, providing
extension for web services registering. Model
transformations offered in TOPCASED to import
models from previously used formalism are currently
available through this mechanism.

The sequence diagram in figure 3 exposes how the
communication has been thought.

Figure 3: Communication from an external tool
to TOPCASED.

5. Use of model transformation

MDE advocates the use of model transformation to
relate two different models of the same system.
Model transformations basically allows to translate a
model in a given modelling language to another
model in another language.

TOPCASED currently relies on the ATL model
transformation Eclipse plugin defined and
implemented in the INRIA Triskell project which is
part of Eclipse Generative Model Framework project.
At this stage of the project, model transformations
have been mainly used in order to access models
defined using other editors than TOPCASED one's.

To illustrate the approach, let's rely on the import of
SILDEX models ([18] a synchronous language based
graphical modelling formalism developed by TNI and
currently in use at AIRBUS) in the TOPCASED SAM
modelling language.

A meta-model for SILDEX defining all the concepts
that can be handled in TOPCASED SAM formalism
has been defined. The SILDEX example below
illustrate the communication of two sub-systems
named “Producteur” and “Consommateur” via data
flows and control flows connected on ports (not
visible on the sub system “Consommateur”).

Figure 4: An example of communication between
two sub-systems

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

Figure 5: A simplified view of the SAM meta-model

This example illustrates the following notions:
System, Data flows prefixed by FD_, Control flows
prefixed by FC_, Ports that we specialised
depending on their nature and their direction. To
precise some relations, a system can contain sub
systems, and a flow is linked by ports. The
confrontation of the analysis of other examples
allowed to extend the SAM meta-model whose
simplified view is proposed in figure 5.

After the creation of the source and target meta
models, in our example SILDEX and SAM, the
TOPCASED process to make a transformation can
be breakdown as follow : first, the mapping of the
concepts, then the writing of the transformation rules
(in our case with ATL/OCL) and the automatic
transformation by rule execution (also with ATL), at
last, manual check of the result through the reading
of the files obtained by the editors (in our example
TOPCASED SAM Editor).

Today the TOPCASED service to transform SILDEX
models to SAM Models is operational and used by
AIRBUS France.

More information on this work can be found in [19].

6. Generating model editors

As many different modelling languages are required,
the production of model editors will be a key task for
TOPCASED. Most of the currently available editors
rely on hard-wired technologies with very little code
reuse between editors. Model driven engineering,
and specifically generative programming, can be
applied in order to ease the development of these
editors.

Figure 6: Generation process

TOPCASED has specified and implemented a
simple yet effective MDE based editor generator for
the Eclipse EMF/GEF platform. The editors are
generated according to the modelling language
description (its meta-model), and several models
specifying the graphical primitive and interaction
used in order to edit each part of the modelling
language. This approach is multi-staged and based
on the Eclipse JET (Java Emitter Template) for code
generation. Each stage takes the meta-model as
parameter and a model describing the various
aspects of the editor in order to generate Java
classes for the handling of the models, a hierarchical
editor and then a graphical editor. This approach has
been proposed as a contribution to Eclipse GMF
(“Graphical Modelling Framework”) [20].

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

The main requirement for a model editor is to be
compliant with the model constraints – defined in the
meta-model – and with the usual graphical notation.

A lot of information about the way to edit a model are
already in the meta-model and can be used to
generate a part of the editor. Other information – like
graphical presentation, available diagrams... - are not
available in the model. Another model is then used to
store the additional parameters needed for the
generation.

The process to create a new model editor can be
split into several steps :

• the meta-model definition – using the Ecore
modelling language

• the generation model definition describing the
editor behaviour and the graphical informations

• the execution of the generation action provided
by TOPCASED. The result of this execution is a
functional graphical editor compliant with the
input meta-model

• the last step is optional. It consists of a Java
customization of the generated code. During
this step the graphical representations can be
customized to fit with the requirements of the
meta-model specifications.

An example of this process for the Ecore meta-
model is given in figure 7.

Figure 7: Ecore process example

The graphical editor needs to store graphical
informations about the current edited model (position
of objects, colors...) but this kind of properties are not
defined in the domain meta-model. To solve this
problem TOPCASED uses the OMG standard, XMI-
DI (XMI – Diagram Interchange).

A simplified view of the XMI-DI model is presented in
figure 8.

The XMI-DI model wraps the domain model and
adds all the missing informations needed to display
the model. Using this “graphical” model, we can
exchange the diagrams with others modelling tools

and export it to external formats (RSM, Together,
SVG...).

TOPCASED is based on the Eclipse JET engine
(Java Emitter Templates) for code generation. With
this generation engine, the generated code can be
customized and then re-generated without losing
already defined customizations.

Using TOPCASED and EMF you can also generate
Java classes for the handling of the models within
Eclipse, a hierarchical editor, documentation reports
(HTML, PDF), helper classes to handle context
menu...

This approach has been proposed as a contribution
to Eclipse GMF (Graphical Modelling Framework).

7. Project infrastructure and perpectives

TOPCASED has been started through the CNRT-AE
(Centre National de Recherche Technologique
Aéronautique et Espace, [1]) in 2004, and is now a
project of the Aerospace Valley Regional
Competitivity Pole.

It gathers today some major industrial partners, like
EADS Airbus, EADS Astrium, Atos-Origin, CS,
Siemens-VDO and Thales Aerospace; some SME
like Adacore, Anyware Technologies, Micouin
consulting, Sinters, and Tectosages; and some
laboratories and schools : ENSEEIHT (repository of
the collaborative development gforge platform for
TOPCASED), ENSIETA, ESEO, ESSAIM, FéRIA-
IRIT, FéRIA-LAAS, FéRIA-ONERA, INRIA Rhone-
alpes, INRIA-IRISA, the Federal University of Santa
Catarina (UFSC, Brazil), the Paul Sabatier University
(UPS).

This partnership is open. To become a new member
and to participate to the strategic decisions, you will
need to accept the TOPCASED membership charter,
and your proposal will have to be validated by the
steering committee. Of course, our tools remain
publicly available.

The initial TOPCASED infrastructure developments
have been funded by Airbus, and have been
specified and implemented by Airbus, Anyware
Technologies, CS and FéRIA.

Only a small part of the full project has been
addressed until now, mainly work packages WP2 –
Model editors tasks :

• SP2.1 - State of the art on modelling methods
and languages

• SP2.2 – Meta-modelling language definition
• SP2.3 – Model editors specifications
• SP2.4 – Editor for the meta-modelling language
• SP2.5 – Editor for UML2 (currently use case

and class diagrams)
• SP2.6 – Editor for AADL/COTRE.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

This work led to the development of the first versions
of the TOPCASED toolkits which are available
through the project website
(http://www.topcased.org) or the development server
(http://gforge.enseeiht.fr).

Some work still need to be done on the
improvements of the editors, on the development of
new editors and on the semantics side of meta-
models in order to allow the use of formal model
validation and simulation tools. A Ph.D. has started at
FéRIA-IRIT has started on the expression of the
semantics of development processes at the meta-
model level. A preliminary integration of OCL for the
validation of models will be soon available.

Many other points will be studied and developed
during this project:
• WP1 – Process and life-cycle for critical

systems, which will provide a common process
for the development of such systems taking into
account the constraints and experiences of the
various partners. All the concepts used in
TOPCASED will be defined through a common
ontology. The use of the MDA Y approach in
system engineering will also be assessed. The
WP1 tasks have already started.

• WP3 – Model verification and simulation, which
will allow to integrate easily at the model level
validation approaches based both on formal
tools and simulations in the toolkit. A Ph.D. has
started between FéRIA-LAAS and Airbus to
work on pre-emptive software models
verification.

• WP4 – Implementation tools. This work
package aims to select, and if required to
improve and adapt to the qualification
constraints the numerous implementation tools
(GCC, binutils, GDB, CDT, JDT, etc.) already
available in open source.

• WP5 – Model transformations which will allow
to interconnect the various tools and produce
both code and documentation using the various
models. Some tasks have been started at the
end of 2005.

• WP6 – Tools interoperability and Data
management. The first result of this work
package is the current bus used by the
TOPCASED tools. A work is also in progress to
start to integrate Stood (a HOOD software
design tool). This work package is also in
charge of transversal tools like anomalies
management, requirement management, and
version control systems.

• WP7 – Infrastructure. Three points will be
studied in the WP7 : the juridical point of view
(what open source licenses are acceptable for
the components we use, what open source
licenses are acceptable for the components we
release, software patents issues, insurance,
copyright, etc.), the business model (who and in
what conditions will maintain and develop the
tools, how to guarantee the perpetuity of the
skills, etc.), and the technical means
(collaborative development server, etc.). some
work have already been done on these 3 points.

• WP8 – Safety. This work package has to
specify on the one hand specific tools to ensure
safety of the critical systems, and on the other
hand to define some requirements on the other

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

Figure 8: A simplified view of the XMI-DI

http://gforge.enseeiht.fr/
http://www.topcased.org/

TOPCASED tools to ensure that they will have
a positive impact on the final safety level of the
products.

TOPCASED is today in touch with several other
projects, like the Society of Automotive Engineers
(SAE) Architecture Analysis and Design Language
(AADL) standardization committee and the IST
project ASSERT for AADL editors and analysis tools,
the IST project ModelWare for the definition and the
development of the ModelBus, the ATLAS group at
INRIA, which is working on the ATLAS
Transformation Language (ATL) used for our first
implementations of models transformations, and the
TopModL initiative, which aims to develop meta-
modelling tools.

8. Acknowledgement

The authors acknowledge the contribution to this
work of F. Migeon and X. Thirioux and all the
developers and testers from Airbus, AnyWare and
C/S involved in the project.

9. References

[1] CNRT: "CNRT-AE: Centre National de Recherche
Technologique Aéronautique et Espace.", URL:
http://www.cnrtae.com/ (in french), 2005.

[2] M. Dahchour, A. Pirotte, E. Zimányi. “Definition and
application of metaclasses.”, In Proceedings of the
12th Int. Conference on Database and Expert
Systems Applications, DEXA'01, Munich, Germany,
LNCS Vol. 2113, Springer-Verlag, p. 32-41, Sept.
2001.

[3] Eclipse consortium: “Eclipse: an extensible
development platform and application frameworks for
building software.”, URL: http://www.eclipse.org/, 2005.

[4] EMF project: “EMF: Eclipse Modelling Framework.”,
URL: http://www.eclipse.org/emf/, 2005.

[5] X. Blanc, M.-P. Gervais, P. Sriplakich, “Model Bus :
Towards the interoperability of modelling tools”,
MDAFA’04, Linköping, 2004.

[6] Assert project: "Assert: Automated proof based
System and Software Engineering for Real-Time.",
URL: http://www.assert-online.net/, 2005.

[7] ModelWare project: "MODELWARE: MODELling
solution for softWARE systems.", European research
project (IST), URL: http://www.modelware-ist.org,2005.

[8] P.-A. Muller, C. Dumoulin, F. Fondement, M.
Hassenforder. “The TopModL initiative.“, 3rd
Workshop in Software Model Engineering , 7th
International Conference on the UML (WiSME@UML
2004), Lisbon, Portugal, Oct. 2004.

[9] B. Berthomieu, P.O Ribet, F. Vernadt, JL Bernartt, J.M
Farines,J.P. Bodeveix, M. Filali, G. Padiou, P. Farail,
P.Gaufillet, P. Dissaux, J.L. Lambert: "Towards the
verification of real-time systems in avionics: the
Cotre approach", 8th International Workshop on
Formal Methods for Industrial Critical Systems
(FMICS'03), Trondheim (Norway), June 2005.

[10] B. Selic. “The Pragmatics of Model-Driven
Development,”, IEEE Software, Vol. 20(5), Sept.
2003.

[11] OMG. “The Common Object Request
Broker: Architecture and Specification.”, Revision 2.0,
OMG document formal/97-02-25, Jul. 1995 (updated
Jul. 1995, until Revision 2.3 June 1999). URL
Revision 2.0:
http://www.omg.org/cgi-bin/apps/doc?formal/97-02-25.pdf .
URL Revision 2.3:
http://www.omg.org/cgi-bin/apps/doc?formal/98-12-01.pdf

[12] OMG. “Unified Modeling Language Specification.”,
Version 1.5, OMG document formal/03-03-01, Mar.
2003. Available at: http://www.omg.org/cgi-
bin/apps/doc?formal/03-03-01.pdf

[13] A. Kleppe, J. Warmer, W. Bast. “MDA Explained: The
Model Driven Architecture Practice and Promise.”,
Addison Wesley, 2003.

[14] D. Frankel. “Model Driven Architecture: Applying
MDA to Enterprise Computing.”, Wiley Press, 2003.

[15] OMG. “Meta Object Facility (MOF) Specification.”,
Version 1.3, OMG document formal/00-04-03, Mar.
2000. URL:
http://www.omg.org/cgi-bin/apps/doc?formal/00-04-03.pdf .
URL Version 1.4:
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf

[16] ISO, Information Technology. “Information Resource
Dictionary System (IRDS) Framework.”, standard
ISO/IEC 10027, 1990 (and ISO/IEC 10728, 1993).

[17] EIA. “Framework for Modeling and Extensibility.”,
Extract of Interim Standard, EIA/IS-107, Electronics
Industries Association, CDIF Technical Committee,
Jan. 1994.

[18] Tni Europe: "Sildex: a formal approach to real-time
applications development.", URL: http://www.tni-
world.com/rtbuilder.asp ,2005.

[19] A. Canals, C. Le Camus, M. Fleau, G. Jolly, V.
Bonafous, P. Bazavan: " An operational use of
ATL: integration of the model transformation in
the TOPCASED project", ICSSEA’2005 Conf.,
2005.

[20] GMF project: “GMF: the Graphical Modelling
Framework.”, URL: http://www.eclipse.org/gmf/, 2005.

10. Glossary

AADL: Architecture Analysis and Design Language
EMF: Eclipse Modelling Framework
EMFT: EMF Tools
GEF: Graphical Editor Framework (part of Eclipse)
GMF: Graphical Modeller Framework (part of Eclipse)
GMT: Generative Modelling Framework part of Eclipse)
HOOD: Hierarchical Object Oriented Design
MDA: Model Driven Architecture (part of OMG)
MDE: Model Driven Engineering
MOF: Meta-Object Facility (part of OMG)
OCL: Object Constraint Language (part of OMG)
OMG: Object Management Group
TOPCASED: Toolkit in Open source for Critical Aeronautic
SystEms Design
UML: Unified Modelling Language (part of OMG)
XMI: XML Metadata Interchange(part of OMG)

XML: Extensible Markup Language (from W3
Consortium)

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

http://www.eclipse.org/gmf/
http://www.tni-world.com/rtbuilder.asp
http://www.tni-world.com/rtbuilder.asp
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/00-04-03.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/98-12-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/97-02-25.pdf
http://www.modelware-ist.org/
http://www.assert-online.net/
http://www.eclipse.org/emf/
http://www.eclipse.org/
http://www.cnrtae.com/

