Keywords: Parking Systems, Sensors, Integrated Development Approaches, Model Driven Engineering 1. Overview of parking systems

A Methodology for Model Based Development of Application Software Modules Exemplified by Radar Based Parking Systems

Andy Yap 1 , Helmut Keller 2 1: MB-technology GmbH, HPC 050/G170, 71059 Sindelfingen, Germany 2: DaimlerChrysler AG, HPC 059/X914, 71059 Sindelfingen, Germany

Abstract: This paper addresses a methodology for the development of driver assistance systems. As an example the development of parking systems is described in detail. Throughout the paper the complete system including sensors, ECU and software is considered in order to provide better understanding of the overall development activities in each state of development.

A model based development approach is chosen for the early evaluation of the whole system. Graphical models are used throughout the process which is also advantageous for the extraction and the systematic validation of sub modules. The models are both used for the preparation of decisions in functional or software architecture and for testing and integration strategies.

For software modules containing core function applications the tool-supported development is presented, starting from basic ideas of new functionalities up to and including automatically generated production code for electronic control units.

Parking systems cover the range from pure optical assistance functions to fully automated parking. In addition various sensor principles are used or discussed, e.g. ultrasonic distance sensors as well as radar or optical image processing systems.

Other challenges include the activation and control of driving dynamics or the design of an acceptable human-machine interaction. The basic example of a parking system provides pure information for the driver, in this paper such a system is named PINFO. PINFO systems contain sensors and information processing to drive optical or acoustical output devices.

In contrast to this a fully automated autonomous parking system is considered that includes drive by wire technologies as acting devices in order to represent the possibly high complexity of challenges in development, in the text below it will be referenced as PAUTO. In this paper only this two versions of possible systems will be discussed. All other solutions are subject to similar conditions.

Functionality

Going through the process of entering a parking lot there are some sub-processes involved. The simplest approach contains just two steps. First the activities of identifying an adequate parking lot and in the second step the manoeuvre of placing the vehicle at the desired position. While performing the second step one main issue is to prevent accidents.

Based on these three topics (search, movement and accident prevention) we can classify the possible range of parking systems. The simple assistance function PINFO offers no support in step 1 or 2 but assists in topic 3 with additional information. Looking at a PAUTO type of system it will be actively influencing the vehicle behaviour in all three aspects.

Sensor principles

Most of the PINFO systems that are currently available, rely on ultrasonic devices as sensor principle in order to measure the distance from vehicle to possible obstacles. Using camera based systems for this type of assistance there is no need for sophisticated image processing as the user can be informed by displaying the raw image. Looking at PAUTO requirements, several results from image interpretation out of camera or radar sensors are necessary to fulfil the active parts in the system functionality. For radar systems plenty of calculation is necessary in order to have useful input for the control algorithms. The area that has to be monitored requires more than one sensor and leads to the demand for sensor data fusion as shown in [START_REF] Schmid | A new dimension of active and passive safety with PRE-SAFE and Brake Assist BAS PLUS in the new Mercedes-Benz S-Class[END_REF] for another assistance system.

System decomposition

All technical systems can be decomposed using different methodologies. For example looking at the component level, a system is divided into the parts that are relevant for assembly. Using functional decomposition will lead to parts of the system that are logically connected but may be implemented in different ways. Another approach is looking at the individual parts. The components could be mechanical, electrical, standard software, traditionally developed software modules or software modules that are designed by model based methods. This leads to a combined system and software architecture. Instead of looking at just hardware and software that require different levels of interaction during the development, we focus on the software in this paper which can be made in the three different ways named above. More details regarding the software modularisation will be given in chapter 4 below.

Model based approach

A model based development approach is chosen for the early evaluation of the whole system. For several years now a large variety of very powerful domain specific computer aided design, simulation, analysis and test tools offer support for the development of embedded components (e.g. digital and analogue microelectronics, software, mechanical sensors and actuators or optical components). Also there are some system level design and analysis tools available. However, these are individual tools. Consequently, due to the complexity of embedded system design, today it is an accepted fact that a single integrated design environment does not yet exist. The development environment should be capable of handling all requirements for designing and verifying the complete embedded system and even more all possible system components, packaging and interconnections. In addition, there are no or only few design standards and no common databases in use. For that reason, gaps for important design steps, especially in early system design phases occur.

Combining the situation described above with the demand to focus on safety for vehicle systems there is a need to consider safety and quality standards. Regarding process assessment, the simple transfer of aviation related standards like DO-178B for automotive specific topics is not the best way [START_REF] Kreuzinger | Softwareentwicklung im Automobilbau Anforderungen, Standards und Vorbilder[END_REF].

The automotive industry heads for own standards and special automotive variants of standards like ISO 15504 are jointly defined. Concerning the development process and the results, the upcoming focus on safety, as addressed in IEC 61508, can be satisfied by systematic procedures [START_REF] Savic | Dynamic Safety Assessment of an Advanced Driver Assistance System According to the IEC 61508[END_REF] and can also be supported by complete methodologies [START_REF] Dion | Efficient Development of Embedded Automotive Software with IEC 61508 Objectives using SCADE Drive[END_REF]. When the complete system is addressed concepts like information models [START_REF] Conrad | Eine integrierte Methodik für die modell-basierte Entwicklung von Steuergeräte Software[END_REF] can be used to create an integrated methodology for the system as a whole.

Therefore we [START_REF] Sax | A seamless model based design flow for embedded systems in automotive applications[END_REF] concentrate on the model based software development for embedded systems and on establishing an integrated design flow from first model based specifications to production code for microcontrollers. Such an environment for the SW development for embedded system design includes methodologies and tools, which support the system engineers. The application of tools results in short conceptual design cycles by supporting reusable software modules and allows implementation independent design as long as possible in the process.

The analysis of requirements is followed by the transformation of the specification from graphical notation to an executable computer format. After that, the reproduction of timing conditions by rapid prototyping leads to an executable specification.

Then, for the software the processes of raw and fine design, implementation and code-generation are employed. The traditionally coded parts are implemented within an established development environment and standard software modules are purchased. All the artefacts flow into the integration of all components to a complete system Integrated testing methods and an overall configuration management have to run in parallel to this process. Thus, the design of embedded systems mandates an open and flexible integration platform that provides design flow management, general data management and a common graphical user interface to support the various design environments.

Compared to the status just a few years ago, as described above, massive improvements to the possibilities of model based software development have been made. Questions like modular testing or version control on a subsystem basis within models have been solved or at least there are first versions of tools available that provide features to fulfil the needs in these topics.

Two elements for software development are addressed within the model based approach, one is the model description of functional modules that can be seen as the first artefact in development of embedded application modules. The other area covered by models is the environment for the functional module that allows simulation, validation and testing. Talking about the specific development environment for a project, there is the possibility to use the same modelling language for the description of the environment, at each level of integration including full software integration. Parts of these simulation development models can be used again as an adequate validation environment. The models remain unchanged for model validation and will be simplified, regarding calculations for the use in simulators to perform "hardware-in-the-loop" (HIL) testing.

The functional modules are treated in a similar way in order to obtain a full graphical representation of the application software module that is integrated into the embedded software.

As already known from traditional software development methodologies, the model based development of application modules is following a step by step development process. The models are representing different levels of development regarding the content of information but still are formulated in the same modelling environment. This may be made better understandable using a simple example regarding radar sensing systems. In the level of functional ideas, the representations of the system inputs are: the shortest distances of objects in the parking lot and a time to collision type of information during the parking activities among many others.

In the abstract level of system concept description, the values of such input variables can be obtained directly from the mathematical model of the environment. The next phase of development is about the refinement of the system described above. The models are refined taking all the real world restrictions into account. Going back to the example aspect the data processing within the radar sensor modules have to be modelled. In this phase functionalities like data processing modules will be included into the model.

This phase is completed as soon as the specification is complete. This also means that all the constraints regarding hardware or surrounding modules are available. The next development efforts are replacing the implementation phase from traditional software development. In this phase all the timing and memory constraints have to be fulfilled. Due to modelling guidelines and other methods all the demands regarding the code can be considered in the model.

Production code technology has become a key component in the evolution of software development because it is practical: details to designs can be added directly on a model and then the final code can be generated automatically [START_REF] Langenwalter | Model-Based Design with Production Code Generation for Steer-by-Wire System Development[END_REF]. Production code generation has done well in early adoption. However, further growth requires a supporting software engineering framework that integrates processes, methods, and tools. Engineers use model based design in nearly every industry that requires embedded control systems development.

As already mentioned above the model based design must address the needs of safety-critical systems, which often require additional process rigor. Through simulation and prototyping, this approach supports safety-related system development by providing extensive verification and validation prior to a final build. The benefit is clear: system integration and testing result in fewer bugs and less rework.

The first step is behavioural modelling. In model based design we use models to specify requirements and design. A typical system includes: inputs (for example obstacle data), a controller or signal processing model (for example the parking lot), a plant or environment model (for example the vehicle) and outputs (for example the driver information).

A system model is created to represent the desired behaviour using control system block diagrams for feedback control, state machines for discrete events and conditional logic, and signal processing blocks for filters. We execute the model and then analyze it to ensure that the requirements are satisfied, using methods such as time-or event-based simulation and frequency domain analysis. For example, a PINFO system must respond to a detected obstacle quick enough in order to enable the driver to stop the vehicle before collision. Simulation, a core validation activity, ensures that a system can be developed to satisfy the requirements.

Because plant models can be inaccurate and the production processor may not provide sufficient processing power to get a working result, modelling alone does not provide the total solution. Rapid prototyping overcomes these shortcomings, because it replaces the plant model with the physical plant. A real time platform runs the controller software and interacts with the plant. The goal is to determine whether the system controls the physical car as well as it controlled the modelled car. If so, plant model inaccuracies are considered insignificant and the control strategy is validated.

Requirements

Hence there are extensive requirements to be met by the development approach and its implementation as an integrated development environment. Taking functional safety aspects into account when considering system integrity leads to extra effort. Software safety requirements as specified e.g. in IEC 61508 will interfere with the development process. Therefore the process is based on a result oriented approach similar to the V-Model XT.

As an approach for the model based treatment of functional requirements a solution is to use models of system behaviour [START_REF] Grochtmann | Systemverhaltensmodelle zur Spezifikation bei der modellbasierten Entwicklung von eingebetteter Software im Automobil[END_REF] in order to have a model representation of traditionally textual requirements. This model can help to analyse requirements, if they are complete and consistent. For a single assistance function in the parking system area the number of textual requirements can easily reach 50 or more and such models help to maintain the system overview.

At system level there is the need to address also other than functional requirements [START_REF] Mutz | Seamless Model Based Development Process of Automotive Systems[END_REF]. In addition the system has to fulfil also non functional requirements, diagnosis requirements and requirements regarding interfaces and parameters. Another means to provide assistance with structuring is the introduction of abstraction levels. The top level of product specific requirements represents the user or product level. These requirements describe how the system is used in the vehicle. The next level of requirements refers to the system. In this abstraction level requirements specify the technical implementation. The implementation details are further refined at subsystem or component level.

Software modularisation

The elements of software for electronic control units can be categorized in different classification approaches. In chapter 1.3 we looked at the system level modules. As stated, we consider in this paper standard software elements, high level language modules and automatically generated application modules from the model based software engineering environment.

Distributed architecture design

Modern embedded systems contain several distributed ECUs, which communicate in real time with each other over a fault-tolerant communication system. If some system functionality is placed onto an ECU there is the need to add network components such as hosts, tasks, signals, and so forth to the individual subsystems, such framework enables the embedded functions to be connected and mapped onto an ECU architecture. Distributed network design solutions like DaVinci from Vector Informatik GmbH then integrate the code generated from models with legacy code from other subsystems and different suppliers and map the resulting code onto the ECU or system architectures for verification. Up to now, this effort has not been needed for the parking function example.

Software architecture

The decisions regarding system and software architecture are not discussed in this paper. Some ideas for approaches regarding software architecture are discussed in [START_REF] Thurner | The EAST-EEA project -a middleware based software architecture for networked electronic control units in vehicles[END_REF]. As already mentioned in this paper we look at three different sorts of software modules to be integrated into the ECU.

Standard software modules: These modules were coded according to specifications that are accepted as standards. The modules are somehow box products that are licensed for the ECU and released for certain CPU families. Using these modules is already a requirement in some areas of the industry and allows the re-use of many base level functions that have to be implemented into several ECUs. Those modules have passed approved, defined and independent testing, provide defined behaviour and fulfil the integration requirements. Those modules include for example: low-level drivers, the OSEK operating system, and CAN drivers.

C-Code modules: As already mentioned, up to now there are some restrictions to the model based design method that require certain elements of ECU software to be implemented with traditional methods. Functionalities like some hardware drivers are an example for code that has no real advantage in development when they are designed using model based engineering. One example is the glue code function to call the low-level functions, pass the inputs to the auto-coded modules and update the outputs via the low-level functions with the values returned by the auto-coded modules.

Auto-coded modules: In this paper the focus is on these modules. In the approach described in this paper most of the modules are containing the implementation of the functional requirements and represent the application software level within the ECU. The elements are representing the part of the software that is also addressed as applications in the AUTOSAR approach. The following chapters refer to these modules.

Toolchain

The integrated development environment is based on elements of commercial toolchains that are supplemented with new elements. The newest toolchain is presented offering a state-of-the-art development approach starting from basic ideas of new functionalities up to and including automatically generated production code for electronic control units. The whole toolchain started producing ECU Code with release 11 of the Matlab product family from The MathWorks Inc. and version 1.3 of Target-Link from dSPACE GmbH. The base tools today are release 14 of Matlab, Simulink and Stateflow and version 2 of TargetLink. In addition to this MTest from dSPACE GmbH is used and the tools are completed with various parts of the PROVEtech:SD family of project specific additions from MBtechnology GmbH. The toolchain can also be modified for code generation with the Embedded RealTimeWorkshop from The MathWorks Inc. as code generator.

Code generation

The toolchain used for the parking systems was improved during the past years and consistently adjusted for the releases of the base tools. Mostly, there were needs of creating interfaces to existing development tools and for measurement systems at ECU integration level. In order to have everything available to produce auto-code, you need more than a development environment. Knowledge must be provided for example in form of rules, guidelines etc. in order to gain experience as examples from other areas [START_REF] Pruett | Targetlink goes off-road[END_REF] show.

Auto-code integration process

To support auto-code generation, a change in the way a development environment is used has to be done. In the first step the specification model has to incorporate only blocks that support the code generation. Depending on the elements the model contains, functional equivalents may have to be found for Simulink blocks that are not supported.

Within our toolchain such an effort can be avoided by using appropriate modelling guidelines. In some of the projects already the specification is only containing code generable blocks.

Using MTest every module can be tested in its individual simulation test harness. These tests are executed under simulation while for example the minimum and maximum values of every node in the model are recorded. Within the tool there are options to automatically compare the model outputs with a reference output file and generate a pre-defined report for the test. Using the data collected, the fixed-point model can be auto-scaled with for example TargetLink. The MTest test suite is run again, however, this time in fixed-point mode. With the information gathered the fixed-point model output can be compared against the floating-point model output.

The next step is to use "processor-in-the-loop" (PIL) simulation in order to run the integration test suite on an evaluation board. Here log stack usage and execution time for each test case is evaluated. The model is then exported as C code, and integrated with the low-level drivers, the OSEK operating system, and CAN drivers. This integration involves writing the glue code mentioned above.

The size and complexity of applications made with model based design can include the complete functionality of a system. In [START_REF] Pruett | Targetlink goes off-road[END_REF] all application code is built into an implementation model. In this , one application model for example the application model consists of about 4700 blocks that take a file size of about 13 MB on the host PC and result in ECU application code of 90 kB for a HCS12 CPU.

Embedded software metrics

When working in a traditional embedded software development environment there are a variety of tools to measure effort and productivity. These include LOC (lines of code), the change in LOC from one design iteration to the next, computational complexity and many more. Such metrics are usually collected manually or semi-automatically. A comparison of those issues regarding model based design is discussed in [START_REF] Hosagrahara | Measuring Productivity and Quality in Model-Based Design[END_REF] where the following issues named in this chapter are further elaborated. Total time spent simulating: An objective measure of the total time spent simulating models can be captured to ensure thorough model execution. This includes the time used to simulate alternative designs or validation and verification scenarios, or for advanced tuning and optimization of controls.

Several tools are used to support the metrics task.

For example the tools from The MathWorks Inc.: Simulink Accelerator, a Simulink companion product for accelerating and optimizing model performance, collects performance data while simulating the model. And Simulink Verification and Validation, another Simulink companion product, provides a measure of cyclomatic complexity and a measure of the structural complexity of the model.

Supplementary remarks

Comparing production code generation to traditional coding we can find similar requirements. For the integration we can assume the same demands as with a traditional C compiler. Various optimization settings and user configuration options exist. The key is to keep the code efficient, accurate and integrated with other modules. In safety-related software, it is also important for the code to be traceable to the diagram so that it can be reviewed and verified.

The validation and verification activities include various options. As long as we stay in the model based design environment all the tests are done with models so that the device under test is a model and this leads to the term "model-in-the-loop" (MIL).

Once the controller is built, we can perform a series of open-and closed-loop tests with the real-time plant model in the loop. Some tests involve only the software or processor and are known as "softwarein-the-loop" (SIL) or "processor-in-the-loop" (PIL) testing, respectively. When using the ECU hardware as device under test the procedure is referred to as "hardware-in-the-loop" (HIL). In either case, we test the physical controller with the plant model. In order to have a suitable effort in the testing activities these activities are planned and documented within a test specification.

Most software standards require traceability of requirements, perhaps originating in other requirements tools, throughout development. Also, Software Configuration Management (SCM) is needed to store, version and retrieve the various development artefacts. Documentation via report generators ensures that management, customers, and suppliers will see the model. Model based design supports all of these components.

 The following software design activities include fixedpoint data specification, real time tasking, data typing, built-in test, and diagnostics.

	With model based design, the same model, used for
	the algorithm specification and the validation, is
	refined and constrained by the software engineers
	as part of the production code generation process.
	Automated scaling and data type override help
	convert floating-point models to fixed point and
	provide mechanisms to assess a fixed-point design
	by simulating it in floating point.
	Testing the model on a desktop is preferable to
	deploying it on hardware for build and integration.
	Source-code-based testing has existed for many
	years, and recent methods enable model testing and
	structural coverage analysis. Using simulation and
	coverage, developers can fully stress the controller
	to verify its design integrity.
	Numerical overflow and dead code are examples of
	poor design integrity. Stress testing of the model
	using minimum and maximum numerical values
	helps to ensure that overflow conditions will not
	occur. Simulation facilitates this method of stress
	testing, but dead code is not easy to find because
	detection requires structural coverage analysis.
	Dead code differs from deactivated code as it is
	deactivated for a reason and this is known and
	documented by the developer. Actual dead code
	indicates that details were omitted during
	requirements specification, design, or test case
	development.
	Model coverage assesses the cumulative results of a
	test suite to determine which blocks were not
	executed or which states were not reached. Certain
	types of coverage are well established in source
	code languages (such as C and C++). More
	information regarding metrics within model based
	development is given in chapter 5.1 below.

Conclusion

The development methodology described is based on more than ten years of experience in applying model based development at DaimlerChrysler AG [START_REF] Rau | Model-Based Development of Embedded Automotive Control Systems[END_REF] and has been adapted in the past few years for other domains at MB-technology GmbH. Several software projects based on this methodology have been completed successfully. Consequently this approach is used as a reference method for new projects.

Acknowledgement

The authors acknowledge the contribution of their colleagues to this work.

Glossary