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Embedded systems are increasingly being developed using models. These models may have started with the system engineer or algorithm developer as an executable specification or algorithm description. However, these models also now serve as the entry point for software engineering, thanks to automatic embedded code generation. As a result, software engineers want to take advantage of these same models, adding constraints on system behavior; describing characteristics that are needed for implementation, such as fixed-point details; or linking components in the design to relevant parts of requirements and specification documents. This paper describes model style guidelines for automatically generating fixed-point and floatingpoint code for embedded systems. The guidelines are based on best practices and techniques derived from actual industry examples in aerospace and automotive companies worldwide.

Introduction

The model structure and code generation configuration options significantly impact the efficiency, clarity, and traceability of the automatically generated code. While model style and verification may not be a top issue for early algorithm development or rapid prototyping, it is extremely important for embedded system development, especially flight software applications. Furthermore, the composition of the model also eases the process integration with the "test-in-the-loop" (e.g., SiL, PiL, HiL) phases that are needed, while improving component reusability and Intellectual Property management.

Increasingly, companies that use modelbased design approaches --particularly in aerospace and automotive --are collaborating to define model style guidelines, which they can individually tailor and apply as a key aspect of their software development processes.

This provides system engineers and algorithm developers greater freedom to innovate early in the process, while resulting in models that can be augmented, refined, and constrained with implementation details for efficient embedded code generation later in the development process.

Discussion

A system model has components for modeling both the algorithm and the environment where the algorithm executes. The algorithm may be a control law or a signal processing algorithm. The environment may include actuators, sensors, and the plant. Or, the environment may represent a communication transport layer with varying latencies and noise.

The algorithm model will eventually be deployed as embedded software on a microcontroller, a digital signal processor, or a multi-core device. The plant model may eventually be deployed on a test system for HiL testing and system validation.

A typical model is comprised of block diagrams, state machines, and embedded language scripts. Examples of system models are shown in Figures 1 and2. The examples use MathWorks products. Note that the system models are comprised of individual components. The components may be subsystems pulled from libraries, which have dependencies based on the system model they are placed in. Or the components may be separate models that are atomic and isolated from the properties of the system model they are placed in. The simulation results can be shown in many ways such as scopes, gauges, and virtual animation. See Figure 3 for an example of an aircraft system simulation interfaced to a flight simulator. The results can also be produced as massive amounts of data that are reused as test suites during detailed design and implementation. The simulation model can also be used as an executable specification. The fidelity of the model dictates whether or not the model specification is high-level or low-level.

There are other aspects in addition to model fidelity to be considered during the model development process. Some aspects span multiple groups or even different companies, such as OEMs and suppliers. For example, Toyota Motor Corporation and DENSO Corporation discussed important aspects that guide their modelling and production code generation environments [1].

Toyota needs automatic code generation tools that are system development-oriented:

• Ease of simulation

• Easy operation

• Seamless linkage with other system development tools and data DENSO needs code generation tools that are software development-oriented:

• Conformance to coding rules

• Well defined software structure

• Seamless linkage with other software development tools and data

One of the keys to a successful model style is to develop models that allow for fast, easy, and seamless transitions between system engineering and software design.

Detailed Design

Technology improvements starting in the late 1990s have allowed high-level models to be refined and elaborated to great levels of detail. Software design details such as fixed-point data type, scope and storage class, function and file partitioning, and explicit identifier control are now possible.

Back and forth transition between model fidelities improves system and software communication and also fosters a development approach that encourages iterations for optimizing code, addressing derived requirements, and improving design integrity.

Data type design is a good example of this back and forth flow. Early during high-level specification, numerical accuracy involving data types is not a major consideration. The models typically use double precision data for assessing algorithm performance.

Once the performance is deemed satisfactory, however, detailed data type design should occur. Single precision or fixed-point types are then derived for each signal and parameter in the model based on embedded target resources or other factors.

Once the data types are assigned, it is important to compare the detailed types with the original high-level specification.

Data type override is one way to accomplish this comparison. With data type override, a developer is able to make the simulation and code generation tool ignore the detailed data types and act upon the model as if all data elements were specified as a specific floating point type (e.g., double precision real). This greatly facilitates comparison and verification of the detailed design with its higher-level representation.

One could also use a data dictionary driven approach. For example, a floating point data dictionary could be loaded and used for rapid prototyping simulation, while a fixedpoint data dictionary could be loaded for embedded, mass-production target environments. To do this, the model needs to be developed in a style that supports inheriting data types from an external or workspace data dictionary. The external data dictionary could be provided, for example, using a corporate database tool, Excel, or XML file.

An example of a data dictionary and a data dictionary element for a lookup table is shown in Figure 4. 

Code Generation

For companies trying to maximize code efficiency, it is important to have a good understanding of the appropriate blocks, appropriate block parameters settings, and the appropriate code generation settings.

As with any language, teams should agree on the language aspects to use or not use for a particular project. The aspects may be based on the target environment, the software integrity level, or other criteria.

Model tool documentation such as the block data types table shown in Figure 7 guides developers on which constructs to use.

Figure 7: Block Data Type Table for Production Code Generation

In addition to the blocks, the block settings heavily influence the format of the generated code. One of the key settings in a fixed-point environment is the check for numerical overflow involving fixed-point calculations.

The block parameter form for a simple gain block in Figure 8 shows this setting. The Visteon metrics shown in Figure 5 noted that this saturation setting determined whether or not the automatically generated code was smaller, larger, or equal to hand code. If the setting was used "where necessary" the automatic code was approximately equal to hand code.

The code generation configuration settings also have a great influence on the generated code. One of the major groups of settings that is important involves the hardware implementation pane. This pane is where one establishes the target specific settings not defined by ANSI/ISO-C, such as integer word sizes.

By selecting the appropriate target hardware developers may realize significant code efficiency improvement. See Figure 9. It is important to note that Honeywell's automatically generated software was developed in accordance with criteria per DO-178B Level A software integrity [START_REF] Rtca Inc | Software considerations in airborne systems and equipment certification[END_REF].

Verification and Validation

Using Model-Based Design, verification and validation activities occur throughout development. A number of new technologies have recently been introduced that assist with this such as model advisor, model coverage tools, and in-the-loop testing.

One of the key benefits to establishing model guidelines is that they can be automated. The model advisor analyzes the model and checks for areas that may impede its use in production software environments. Some of the checks focus on the simulation aspects, others on code generation.

For example, one of the checks makes sure that model interface ports are well defined and do not inherit important characteristics such as data type and sample rate. Another check informs users if they are missing important code optimization settings. Figure 10 shows checks based on the model, the code generation settings, and customized user-provided settings.

Even if one does not use the model analysis tool itself, developers should inspect the many guidelines that it offers. Note that the model advisor also has an API for an organization to add their model checks. In addition to supporting requirementsbased testing and bi-directional traceability, the model should support test coverage analysis. One way to determine test coverage is to use a model coverage tool.

Figure 11 shows such a tool and highlights areas where the model was not exercised. Once the model has satisfied its test and coverage requirements, code can be automatically generated, as described earlier. As code implementation and integration moves forward, there are several opportunities to verify the implementation using SiL or HiL.

DaimlerChyrsler Trucks noted the importance of using SiL testing [START_REF] Wünsche | Model based development of Cruise Control for Mercedes Benz Trucks[END_REF] There are many other sources of guideline information including C code guidelines [START_REF]Guidelines for the Use of the C Language in Vehicle Based Software[END_REF], automotive model guidelines [START_REF]Controller Style Guidelines for Production Intent Using MATLAB®, Simulink® and Stateflow®[END_REF], large scale model guidelines [START_REF] Aberg | Strategy for Successful Enterprise-Wide Modeling and Simulation Using COTS[END_REF], and fixed point tips [START_REF] Nadarajah | Fixed-Point Modeling and Code Generation Tips[END_REF].

Developing a complete modelling and code generation environment takes some time and effort but the rewards are worth it.

Consider what Lockheed-Martin presented regarding their use of automatic flight code generation for the Joint Strike Fighter program flight controls [START_REF] Nixon | Flight Control Law Development for the F-35 Joint Strike Fighter[END_REF].

It is proven in CDA Phase:

• Successful flight tests of all variants with one OFP

• Reduced Software Defects (Early checkout in Engineering Simulations)

• Overall reduction in Manhours/SLOC of ~40%

Conclusion

This paper presented a few important guidelines and industry trends for using modelling and automatic code generation for production software. 
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 1 Figure 1: Vehicle and ECU System Model

Figure 2 :

 2 Figure 2: Radar Application System Model 2.1 Simulation In order for the model to be clearly understood, it needs to simulate. Successful simulation requires that the model compile and execute based on the values established for the model's diagnostic settings, such as array out-of-bounds error checking.
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 3 Figure 3: Aircraft System Model Animation
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 4 Figure 4: Data Dictionary Showing Lookup Table using Structure Data TypesVisteon Corporation has described their data dictionary driven approach for ECU software using automatic production code generation in an SAE paper[2]. This paper also includes code metrics comparing handwritten production code with automatically generated code as shown below.
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 5 Figure 5: Visteon Production Code Metrics General Motors Powertrain also described their use of data dictionary driven development and code metrics at a recent conference [3]. They also presented hand vs. automatic code metrics as shown below in Figure 6.
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 6 Figure 6: General Motor Powertrain production code metrics 2.2 Code Generation
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 8 Figure 8: Saturation on integer overflow block setting enabled
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 9 Figure 9: Production hardware settings used to deploy the automatically generated code Taking the time to establish these and other model and code generation guidelines can lead to impressive results beyond code efficiency. Honeywell Aerospace Corporation presented that they generated over 1.6 million lines of certified flight code within the past year using a COTS toolbased environment [4]. Honeywell also noted that their software process produced greater than six-sigma code quality.
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 10 Figure 10: Interactive model coverage reportingAnother important verification step is to design and execute model tests. For safetyrelated systems, it is important that the test cases be based on the requirements. Bidirectional links between the model and the systems requirements in documents, data bases or requirements management tools is important and available. Requirementsbased comments can also appear in the generated code.
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 11 Figure 11: Interactive model coverage reporting

  It was not possible to provide numerous detailed examples in the space provided but several references were provided containing numerous guidelines, examples, and tips. This paper also discussed approaches for verification and validation of the models and generated code. Industry examples were referenced.
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