P Amey

B Dion

Combining Model-Driven Design With Diverse Formal Verification

Keywords: Model-driven-design, formal-methods, static-analysis, verification, safety-critical

Two historically diverse research streams are now delivering strong industrial performance in the engineering of high-integrity, software-intensive systems. The earlier of these is the use of sourcelanguage-based static analysis and formal verification. The more recent is the use of modeldriven design coupled with automatic code generation. Although both have been effective, neither is without problems. Fortunately, these approaches are not mutually exclusive and combining them offers a route to ultra-high integrity at low cost. The paper exemplifies the approach by describing the combining of SPARK and SCADE and illustrating the benefits and opportunities that this brings.

Introduction

The challenge of producing high-integrity software doesn't get any easier. Furthermore, the challenge exists in a commercial environment which constantly demands we meet it faster and more cheaply. The old adage that you can only have any two of faster, better, cheaper is constantly under attack with all three being demanded simultaneously.

There is clear and compelling evidence that we can only hope to meet this challenge by processes that favour error prevention over error detection and forward prediction of correctness rather than retrospective demonstration of correctness. Such approaches come with various labels including "correctness by construction" and even "lean software engineering".

A key ingredient of such constructive approaches is the use of mathematically-sound, formal methods. Only by driving out ambiguity early in the development lifecycle can we hope to achieve a fully constructive approach.

Formal methods are sometimes criticised for their apparent difficulty and an encouraging trend is the embedding of formal techniques in graphical tools which can combine visual attractiveness and ease of use with an underlying mathematical rigour. (As an aside, this is very similar to tools used in other engineering domains such as finite element analysis and computational fluid mechanics which also hide heavyweight mathematics behind a convenient user interface).

These promising approaches to introducing precision and rigour to the early lifecycle phases must not be allowed to reduce our commitment to precision elsewhere, for example in code-based static analysis and verification activities. The aim is to spread rigour throughout the lifecycle not just move it from one place to another.

The combination of mathematically-supported, model-based design and code-based, formal verification is therefore a very interesting one. We illustrate the potential benefits from such a combination using SCADE as an exemplar of rigorous model-based design and the SPARK language and tools as an example of rigorous codebased verification.

The Challenge

The challenge of producing ultra-high integrity software, for use in life-critical or similarly demanding domains, is not to be taken lightly. Firstly the level of integrity required can be extraordinarily high. It is not unusual for failure rates as low as 10 -9 per hour to be demanded. Given that 10 9 hours is 114,000 years, the requirement is that we believe our system will only have a 50% chance of suffering a softwareinduced failure in 57,000 years of operation. For numerate engineers with a conscience that is probably a claim we wouldn't want to make at all; for sure it is not a claim we should make lightly. Unfortunately, the challenge is even harder than suggested by these rather stark figures. It is harder because we not only have to achieve the required integrity but also produce a credible case that we have done so before the system enters service. Achieving and demonstrating integrity before there is any service experience is a unique challenge for the producers of safety and security critical software. There are many other software systems that have become extremely reliable, for example telephone exchange switches and even the Linux kernel; however, none of these could have been predicted to be so reliable before deployment (and most were not !). The twin challenges of producing high integrity software and knowing that you have produced it place great strains on the techniques and tools used in its construction. Crucially, it is clear that we cannot rely on dynamic testing alone for the construction of such systems. Dynamic testing has both theoretical and practical limitations. Theoretically, there is overwhelming mathematical proof that claims for software reliability in the ultrahigh integrity domain (<10 -6 per hour) cannot be sustained by statistical testing alone [START_REF] Littlewood | Validation of Ultra-high Dependability for Software-Based Systems[END_REF][START_REF] Butler | The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software[END_REF][START_REF] Littlewood | Limits to evaluation of software dependability[END_REF]. Practically, dynamic testing has the drawback of pushing verification towards the back end of the development lifecycle where the correction of any errors uncovered will be at its most expensive and pose the greatest risk of schedule delays. The challenge of producing high-integrity software and an acceptable cost can therefore only be met by constructive techniques using unambiguous notations which are amenable to logical reasoning. The next two sections describe examples of two different approaches which exemplify the application of constructive techniques using unambiguous notations.

The first, SPARK, is centred on programming languages and their verification. The second, SCADE, is concerned with model-based designs and their verification. The remainder of the paper describes the beneficial synergy that arises when these complementary approaches are combined. In principle the approach taken is applicable to other model-driven design methods and implementation languages; however, an essential prerequisite is that both component technologies are sufficiently rigorous and formallybased as to make the links between them exact. It is for this reason that the approach is illustrated with SCADE and SPARK which jointly meet this requirement.

Overview of SPARK

SPARK [START_REF] Barnes | High Integrity Software -the SPARK Approach to Safety and Security[END_REF] is an annotated subset of Ada with some specific properties that are designed to make static analysis both deep and fast. The annotations take the form of special comments which are ignored by an Ada compiler but have semantic meaning for SPARK's support tool, the SPARK Examiner. Annotations range in complexity from the description of data flows via global variables through to full preand post-condition predicates suitable for the formal verification of operations.

A key, indeed we believe unique, property of SPARK is its complete lack of ambiguity. The language rules of SPARK, enhanced by its annotations, ensure that a source text can only be interpreted in one way by a legal Ada compiler. Compiler implementation freedoms such as sub-expression evaluation order, cannot affect the way object code generated from a SPARK source behaves. For example, a complete detection of parameter and global variable aliasing ensures that SPARK parameters have pass-by-copy semantics even if the compiler actually passes them by reference. The removal of ambiguous language constructs allows source-based static analysis of great precision and efficiency. Instead of using static analysis techniques to look for errors we can use them to prove the absence of certain classes of errors. This rather small linguistic difference masks a hugely-significant practical difference: only by eliminating ambiguity can we reach the goal of constructive, rather than retrospective, software verification. We can exploit this language property using the associated SPARK Examiner tool which divides the verification task into two parts: Firstly we seek to show that the program is well-formed. That is, the program could be a correct implementation of some useful specification because it is free from egregious errors such as data flow errors (e.g. use of uninitialized variables) and run-time errors (e.g. array bounds violations). Only when this is done do we seek to show that the program actually is a correct implementation of its specification. This conceptual separation is quite deliberate: the first condition provides the logically consistent framework which makes the second feasible. The idea that we should ensure a program could be correct before trying to establish whether it is correct was a major motivator for the development of information flow analysis. See for example the seminal ACM paper [START_REF] Bergeretti | Information-flow and dataflow analysis of while-programs[END_REF] which noted that: "most programs presented to verifiers are actually wrong; considerable time can be wasted looking for proofs of incorrect programs before discovering that debugging is still needed".

The first verification step, showing wellformedness, is largely achieved by data and information flow analysis.

Flow analysis is important for two reasons:

1. Elimination of undefined variable values by data flow analysis is an essential step in providing a sound environment for program proof. Clearly such proofs are complicated if we have to allow for unknown and potentially invalid data items.

Information flow analysis, which establishes the influence of variability of one data item on another, provides the main foundation on which we can build segregation arguments.

Once we have achieved the goal of having an unambiguous source text which is free from gross errors such as reading of uninitialized variables we have established a baseline that will prove very useful when we come to consider how to combine SPARK with model-driven design methods. For these purposes two key conditions are:

1. The ability to demonstrate properties of the code using proof techniques.

• Strong typing • Explicit initialization of data flows

• Explicit management of time (delays, clocks, etc) 2. The ability to do such analyses with access only to the annotated specifications of units on which the item being analyzed depends.

• Simple expression of concurrency (data dependencies)

The associated SCADE Suite toolset is an environment for the development of safety-critical software. It supports the model-driven driven paradigm as illustrated in Figure 2. The modeldriven approach has the following features:

An illustration of the power of the first of these properties is the ability to prove that a SPARK program is free from run-time exceptions. The Examiner toolset includes provisions for the automatic generation of proof obligations that correspond to each predefined run-time exception check defined by the Ada language. Discharging these proof obligations is sufficient to guarantee that the associated exception can never be raised. The process is described in [START_REF] Chapman | Industrial Strength Exception Freedom[END_REF]. Again, usefully for the purpose described in this paper, these forms of analysis can be taken right to the boundaries of the system and down to the bit level. For example, SPARK analysis is fully capable of dealing with concept of invalid values such as might be returned by a malfunctioning external interface or port.

• The model is the component's software specification. • Documentation can be generated from the model. • The model can be exercised by simulation.

• Model coverage analysis can be performed to assess these test-based verification activities. • Formal proof techniques can be applied to prove safety properties. • Code can automatically be generated from the model, using the code generator.

We will see in a later section how the these properties are extremely useful in our aim of combining source-based static analysis with modelbased design.

Overview of SCADE

In this section we will see how the SCADE methodology and toolset allows the description of rigorous and complete software specification models based on a formal notation [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF][START_REF] Berry | The Foundations of Esterel[END_REF][START_REF] Dion | Correct-by-Construction Methods for the Development of Safety-critical Applications[END_REF]. This notation includes both block diagrams and safe state machines as shown on Figure 1 below: In this paper, we will not further comment on the model coverage and the formal verification activities.

The interested reader may refer to [START_REF] Bouali | Using Formal Verification in Real-Time Embedded Software Development[END_REF]11].

Finally, the SCADE KCG Code Generator automatically generates the complete source code implementing the software specifications for both data flows and safe state machines. It does not just generate a skeleton; the complete dynamic behavior is implemented.

The SCADE Suite KCG 4.2 C code generator has been qualified with respect to DO-178B at level A [START_REF]DO-178B "Software Considerations in Airborne Systems and Equipment Certification[END_REF], to be used for the development of the Airbus A380 flight software. This means that the verified and functionally validated model of the software is safely translated to C code. Thanks to the formal input model and the certified code generator, the behavior of the generated code is fully safe and deterministic.

Remaining problems

Thus far we have described two different approaches to the development of high-integrity software. Both have strong formal foundations but they are otherwise rather different in scope and concept.

Since both approaches can point to successful industrial use the questions arise: "what benefit could we anticipate from attempting to combine them?" Should we, instead, simply regard them as alternative approaches rather than seek to make them complementary approaches?

The value of combining the two different techniques depends on whether each, in isolation, has any weaknesses and, if so, whether combining them provides a way of addressing those weaknesses. Note that "weakness" here doesn't mean "defect", it simply recognizes that no individual technique can be expected to address all aspects of software development.

We therefore now examine what parts of the software development problem space are not fully addressed by each of our two constituent technologies.

SPARK

SPARK is, at its heart, a high level programming language.

It contains strong features for the effective expression of software designs but does not directly address the issue of how those designs, especially at the more abstract, architectural level, are created. SPARK users increasingly want to use graphical design methods before moving to the lower abstraction level of SPARK code. Clearly graphical design methods can be used with SPARK; however, unless the graphical method has strong semantics, we are forced to defer verification activities until we have produced SPARK code that purports to implement our model. SPARK provides very strong support for such verification and can produce useful results much earlier than can be obtained by dynamic testing; however, detection of architectural design errors would still be later than might be achieved if the verification could be performed directly on the graphical design model. Also arising from its programming language roots is the issue of how SPARK code is actually produced. Generally it is hand crafted. While our experience is that the coding phase represents a rather small part of the overall development lifecycle, and SPARK provides very considerable protection against errors being introduced during the coding phase, it is nevertheless true that developers are increasingly seeking to see automatic generation of at least part of their source code.

Since SPARK is an unambiguous and precise language effective automatic code generation requires that the design representation from which generation will take place is also precise. Certainly the generation of non-SPARK source code by some means and its hand conversion to SPARK for analysis purposes would be a rather pointless exercise giving few of the benefits of either code generation or SPARK.

SCADE

By contrast with SPARK, SCADE is firmly founded in the design and modelling phases of the development lifecycle.

Model-driven design, coupled with automatic code generation, neatly solves the early design phase problems but it may introduce a new difficulty: the large semantic gap between the model and the generated code.

Although the more rigorous graphical design tools, exemplified by SCADE, allow useful analysis of the integrity of the design models, the problem of the trustworthiness of the generated code remains. This has been solved in practice for some specific situations like the SCADE C code generator that has been qualified for DO-178B and certified for IEC 61508. In some other cases, this solution does not exist. We may also face some standards like Def Stan 00-56 where the concept of qualification or certification of a development tool has not been defined and other means will be required to demonstrate the correctness of the automatically-generated code.

Another issue with model driven design is ensuring that high-level safety properties of the system are adequately captured in the model specifications. It is common in model-driven approaches to regard the model as the specification (even, sometimes, the requirements) for a component. The model may very accurately capture low level details of each modelled component; however, certain system level properties may depend on the interaction of several individually modelled components. We can imagine a system, for example an aircraft landing gear controller, where switch and actuator subsystems can be modelled in great detail but where important system-level safety properties such as "the undercarriage must not be capable of being retracted when the aircraft is on the ground" can only be established by considering how the individuallymodelled subsystems work together.

Finally, model-based designs rely on a computation model that excludes things such as invalid values and machine representation of values. Validation of the models, and code generation from them must assume that variables are well-formed and correctly in their respective types. The models therefore exist inside a boundary of hand written interfaces or "device drivers". The integrity of these drivers and other pieces of "glue" code, as well as their correct interaction with automatically-generated code, has to be established by some other means.

We can summarise these areas for improvement thus (the technology which would benefit from solving each problem is shown in parentheses):

• Rigorous analysis can beneficially start earlier than the coding phase (SPARK). • Having to hand-craft all code may be less efficient than auto-generating some of it (SPARK). • Trustworthiness of automatically-generated code has to be demonstrated to a level dictated by various standards in use (SCADE). • High-level safety (and other) properties may depend on interaction between modelled components (SCADE). • Auto-generated code must work with device drivers and other hand-written, "glue" code (SCADE).

Why combine?

As can be seen from the discussion above, we are in the happy position of having two technologies, both with strong formal foundations, whose strengths and weaknesses dovetail almost perfectly. By combining them we can retain their individual benefits and produce a combined development approach which more completely addresses the overall software development challenge. Furthermore, the formal foundations of both methods makes it possible to combine them in a strong and precise manner.

If we imagine the existence of a formally-based, model-driven design tool which can produce models from which code in an unambiguous and independently verifiable language can be generated, we can reap the following benefits.

The design tool assists with the vital and challenging task of getting the architecture and conceptual integrity of the system right.

Furthermore, the rigorous nature of the model allows us to carry out various forms of analysis and validation; this provides early error detection which is essential for efficient work and allows a forwardflowing, constructive design technique to be used (SPARK gap addressed by SCADE).

Having eliminated as may errors as possible we can automatically generate code from the validated model (SPARK gap addressed by SCADE). The generation of source code in an unambiguous notation reduces the possibility of the semantics of the model and the semantics of the generated code differing and therefore increases the value of any model-based verification that has been carried out.

Since code generation is a form of translation, it is clearly easier to translate one precise notation into another, than it is if one (or both) of the representations is potentially ambiguous.

Finally, the generated source code, because it is in a precise language designed for analysis, allows a completely independent and diverse verification to be carried out on both the auto generated code and any supporting hand-written components. Furthermore, this analysis can reach closer to the boundaries of the system because SPARK is able to produce useful results from analysing low-level, device-driver code (SCADE gap addressed by SPARK).

The semantic gap between the verified source code and the resulting object code is much smaller than that between the original model and the object code. (Of course the problem of compiler integrity remains but that is a separate problem common to all use of high-level languages).

Finally, high-level properties of the entire set of assembled sub-system components may be proved using SPARK's proof-based verification techniques (SCADE gap addressed by SPARK). When doing this last form of verification we have another choice. Recall that SPARK can be analysed without requiring access to the full implementation (bodies) of each program unit; only the annotated specification is needed. Provided the SCADE code generator translates specification information in the model into suitable SPARK annotations, we have the option of ensuring that the required properties of the entire set of assembled sub-system components are met without re-analysing the auto-generated body code. In effect, this gives two levels of verification : for the most critical systems and the most demanding standards we can do a full, independent and diverse verification of all the code, both handwritten and auto-generated. For less demanding situations, where we are content to take on trust that the auto-generated code will be a faithful implementation of its design model, we can show that the components fit together properly without having to look at the auto-generated bodies at all. These forms of diverse verification are a direct match to the requirements of standards such as Def Stan 00-56 [START_REF]Safety Management Requirements for Defence Systems[END_REF].

Integration in practice

Approach

The approach we have taken relies on the existence of SCADE Ada Code Generator that generates the proper SPARK Ada subset and then on using the SPARK tools for performing formal verification activities on the generated source code. Initial experiments of this coupling have been made and have been very promising. SPARK offers a level of verification that matches or in some case exceeds the one of SCADE, thus providing a diverse verification path. Further work will be performed in introducing at the SCADE model level more specific annotations that will denote safety SPARK properties that could then be used as an input by the SPARK verification tools. There is also considerable value in enriching the type model at the SCADE level to include such things as valid numeric ranges of scalar objects. SPARK's ability to reason about freedom from runtime errors is greatly enhanced if values are bounded in this way rather than just being, rather lazily, considered to be, say, "integers".

Practical benefits

We foresee benefits in both improved code quality and in reduced development time and cost. Although it is a frequently stated mantra that you can only have two out of these three, it is our increasingly frequent experience that the best way of reducing cost and time is to improve quality, provided that the quality improvement is achieved by bug prevention rather than a painful, retrospective period of bug detection and removal [START_REF] Amey | Correctness by Construction: Better Can Also Be Cheaper[END_REF]. The logic is inescapable: there is no cheaper bug to remove than the one you never introduced! The use of notations with strong formal foundations is a prime way of avoiding the introduction of errors. The encapsulation of those notation in a graphical design environment makes them much more approachable and usable.

We envisage the time benefit being delivered as a result of effects that are best shown diagrammatically. In the following diagrams, which mimic the familiar "V lifecycle model", elapsed time flows from right to left and increasing level of design detail flows from top to bottom. Descending lines are production activities and ascending lines are verification and validation activities.

First, we take the V model itself as a starting point. verification could be achieved by always generating SPARK code, as a background activity, regardless of the intended end purpose and implementation language chosen. Analysis of properties such as freedom from run-time errors could then be fed back and displayed at the model level. Such an approach could provide protection from events such as division by zero even if the eventual implementation was produced using the SCADE qualified C code generator. Note that this possibility can only be considered because of the rigorous, formal nature of both SCADE and SPARK; clearly the analysis would be of little or no value if we can't be sure that the semantics of the model, the automatically-generated, background SPARK version of it, and the automatically-generated, deliverable C code are identical.

Conclusions

Often we have to make a choice between different engineering approaches. Sometimes having to make this choice is rather undesirable because both options have advantages that we would like to benefit from. In the case of combining the proven benefits of both code-based formal verification and rigorous model-driven development, we find ourselves in the happy position that we don't have to make this hard choice; we can have the benefits of both approaches.

Our experience with the combining of SCADE and SPARK is that we do indeed retain the benefits of each.

Crucially, however, it appears that the combination only works because both SCADE and SPARK have formal roots. Clearly combining and translating between two exact notations is both easier and more effective than if one or other component is imprecise in some way.

Finally, we note that the use of diversity and redundancy are key engineering techniques with a long industrial pedigree; combining model-driven design with formally-verifiable programming languages brings them to the information age.

Acknowledgement

The authors acknowledge the contribution of their colleagues to this work.

Figure 2 :

 2 Figure 2: Model-based design and verification with SCADE A user of the above toolset can the apply the following three "golden rules": • Share unique and accurate specifications. • Do things once (i.e. do not rewrite descriptions from one activity of the life cycle in another). • Do things right (i.e. prevent errors or at least detect them in the earlier stages of a project). Now, when it comes to the verification activities, support is provided by a combination of three different tools: Figure 1: SCADE Block-diagrams and Safe State Machines • The SCADE Suite Simulator supports interactive or batch simulation of a SCADE model, for both data flows and safe state machines. The above SCADE notation has been formally defined and it has the following characteristics that are key in the targeted application domain, i.e. the development of safety-critical systems: • The SCADE Suite Model Test Coverage (MTC) tool is used to measure the coverage of the

Figure 3 :

 3 Figure 3: Traditional V Model When we add trustworthy code generation to a formal system model, we effectively reduce coding time (in principle, to zero) and remove some low level verification activities. We can conceive this as transforming the V model into a Y model, as shown in Figure 4 below.Note that the overall width of the Y is smaller than was the V showing a saving in time. The automation of some activities also offers a reduction in cost.

Figure 4 :

 4 Figure 4: "Y" Model Showing Automatic Code Generation In practice, we do not achieve 100% code generation because of the need to write low level interfaces, device drivers and other glue code. The final diagram shows this in a hybrid V and Y lifecycle. The Y is augmented with a smaller activity showing the hand production of interface and other glue code.In this case we have achieved complete verification of all the code to a very detailed level but we have still reduced the elapsed time compared to a tradition approach. Furthermore, we have two forms of verification taking place: an early, modelbased analysis; and a later, independent, codebased analysis.

Figure 4 :

 4 Figure 4: Combined Model Showing Diverse Verification Activities 7.3 Possible future work One tentative but very interesting possibility arises from the availability of an independently analyzable representation of the graphical design model. It might be the case that additional model-based