
HAL Id: hal-02270436
https://hal.science/hal-02270436v1

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AutoMoDe – A Transformation Based Approach for the
Model-based Design of Embedded Automotive Software

U. Freund, P Braun, J Romberg, A Bauer, D Ziegenbein, P. Mai

To cite this version:
U. Freund, P Braun, J Romberg, A Bauer, D Ziegenbein, et al.. AutoMoDe – A Transformation Based
Approach for the Model-based Design of Embedded Automotive Software. Conference ERTS’06, Jan
2006, Toulouse, France. �hal-02270436�

https://hal.science/hal-02270436v1
https://hal.archives-ouvertes.fr

AutoMoDe – A Transformation Based Approach for the Model-
based Design of Embedded Automotive Software

U. Freund1, P. Braun2, J. Romberg3, A. Bauer3, D. Ziegenbein4, P. Mai 5
1: ETAS GmbH, Borsigstrasse 14, 70469 Stuttgart

2: Validas AG, Lichtenbergstrasse 8, 85748 Garching
3: Technische Universität München, Boltzmannstrasse 3, 85748 Garching
4: Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen

5: PMSF IT Consulting Pierre R. Mai, Ludwig-Thoma-Strasse 11, 87724 Ottobeuren

Abstract: The AutoMoDe approach manages the
complexity of embedded automotive systems by
employing a stream-based development paradigm
which is specifically tailored to embedded
automotive real-time systems. In this paper the
tailoring process is explained by transforming a
traction control system from a stream-based model
to an embedded real-time software model and
afterwards integrating the software model on an
embedded automotive rapid development hardware.

Keywords: AutoFOCUS, ASCET, INTECRIO,
Refinement, Embedded Software.

1. Introduction

The amount of automotive electronics has grown
considerably in the last forty years. However, the
resulting complexity has reached a level which can
hardly be handled by current modeling means. The
impact of the complexity to automotive software
design has been foreseen more than a decade ago.
Several projects have been started since then trying
to define methods and tools to manage the
complexity of embedded automotive control software
by using high-level software structures. For example,
ten years ago DaimlerChrysler started to tailor
ROOM concepts for body electronic systems in the
TITUS project [12]. In 1998, the French automotive
industry started the AEE1 project [13] which was
finished in 2001. Both projects resulted in a common
European research effort called EAST/EEA[11]. This
project finished in summer 2004 and provided as
one of the results an automotive architecture
description language (ADL)[1]. Last but not least, the
AUTOSAR development partnership [14] provides
with the software component description a
framework for high-level software description. The
described approaches for high-level design, along
with commercially available tools for detailed
(control) software design, provide a wealth of proven
abstraction mechanisms for all layers of the
embedded software design chain. Unfortunately,
each modeling approach is currently restricted to
particular aspects of embedded automotive software

design like networks, control-algorithms, or software
architecture. An accepted and mature modeling
framework integrating the different aspects of
embedded software development is still missing.
Hence, there still remains a lot of manual integration
work to be done when designing an ECU-network.
The manual integration work is centered around the
questions how to integrate new functionality in
existing E/E-architectures or how to optimize an E/E-
architecture for a given number of functions. As a
rule, designing an E/E-architecture appears as a
mixture of both.

AutoMoDe is a joint research project consisting of
members of the Software & Systems Engineering
group at the Technische Universität München,
Validas AG, ETAS GmbH, Robert Bosch GmbH, and
BMW AG. The overall goal of the project is to tackle
the integration challenge in model-based automotive
development, and develop an integrated
methodology for automotive control software based
on custom, problem-specific design notations with an
explicit formal foundation.

2. AutoFOCUS Concepts

The concepts developed in the AutoMoDe project
are integrated and reflected in the modeling &
development framework AutoFOCUS. In this section
we briefly detail its semantics and the employed
description techniques.

2.1 Semantics

Generally, the AutoFocus tool provides an
embedded systems specific realization of the
FOCUS framework[17]. Since its conception in 1996,
it has been successfully used for modeling a large
number of case studies, including, e.g., an
automotive body-electronics system described in [7].
AutoFOCUS uses a so-called stream-based approach
where a system is considered as components
exchanging messages explicitly over streams.
Basically, a stream is an ordered set of typed
messages. Messages in turn are time stamped with

1 Architecture Electronic Embarque

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

respect to a global, discrete time base, as indicated
in the lower part of Figure 1.

Figure 1: AutoFocus Execution Scheme

Because the discrete time base of AutoFocus
abstracts from implementation details such as
concrete timing or communication mechanisms, the
use of additional, explicit timing information below
the chosen granularity of observable discrete clock
ticks is avoided. Examples of for such additional
detailed assumptions include, for instance, the exact
ordering of message arrivals within a time slot, or the
precise duration and delays of transfer. Real-time
intervals of the implementation are therefore
abstracted by the logical-time intervals. In our
opinion, this discrete-time and stream-based
programming model, with dedicated timing and
typing assumptions, suits the needs of automotive
embedded software modeling better than modeling
and programming approaches based on sequential
languages, like C/C++. However, in order to support
the dominating implementation platforms in the
automotive field, stream-based models have to be
transformed during the design process to OSEK-
based real-time systems, with threads programmed
in a sequential language.

Furthermore, AutoFOCUS implements the main
properties of an architecture description language
(ADL). These are components, connectors, typed
interfaces, and hierarchies.

1. In AutoFOCUS, components are called in

AutoFOCUS System Structure Diagrams (SSD).
Each SSD has directed ports for the sending
and receiving of signals. Signals, i.e. messages,
are typed and communication between SSD
components deliberately composed with an
implicit delay. Additionally, an SSD may contain
local variables. An SSD can be refined by either
other SSDs or by using an STD.

2. Behavior is expressed in AutoFocus by State
Transition Diagrams (STD) and Dataflow
Diagrams (DFD).

STDs represent extended finite state machines. As
such, they perform a transition if either the

appropriate signal arrives and a given pre-condition
is true, or, in case no signal is specified, the pre-
condition alone is true. During the transition, internal
variables of the assigned SSD can be manipulated
as well as signals being sent via the associated
ports.

Data Flow Diagrams (DFD), see Figure 3, Figure 4,
and Figure 14 - Figure 16, define an algorithmic
computation of a component. Graphically, DFDs are
similar to SSDs. DFDs are built from individual
blocks with ports connected by channels. Typing of
ports is dynamic, using type inference properties of
operators. A block may be recursively defined by
another DFD. The behaviour of atomic DFD blocks is
given either through a STD, or directly through a
textual expression (function) in AutoFocus’ base
language. An example of such a function is shown in
Figure 5. It is possible to define adequate block
libraries for discrete-time computations with this
mechanism.

In contrast to the delayed composition primitives in
SSDs, the semantics of DFD composition is
“instantaneous”, in the spirit of synchronous
languages[16]. In the AutoFOCUS tool, instantaneous
communication primitives are accompanied by a
causality check for detecting instantaneous (or
causal) loops. Note that computations “happening at
the same time” on the level of logical time are
perfectly valid abstractions of sequential, time-
consuming computations on the level of real-time
implementation if the abstract model’s computations
are observed with a delay, that is such as the delays
which are automatically introduced by SSD
composition. The duration of the delay then defines
the deadline for the sequential computation.

The message-based time-synchronous commu-
nication model does cater to both periodic and
sporadic communication as required for a mixed
modeling of time-triggered and event-triggered
behavior. As shown in Figure 1, each channel in the
abstract model either holds a message represented
by an explicit value or the “√” (“tick”) value indicating
the absence of a message in that time instant. Thus
modeling of event-triggered behavior is naturally
covered by the AutoFOCUS notation by reacting
explicitly depending on the presence (or absence) of
a message. The extended AutoFOCUS notation is
described in more detail in [5].

The frequency of signals as well as event patterns
are represented in the AutoFOCUS notation as
clocks: That is, each message flow in AutoFOCUS is
associated with such a clock. For a given flow, the
flow’s clock indicates either the frequency of
message exchange (periodic case), or a condition
describing the event pattern (aperiodic case).
Syntactically, a clock is simply a Boolean expression

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

evaluating to logical “true” whenever a message is
present on the clock’s flow. For comfortable
modeling, clocks are supported by an inference
system, similar to type inference in programming
languages. Communication between differently
clocked partitions of the model is supported by
appropriate sampling operators.

3. Example for AutoFocus modeling

3.1 A Simple Traction Control System

The AutoMoDe Methodology will be demonstrated
by means of a Traction Control (TC) System. As a
rule, a traction control system compares the wheel
speeds of the driven wheels with the actual vehicle
velocity. If the wheel speed is above the actual
vehicle velocity, then there is slip which is introduced
by the engine torque. In this case, two typical actions
are taken.

1. If just one of the driven wheels currently
experiences slip, the brake caliper might be
actuated actively.

2. If both wheels are currently under slip, the
engine torque will be reduced. In a gasoline
engine, this might be achieved by manipulating
the ignition or the throttle valve.

In this example, we consider the second case only
and have chosen the throttle manipulation algorithm.
Wheel- and vehicle speed signals are also used in
Antilock-Braking-Systems (ABS) which also provides
caliper interaction. Therefore, TC systems often
come along with an ABS system, doing engine
management interaction by means of a CAN-Bus.

3.2 The Traction Control Model

Figure 14 shows the traction control algorithm as
AutoFOCUS model in its functional environment,
namely the ABS system components as well as the
throttle controller. The ABS-components shown are
reference-velocity (Referenzgeschwindigkeit)
determination, wheel-slip and acceleration-control
(Bremsschlupf and Beschleunigungsregelung) as
well as a coordination of both control strategies. The
result of the coordination is a pressure request
(Druckanforderung) to the hydraulic valves which
manage the fluid supply to the calipers.

From the wheel-speed signals a reference velocity
will be calculated against which the actual wheel
speeds is compared. The resulting slip is normalized
w.r.t. the vehicle velocity and then classified. In this
example this means that two different slip values are
reached. The slip-determination is shown in Figure 2
while the slip-classification is shown in Figure 3. The
rightmost block of Figure 15 influences the current

throttle position by a certain amount if the wheel slip
of both wheels is outside the limits.

Figure 2: Inner View of the Slip Determination DFD

Figure 3: Inner View of the Slip Classification DFD

The amount of throttle actuation is calculated in the
throttle control block as shown in top-leftmost block
of Figure 16. This amount is compared with the
actual throttle position and the driver wish (target-
position). The result of this comparison drives the
throttle-valve. The throttle-valve is itself a dynamic
system which has to be controlled. This is done by a
PID-control algorithm which limits the throttle-angle.

The actual control value for the throttle drives a
motor via PWM-signals. PWM-signal generation is
part of the hardware abstraction and is delivered in
this example as a graphical representation of a
rapid-development system’s I/O-boards. The same is
done for the wheelspeed-sensors and the throttle-
valve sensor. According to the vehicle dynamics, the
traction control system is sampled with different
rates. For example, the wheel- and vehicle speed
determination might run in 6 ms, while the traction
control might run in 12 ms. Throttle-control is done
every ms. In the stream-based model, the rates are
described as different clocks while in the embedded
software-model, the differently clocked model
partitions will be assigned to disjoint preemptive
tasks, each task triggered at a rate corresponding to
the clock in the model.

4. Refinement to ASCET/INTECRIO

Using the stream-based design approach of
AutoFOCUS and applying model based checks to the
control algorithm is just one crucial part of embedded

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

automotive software development. The properties
shown on model level should be retained in the real-
time execution scheme too. This execution scheme
consists of Interrupt-Service Routines (ISR), Tasks
which run so-called processes in a sequential
manner, so-called messages as inter process
communication (IPC) mechanisms, clusters,
modules, and sequence calls. Furthermore, there
are I/O devices realizing the interface with the
pysical world.

To transform the TC-system from the stream-based
world to the real-time world an AutoMoDe refinement
chain is introduced which incorporate the ETAS tools
ASCET [8], RTA-OSEK [10], and INTECRIO [9]. This
refinement chain is shown in Figure 4. On the left
side, there is the stream-based TC model defined in
AutoFOCUS. Its components are transformed to real-
time modules, processes, messages and clusters in
ASCET, shown in the top-middle. The ASCET code-
generator will transform the clusters to C-code which
are then integrated on a Rapid-Development target
(as shown in the lower right part). Target integration
comprises the implementation of an OS-schedule.
The OS-schedule will be derived from the AutoFocus
clock-scheme but taking into account furthermore
the interrupts as generated by the I/O-boards. The
schedule is checked with the analysis feature of the
RTA-OSEK configuration tool. The target integration
step is shown in the center of Figure 4.

Figure 4: AutoMoDe Refinement Toolchain

In the remainder of this section, the applied
transformation steps are described in detail:

• Module-Identification
• Sequence-Call-Generation
• Cluster-Definition
• Software-System Construction
• Target-Integration
• OS-Configuration.

ASCET modules group processes and messages.
Processes perform the algorithmic work by executing
sequence calls which are to some extend

equivalents to assignments in sequential
programming languages, i.e. there are operations
and variables. To exchange information with other
processes (either of the same or an other module)
they read and write to messages. After code-
generation messages are realized as consistent IPC
variables. Processes are linked to operating systems
tasks therefore performing the actual work.

4.1 Module-Identification & Sequence-Call-
Generation

The currently used AutoMoDe refinement algorithm
transforms the hierarchically lowest level of
AutoFocus DFDs to ASCET modules. The notation
used for showing the bottom-level DFD clusters in
AutoFocus is called Cluster Communication Diagram
(CCD), and is detailed in [5]. Within each DFD, the
elementary AutoFocus blocks which are described
as terms in a textual language, will be transformed to
ASCET sequence calls. An example for this
transformation is the function which tests whether
the actual slip is above the limit lambda2 as shown
in the upper right block of Figure 3. The function of
this block is shown in the lowest line of the block
properties of Figure 5. The corresponding sequence
call in ASCET is shown in Figure 6. The slip-
classification component of Figure 3 is shown as
ASCET block diagram in Figure 7. ASCET needs
just three sequence calls instead of five because the
parameter constructing blocks shown in the left part
of Figure 3 are represented by specific blocks in
ASCET.

Figure 5: Properties of the Above-Lambda2

Elementary DFD Block

Figure 6: ASCET Sequence Call for Above-Lambda2

Function

As a rule, the number of the module internal
variables is determined automatically. Each port of a
DFD is translated to an ASCET-message. Per
module, there is one process. More sophisticated
clustering algorithms based e.g. on the port’s clock
information are currently under developement.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

Figure 7: ASCET representation of the Slip

Classification Component
Figure 8: Reference Speed Calculation Cluster in

ASCET These clustering algorithms as well as other model
transformations are defined in AutoFOCUS with the
help of the Operation Definition Language (ODL)
[15]. The ODL is a first-order logic language which
allows the definition of tests and transformations.
Within an ODL expression user interaction is
possible. For example a particular clustering
algorithm may ask the user to provide a clock and
some components using this clock. Afterwards the
algorithm transforms the AutoFocus model by
inserting appropriate clusters including the
necessary rerouting of the communication. These
clusters are the base for the next step.

4.3 Software System Construction

After all ASCET modules have been clustered to
ASCET projects, the ASCET-code generator using
the INTECRIO target is applied to all clusters. The
result is the C-code per cluster as well as a code
description using the SCOOP-IX format. Both
description establish an INTECRIO module, not to
be mistaken for an ASCET module. For software
system construction in INTECRIO, all clusters are
imported as INTECRIO modules to INTECRIO and
might be further clustered by INTECRIO functions.
The result of all clustering steps is shown in Figure 9
. Sensor- and actuator modules are shown in the
left- and right side of the software system directly
connected to ports. E.g., the wheel speed calculation
is done by edge detection. These ports will interface
the modules representing the I/O-boards of an ES-
1000 rapid prototyping system. Such a system is
shown in Figure 10.

4.2 Cluster-Definition

The next refinement step is the clustering of ASCET
modules to ASCET projects. ASCET project
clustering is a step that is performed semi-
automatically and requires user-interaction. For
example, the reference speed calculation being
mandatory for the anti-lock-bracking system as well
as for the traction control is composed of five
clusters in AutoFocus and hence are represented by
five modules in ASCET. As can be seen in Figure 8,
each connector is represented by messages which
are shown conceptually in ASCET. Since after
appropriate grouping to clusters, all the DFD blocks
defining a given cluster are on the same clock, and
because the vehicle velocity is used by other
functions as well, it is sensible to cluster these
components together which means they have to run
on the same µC in an ECU and its processes are
scheduled in the same OS-task.

Figure 9: The Traction-Control System in INTECRIO

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

Figure 10: ES 1000 Rapid Prototyping System with

I/O-Boards

4.4 Target Integration

The ETAS rapid prototyping system ES 1000 is
VME-bus based. For this traction control example it
consists of a microprocessor board (ES 1135), an
A/D-converter board (ES 1303), a PWM board (ES
1330), and, for the edge detection of the inductive
wheelspeed-sensors, a sophisiticated digital I/O-
board (ES 1325). The software interface represen-
tation of the A/D-converter board and the digital I/O-
board as INTECRIO modules is shown in Figure 11
on the left side whereas the PWM modules for the
hydraulic-valve interaction and the throttle-motor are
shown on the right.

Figure 11: The Traction Control System in
INTECRIO refined to run on a RP-System

4.5 OS-Configuration

The AutoMoDe traction control model employs
streams running on different clocks. From the
AutoMoDe model based point of view, the throttle
control algorithm runs 6 times as fast as the anti-
lock-bracking algorithms and 12 times as fast the
traction control algorithm.

This clock scheme will be translated to a real-time
system where the throttle-controller cycle time is set
to 1 ms. In combination with the clock-schemes,
there will be a 1ms, a 6ms and a 12ms task. The
processes of the INTECRIO modules will be
allocated to the appropriate tasks. This is shown in

Figure 12. Scheduling algorithms typcially need the
worst case execution time (WCET) as input for their
calculations. Though there are some promising
results for the WCET estimation, the AutoMoDe
project still uses heuristic approaches based on the
process allocation to obtain very first coarse grain
WCET estimates of the tasks. In [3], a correct-by-
construction method for implementation of time-
synchronous AutoFocus programs based on rate-
monotonic scheduling is described. The approach
uses a double buffering technique for communication
from low-frequency to high-frequency tasks. For
analyzing this default configuration in the context of
the TC example system, we use the planner feature
of the tool RTA-OSEK [10] which implements
algorithms described in [2]. The result of this
analysis using rough estimates of the WCET is
shown in Figure 13. In the case that the simple top-
down, rate-monotonic approach of [3] is not sufficient
for a particular situation, the algorithms described in
[4] can ensure in a bottom-up fashion that the
multiple clock scheme is appropriatly implemented
by some given real-time OS schedule. The basic
idea of this algorithm is to check whether all signals
are read in the appropriate cycle and that a writer is
not overtaken by the reader. Nevertheless, it is
common automotive design practise to support this
analysis by measurements on the real executing
system[6] using dedicated measurement and tracing
tools such as RTA-TRACE

Figure 12: The resulting OS-Schedule in INTECRIO

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

Figure 13: OS-Schedule Analysis

5. Conclusion

This paper shows how embedded automotive control
systems can be modeled in a crisp manner by using
a stream-based approach. Systematic application of
refinement steps incorporate model transformations
that result in executable embedded software.

6. Acknowledgement

The AutoMoDe project is partly funded by the
German ministry of research and education (BMBF)
within the “Forschungsoffensive Software-
Engineering 2006” program.

7. References

[1] Freund, U., et al.: The EAST-ADL: A Joint Effort of
the European Automotive Industry to Structure
Distributed Automotive Embedded Control
Software. 2nd Workshop on Embedded Real-Time
Systems, Toulouse 2004.

[2] Tindell, K., Clark, J.: Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems,
Microprocessing and Microprogramming -
Euromicro Journal, vol. 40, pp. 117-134, 1994

[3] Bauer, A., Romberg, A.: Model-Based Deployment
in Automotive Embedded Software: From a High-
Level View to Low-Level Implementations.
MOMPES 04 Int’l workshop, Hamilton, Canada,
June 2004

[4] Manucci, L., et al.: Correct by Construction
Transformations across Design Environments for
Model-based Embedded Software Development,
DATE’ 05, Munich 2005

[5] Bauer, A., et al.: AutoMoDe – Notations, Methods,
and Tools for Model-Based Development of
Automotive Software, SAE-Paper 05AE-268,
Detroit, 2005

[6] Schäuffele, J., Zurawka, T.: Automotive Software
Engineering. Vieweg Verlag, Wiesbaden, 2003.

[7] Braun, P., Slotosch, O.: Development of a Car
Seat: A Case Study using AutoFocus, Doors, and
the Validas Validator, in OMER – Object-oriented

Modeling of Embedded Real-Time Systems,
Lecture Notes in Informatics (LNI), Volume P5, GI
2002.

[8] ETAS GmbH: ASCET User Guide V 5.1, Stuttgart,
2005 (www.etas.de)

[9] ETAS GmbH: INTECRIO User Guide V 1.1,
Stuttgart, 2005 (www.etas.de)

[10] LiveDevices: RTA-OSEK User Guide V 4.0, York,
2005 (www.livedevices.com)

[11] Thurner, T., et al.: The EAST-EEA project – a
middleware based software architecture for
networked electronic control units in vehicles. In:
Electronic Systems for Vehicles (VDI Berichte
1789), p 545 ff. VDI-Verlag, Düsseldorf, 2003.

[12] Eisenmann, J., et al.: Entwurf und Implementierung
von Fahrzeugsteuerungsfunktionen auf Basis der
TITUS Client Server Architektur; VDI Berichte
(1374); pp. 399 – 425; 1997; (in German).

[13] Migge, J., Elloy, J.P.: Embedded Electronic
Architecture, 3 rd. OSEK/VDX Workshop, Bad
Homburg 2000.

[14] www.autosar.org
[15] Schätz, B., et al. : Checking and Transforming

Models with AutoFocus. In 12th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS),
IEEE Computer Society, 2005

[16] Benveniste, A., et al.: The Synchronous Languages
Twelve Years Later. Proceedings of the IEEE,
91(1):64–83, 2003.

[17] Broy, M., Stolen, K.: Focus : Specification and
Development of Interactive Systems. Springer,
Berlin 2001

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

http://www.etas.de/
http://www.etas.de/
http://www.livedevices.com/
http://www.autosar.org/

Figure 14: AutoFOCUS DFD showing the Traction Control System with its Functional Environment

Figure 15: Inner View of the Traction Control System DFD

Figure 16: Inner View of the Throttle Controller DFD

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

