N
N

N

HAL

open science

Towards the verification of model transformations
Jean-Paul Bodeveix, David Chemouil, M Filali, Nathalie Lalevee, Martin
Strecker

» To cite this version:

Jean-Paul Bodeveix, David Chemouil, M Filali, Nathalie Lalevee, Martin Strecker.
verification of model transformations. 3rd Conference on Embedded Real Time Software and Systems

(ERTS 2006), Jan 2006, Toulouse, France. hal-02270435

HAL Id: hal-02270435
https://hal.science/hal-02270435
Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Towards the

https://hal.science/hal-02270435
https://hal.archives-ouvertes.fr

Towards the verification of model transformations

J.-P. Bodeveix!, D. Chemouil?, M. Filali!, N. Lalevée!, M. Strecker!,
1. FéRIA {bodeveix,filali,lalevee,strecker }Qirit.fr
2. CNES

November 21, 2005

Abstract

While verifying the correctness of model transfor-
mations is becoming increasingly important, current
model transformation languages offer only weak sup-
port for checking statically that transformations can-
not go wrong. This paper presents conditions un-
der which transformations can be shown to produce
models that conform to their meta-models, and it de-
scribes methods to derive prove obligations from a set
of transformation rules.

1 Introduction

The recent shift from programming languages to
modelling languages, such as UML (general purpose)
or AADL [6] and Cotre [2] (domain-specific) makes
it necessary to express transformations on models.
These transformations can either be used to map
models between different formalisms (“meta-models”)
or to simplify, refine or otherwise restructure a model
within the same formalism.

Currently, a number of model transformation lan-
guages exist, following the QVT request for proposal.
Most of them combine declarative rules, some itera-
tive constructs and an execution engine which applies
the rules in a specific manner.

For safety critical applications in particular, such
as the avionics or automotive sector, correctness of
transformations should be of paramount importance.
Unfortunately, this problem has so far received little
attention. Hardly any existing modelling language
ensures that execution of a given rule set yields a
model that conforms to the intended meta-model.
Furthermore, there is no means to state or to ver-
ify domain-specific model properties. The work pre-
sented here is among the first to systematically ad-
dress this issue.

2 Transformations with gen-
eral purpose verification for-
malisms

A model transformation is no more than a function
mapping an instance of a source meta-model to an
instance of a target meta-model. Thus a functional
language is a natural candidate for expressing model
transformations. We have studied the Isabelle proof
assistant for verification. Moreover, if source and tar-
get meta-models are identical, a model transforma-
tion can lead to an in place modification of a given
model. In such a case, the use of an imperative
framework can be considered: we have studied the
B method.

In the following, we briefly sketch the two ap-
proaches without going into details. They have been
discussed more extensively in [3], where we show how
to specify a part of the AADL meta-model managing
data flows and to define a transformation adding a
filter to a flow. The encoding of the meta-model has
been automated from its Ecore [4] specification.

2.1 Isabelle

Isabelle [10] is a proof assistant based on higher order
logic. Its use in the context of model transformation
consists in describing source and target meta-models
as types. Then a transformation is a function from
the source type to the target type. Type checking
guarantees that the transformed model conforms to
the target meta-model, which is an important issue
of model transformation. Such a verification could be
performed by any typed functionnal language such as
Caml. Isabelle also allows the specification of prop-
erties over transformations, what is suggested by the
QVT [8] request for proposal. Then computer aided
proofs can be performed in order to verify that the

functional implementation of the transformation sat-
isfies its requirements.

22 B

B [1] is a development method based on the refine-
ment of abstract machines. A machine has an in-
variant which must be true at initialisation and pre-
served by each operation. The more concrete ma-
chine is written in a sublangage which can be directly
translated into a programming language (C, Ada).
Proof obligations for the chain of refinement guaran-
tee, when verified, that the implementation conforms
to the specification (i.e. the abstract machine).

Within this framework, the meta-model is defined
as a collection of sets and constant functions modeling
classes, attributes and roles. The model is declared
using state variables constrained by an invariant to
satisfy meta-model requirements. The transforma-
tion is encoded as an operation of the abstract ma-
chine. The fact that the transformation produces an
instance of the target meta-model is guaranted by
proof obligations expressing the preservation of the
invariant.

3 ATL as a langage dedicated to
model transformations

This section presents another approach to model
translation exploiting a domain specific language
(DSL) which is a candidate for the QVT request for
proposal. ATL is a rule language designed to match
elements of an instance of the source meta-model and
to produce elements of an instance of the target meta-
model. We will first sketch some typical problems of
those transformation languages. We then describe
how we can characterize the transformation process
in abstract, i.e. largely implementation-independent
terms. This characerization can serve as a basis for
verification, as sketched in Section 2.

3.1 Problem description

The core of the problem of a language like ATL is
that rules are not checked for “type correctness” in the
same way programs in strongly typed programming
languages (such as Java) are type checked in order
to ensure consistency of the data manipulated by the
program.

Take the example Book2Publication, which is
taken from the ATL distribution. The following rule

is supposed to convert elements of class Book to el-
ements of class Publication, where a publication
is characterized by title and author (both of them
strings) and number of pages (an integer).

The rule causes no problems, as it correctly assigns
strings of the source model to strings of the target
model:

rule Book2Publication {
from
b : Book!Book (
b.getSumPages() > 2)
to
out : Publication!Publication (
title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getSumPages())
}

However, the following variant of the rule is problem-
atic, because strings of the source model are assigned
to numbers of the target model:

rule Book2Publication {
from
b : Book!Book (
b.getSumPages() > 2)
to
out : Publication!Publication (
title <- b.title,
authors <- b.getSumPages(),
nbPages <- b.getAuthors())
}

Depending on the version, ATL either crashes on ex-
ecution of this rule, or it silently produces a target
model which does not conform to the target meta
model. The first kind of behaviour is simply annoy-
ing, but produces no result (and a fortiori no wrong
result). The second kind of behaviour can be fatal if
the target model is subsequently used, but the user
is not aware of the incoherence of the target model
with respect to its meta model.

Altogether, the state of affairs is reminiscent of the
early days of programming language development,
when programs were not checked for type correct-
ness. It might be argued that the resulting target
model can still be checked after it has been created.
This solution is unsatisfactory for several reasons:

e Checking models on a case-by-case basis may be
very time-consuming, depending on the size of
the model. Therefore, it is better to check a
model transformation once and for all.

e The fact that a generated model is faulty does
not indicate why it is, and which parts of a set
of transformation rules have to be modified.

e A transformation might be split into several
smaller transformation steps, each one rely-
ing on a well-formed model. If this is not
granted, transformations would have to contin-
uously verify the well-formedness of intermedi-
ate results, which would require carrying around
dynamic type information, thus complicating
model transformations considerably.

For these reasons, almost all modern programming
languages have chosen a sufficiently strong type sys-
tem that precludes certain kinds of errors in advance,
i.e. statically, or that at least recognize type errors at
runtime and signal an error in a controlled way (for
example by raising an exception).

3.2 Overview of the formalization

In the following, we go a step further: we show under
which conditions a transformation rule set generates a
model that is well-formed. As the language for defin-
ing meta-models is quite expressive (allowing, among
others, arithmetic properties to be stated), it is cur-
rently not clear which of these conditions can be ver-
ified statically and which cannot.

The generic reconstruction of ATL is illustrated
by the architecture of the formalization, described
graphically in Figure 1, where boxes are modules and
dotted boxes are parameter modules.

The modules appearing in this figure are the fol-
lowin

e Model defines the structure of a model as a
Ocaml signature.

e TmplModel supports the definition of concrete
models by implementing the signature Model.
This module can be viewed as a simplified MOF
implementation.

e Expr is an abstract structure of OCL expressions.

e OCL : (M:Model) = Expr(M) is a module pa-
rameterized by a model which defines OCL-like
navigation expressions for that model.

e ATL is a module parameterized by an instance
of Expr and an instance of model which defines
the structure of model transformations and their
operational semantics.

e M : ATL(ImplModel) (OCL) is the actual model
transformer obtained by instantiating the
generic module ATL with a specific model and
a specific expression language.

Thus, ATL can be defined quite generically and
adapted to a specific navigation formalism.

3.3 Rules

When talking about transformation rules, we refer to
rules in the spirit of ATL, as the ones seen in Sec-
tion 3.1. A rule transforms instances of an input
model to instances of an output model. Applicability
of a rule can be restricted by conditions expressed in
OCL [11]. For example, the clause

from
b : Book!Book (
b.getSumPages() > 2)

in rule Book2Publication expresses that the rule can
be applied to elements of class Book (belonging to a
meta-model which is equally called Book), under the
condition that the book has more than 2 pages.

For each applicable instance, an instance of the tar-
get model is created. In ATL, the rule execution en-
gine takes care of applying at most one rule to each
instance — an attempt to apply several rules to an in-
stance should lead to a runtime exception. Of course,
here again it would be desirable to check that rules
are mutually exclusive. In a last step, values are as-
signed to the attributes of the target instances. Thus,
in

to
out : Publication!Publication (
title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getSumPages())

an instance of class Publication (of meta-model

Publication) is created, whose attributes are set

with values computed from the input model.
Altogether, a rule

e refers to a source and a target model. We will
describe our formalization of models and meta-
models in Section 3.4.

e uses OCL constraints to express applicability
conditions. Our model of OCL is sketched in
Section 3.5.

Expr Model
Model | T ATL B Expr
Expr < OO i Model
| erI Mbdel Model <- | npl Model CX:LL

M

Figure 1: Architecture of ATL formalization

e is applied by an execution engine, as described
in Section 3.6.

Due to space limitations, our treatment is necessarily
incomplete. We refer the reader to [9] for a more
exhaustive description.

The following discussion first presents a set-based
description of the concepts, and then eventually an
implementation in Ocaml.

3.4 Models

A meta-model consists of a set of classes (here taken
to be identifiers which are left abstract) and a set
of roles defined for the selected classes. A role is a
partial map from a class and a role name to a class.

Similarly, a model consists of a set of instances,
attributes and a typing function assigning a class to
each instance.

A type associates a class to an instance.

Classes C Id
Role(Cl) = Cl— (Id-» Cl)
MModel := {Cl:P(Classes);
Rl : Role(C1)}
Objects C Id
Attribute(O) = O —Id-» O
Type(O) = O — Classes
Model := {Inst:P(Objects);
Att : Attribute(Inst);
Tp: Type(Inst)}

VYmm : M Model Nm : Model.No € m.Inst.
dom(m.Att(0)) = dom(mm.Rl(m.Tp(0)))

Similar conditions state that types of related objects
coincide.

3.5 OCL

We first give a view of OCL by means of functions
on properties and paths, where we leave the corre-
sponding types Prop and Path abstract (they will be
defined further below). These functions are parame-
terized by an environment.

checkProp (Id -» Classes) * Prop — Bool
checkPath (Id -» Classes) * Path — Classes
eval Prop (Id » Object) * Prop — Bool
eval Path (Id -» Object) x Path
— P(Object)

We can now implement the types Prop and Path.
We give here a definition in Ocaml as mutually de-
pendent data types.

type prop_ty =

And of prop_ty * prop_ty

Not of prop_ty

FunBool of fun_bool * path_ty
TrueProp

path_ty =

Var of string

| Image of path_ty #* string

| FunPath of fun_path * path_ty

|
|
|
and

To define well-formedness of a model with respect
to its meta-model, we impose some conditions, such
as the following, which states that the set of at-
tributes defined for an object coincides with the set
of roles defined for its type.

By means of example, we show how we can express
some OCL expressions in our formalization:

(¥ self.points.couleur x*)
let pathi=Image (Image
(Var "self","points"),

10

5

"color")

(* self->
select (s|not(s.color->isEmpty ())) *)
let path2=FunPath (fun_select
(Not (FunBool (fun_isempty, (Image
(Var "self","color"))))),
(Var "self"))

3.6 Execution engine

A transformation is given by a source and a target’
meta-model and a set of rules:

Transfo {src: M Model;
dst : M Model;

rules : P(Rule)}

As described in Section 3.3, a rule is composed of a
filter (a condition governing whether the rule is appli-
cable), a set of generated objects of the target meta-
model, and a set of attribute assignments:

Filter := {prop: Prop;type : Classes}
Assign := Id=* Role x Path
ObjOut = {id: Id;type : Classes}
Rule := {filter: Filter;

instances : P(ObjOut);
ass : P(Assign)}

Take as an example a rule for a (fictitious) reduced
meta-model of the AADL [6] architecture description
language:

rule Model2Model {

from
model : MiniAADL!'Model
to
newmodel : MiniAADL!Model (

name <- model.name,
impls <- model.impls,
specs <- model.specs
)
X

The filter predicate is true, and we have three as-
signments, the first of which assigns a name:

let the_filter = {
prop = true_prop ;
ty = class_Model

}

let assignl = {

var_name = "newmodel"

role = "name"
path =

}

Together with the other assignments, we can now
define the rule as:

let rule_Model2Model = {

filter = the_filter ;

mapsto = "newmodel"

env_out = ["newmodel" class_Model] ;
assigns = SetAssign.add assignl

(SetAssign.add assign2
(SetAssign.singleton assign3))

With these ingredients, the semantics of an execu-
tion of a transformation can be defined. It proceeds
in three steps:

1. filtering, which determines a set of applicable
rules and the objects they can be applied to.

2. instantiation, which generates the target objects
from the source objects determined in the previ-
ous step.

3. assignment, which carries out the assignments on
the generated target objects.

Again, transformations give rise to well-formedness
conditions, such as:

Vt € Transfo.Vr € t.rules.

Yvar € r.instances, VYrole € dom(t.dst.Rl(var.type)).
Jdassign € r.ass.

assign.var = var A assign.att = role

which says that for all roles occurring in instances
of applicable rules, there has to be an assignment.
Whereas this condition can be statically checked, an-
other condition expresses that the applicability con-
ditions of rules have to be disjoint:

Vt € Transfo.VYobj € Objects.
dlrule € t.rules.

isTypeO f(obj, rule. filter.type) A
rule. filter.prop(obj)

Currently, these are proof obligations that would
have to be handled by an interactive proof assistant.
We are in the process of investigating to which ex-
tent subproblems of this condition can be handled by
extended type checking.

4 Conclusions

In order to study the verification of ATL transforma-
tions, we have given a formal semantics of an abstrac-
tion of ATL.

ATL [5] as well as most QVT-based transforma-
tion languages extend the object constraint language
OCL in order to allow object creations. Thus, ATL
formalization [9] is parameterized by a constraint and
navigation language which can be defined to be OCL
later. The navigation language acts on a model which
is seen as a graph.

The verification of ATL transformations is a key
issue for using such a language for producing safety
critical systems. For the moment, very few checks
are performed by existing tools. Static verification
such as type checking is difficult because ATL rules
are implicitly called and their domain is not stati-
cally known. Either the expressive power of the lan-
guage has to be reduced or proof obligations must
be generated. We have studied the second way: our
formal model performs some static checks and gener-
ates proof obligations that could be discharged using
a proof assistant.

References

[1] J. Abrial. The B-Book Assigning programs to
meanings. Cambridge University Press, 1996.

[2] B. Berthomieu, P.-O. Ribet, F. Vernadat, J.-L.
Bernartt, J.-M. Farines, J.-P. Bodeveix, M. Fi-
lali, G. Padiou, P. Michel, P. Farail, P. Gaufil-
let, P. Dissaux, and J.-L. Lambert. Towards the
verification of real-time systems in avionics: The
Cotre approach. In Eigth International workshop
for industrial critical systems, ROROS, pages
201-216. Thomas Arts, Wan Fokkink, 5-7 juin
2003.

[3] J.-P. Bodeveix, D. Chemouil, M. Filali, and
M. Strecker. Towards formalizing AADL in
proof assistants. In J. Kuster-Filipe, I. Po-
ernomo, R. Reussner, and S. Shukla, editors,
Formal Foundations of Embedded software and
component-based softare architectures (ETAPS),
Edinburgh, pages 137-153. LFCS (University of
Edinburgh), 2005.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Eller-
sick, and T. Grose. Eclipse Modeling Framework.
Addison-Wesley, 2003.

[5] J. Bézin, E. Breton, G. Dupé, and P. Valduriez.
The ATL Transformation-based Model Manage-
ment Framwork. Technical report, IRIN, 2003.

[6] P. H. Feiler, B. Lewis, and S. Vestal. The
SAE Avionics Architecture Description Lan-
guage (AADL) Standard: A Basis for Model-
Based Architecture-Driven Embedded Systems
Engineering. Technical report, SAE.

[7] P. H. Feiler, B. Lewis, and S. Vestal. The SAE
architecture analysis & design language (AADL)
standard: A basis for model-based architecture-
driven embedded systems engineering. In RTAS
Workshop 2003, pages 1-10, May 2003.

[8] O. M. Group. MOF 2.0 Query / Views / Trans-
formations RFP. Technical report, OMG, 2002.

[9] N. Lalevée. Formalisation du langage ATL.
Master’s thesis, IRIT, Université Paul Sabatier,
2005.

[10] T. Nipkow, L. Paulson, and M. Wenzel. Is-
abelle/HOL. A Proof Assistant for Higher-Order
Logic. LNCS 2283. 2002.

[11] Object Management Group. OCL 2.0 Specifica-
tion, June 2005.

