
HAL Id: hal-02270434
https://hal.science/hal-02270434v1

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OTAWA, a Framework for Experimenting WCET
Computations

Hugues Cassé, Pascal Sainrat

To cite this version:
Hugues Cassé, Pascal Sainrat. OTAWA, a Framework for Experimenting WCET Computations.
Conference ERTS’06, Jan 2006, Toulouse, France. �hal-02270434�

https://hal.science/hal-02270434v1
https://hal.archives-ouvertes.fr

OTAWA, a Framework for Experimenting WCET Computations
H. Cassé, P. Sainrat

IRIT-UPS, 118 route de Narbonne 31062 Toulouse, France.

Abstract: In this article, we present OTAWA, a
framework for computing the Worst Case Execution
Time of a program. From its design, it provides an
extensible and open architecture whose objective is
the implementation of existing and future static
analyses for WCET computation. Inspired by existing
generic tools, it is based on an architecture
abstraction layers where hooked annotations store
specific analyses information. Computing the WCET
is viewed as performing a chain of analyses that use
and produce annotations until getting the WCET
evaluation. Finally, the efficiency of the framework, in
term of development productivity, is evaluated by two
case studies that show some pitfalls that we are
currently fixing but also the success of the approach.

Keywords: IPET, WCET, framework, real-time, ETS.

1. Introduction

1.1 Motivation

A large class of embedded software needs to proceed
in real-time context. As they may run in critical
devices like transportation, it must be proved that
they meet hard time constraints. One method uses the
computation of Worst Case Execution Time, WCET in
short, that evaluates the maximum execution time of a
program whatever the inputs and checks that real-
time constraints are satisfied.
Through the various ways for computing the WCET,
the approach based on static analysis allows getting
accurate and safe estimations. Usually, the WCET
computation by static analysis requires modelling not
only the program but also the host architecture. The
classical techniques handle well the current
embedded programs and the currently used simple
processors although the growing size of the software
induced by more and more intelligent devices will
soon require more computation power and modern
processors.
Nevertheless, modern processors features like
multiple-issue pipeline, trace caches, branch
prediction, simultaneous multithreading, are still not
well modelled and stay hard to support in WCET
computation. Likely, the growing size and complexity
of embedded software may make current techniques
inefficient or too slow. These issues require either the
improvement of the existing methods, or the
development of new approaches.
To experiment methods for processing these issues,
we have developed a tool named OTAWA1. Unlike
other existing tools designed for a specific analysis
algorithm, it provides an extensible and open

1 OTAWA stands for Open Tool for Adaptative WCET
Analysis.

framework with the ability to support many different
approaches. We intend to use it as a sandbox where
new or improved algorithms may be easily developed.

1.2 Existing Tools

First, we looked for a tool supporting the
implementation and the experimentation of new
algorithms and we examined existing tools. To fill our
needs, the tool had to exhibit extensibility and
openness properties.
The open source domain provides very few tools for
WCET computation. A very early tool is Cinderella [1]
but it seems to be no more developed since several
years. More recently, the Heptane tool [2] is delivered
by IRISA, France. It provides many neat features like
multi-target support, opened sources, modular
structure and visualization facilities. However, we
have rejected it because it has been developed for the
Extended Timing Schema [3] approach. Integrating or
developing different methods is difficult. Heptane
requires program sources for building the Abstract
Syntax Trees and thus prevents the use of
optimizations that blurs the match between the binary
and the AST. This last issue prevents from processing
off-the-shelf components whose sources are rarely
available.
From the commercialized domain, we have mainly two
tools, Bound-T and aiT. Bound-T [4] is a complete
multi-target solution for WCET computation developed
by Tidorum Ltd, Finland and supported by the
European Space Agency. It is based on the Implicit
Path Enumeration Technique [1] method and includes
some semi-automatic facilities for computing loop
bounds. The instruction model, far away from the
machine code, is so original that it should be difficult
to support multi-issues processors. Although it
provides some facilities for external modules, it seems
to be too much closed and specialized.
AbsInt Gmbh, a German corporation, provides a tool
called aiT [5] that is used by several device
manufacturers in real-time embedded applications. It
is based on two main techniques. The abstract
interpretation is used for modelling the cache and the
pipeline behaviour and uses the PAG generator [6].
On the other side, Integer Linear Programming is
used for handling the program control flow. In
addition, aiT is delivered with many tools in order to
visualize WCET and hardware states wrapped around
the Control Flow Graph. Although aiT has been used
by several projects, its internal architecture is not well
known, possibly due to its commercialization success.
Consequently, it seems to be too closed and too
specialized for fitting our needs.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

As a result, we have no choice except developing
OTAWA [7], a new tool providing the required
properties. Yet, this project is also supported by our
skills in architecture modelling and by our experience
with generic tools. Thus, such a project seemed to us
reachable.

1.3 Outline

After this introduction, the second section explains
how successful generic tools, Salto and SUIF, has
inspired the design of OTAWA. In the third section, we
expose the details of the framework architecture and
describe the overall approach of writing analyses in
this framework. The fourth part attempts to appraise
the success rate of the tool and presents two case
studies which allow us to experiment the development
inside the OTAWA. Finally, the conclusion gives
insight in future developments.

2. Framework Sources

OTAWA development has been started for filling
internal needs but the resolution of enlarging the
framework application domain was motivated by a
significant experience in generic tools from the
architecture and compilation domains. Two successful
generic tools have guided the design of OTAWA.

2.1 SALTO Low-level Optimizer
SALTO [8] is the ultimate result from research from
the previous decade on modelling RISC and
superscalar processors and on providing architecture-
independent low-level optimizers.
Actually, SALTO is a C++ library providing an abstract
representation of the assembler and of its execution
by the processor. The specialisation of the abstract
code is achieved using a collection of architecture-
aware back-ends: several ones are provided in the
basic distribution but more may be implement by the
users. The back-end contains information about the
assembly syntax, the programming model and the
execution model of the processor. In addition, a
configuration file allows tuning some components of
the processor (cache, pipeline capacity, functional unit
count and so on).
Such a tool proves that it is possible to support
different architectures using an abstract
representation and has provided a powerful model for
achieving this task. This feature is particularly
important in the field of embedded system where a
large panel of digital equipment is used.
Nonetheless, several issues prevented a
straightforward use of Salto in our tool. First, Salto
implementation only supports programs in textual
assembly sources while most of embedded program
to process are only provided as a binary: an additional
pass translating back in textual form would consume
time and possibly decrease the reliability of the
computation. Another drawback comes from the
application field of Salto: it was designed to process
low-level optimisations with a partial and rough time
analysis while the WCET computation requires an

accurate time estimation of the activity of all processor
components. As a last resort, Salto does not provide
any facility for performing processor simulation, a
feature that is used in many WCET computation
methods.
In the OTAWA framework, we preferred to develop
our own architecture abstraction layer based on the
Salto architecture model. This layer is built onto back-
ends generated by GLISS [9], a tool providing
automatic facilities for describing a programming
model, decoding binaries and generating functional
simulators.

2.2 SUIF Compiler
The SUIF compiler [10] also brought significant
features to OTAWA. It was designed as a modular
compilation chain for the experimentation of new
optimization algorithms. Formerly using a single back-
end generating MIPS assembly, it has been extended
to support any processor in MachSUIF [11]. Delivered
in the nineties, SUIF is a perfect example of a
successful generic and experimental tool.
The first feature borrowed by OTAWA concerns the
annotation system. The SUIF annotations are pieces
of information that accept an identifier and that are
hooked to any entity in the program representation.
They are handled by any compilation phase to pass
data to subsequent phases. In the SUIF
implementation, in order to transmit the program
between phases, a standard form is provided in order
to serialize and unserialize the program
representation and the annotations. This facilitates the
addition of new phases that can store or share their
own data. Nonetheless, SUIF annotations does not fit
well with the transformations of the program
representation required by the compilation: some
annotations are lost or are moved on inadequate
entities. Yet, OTAWA implementation of annotations is
not hurt by such a limitation because it processes the
program in a read-only fashion.
The next feature adapted to OTAWA concerns the
two-level representation of the program. The Low-
SUIF representation contains the machine
instructions, possibly linked as an expression tree
while the High-SUIF represents the program by its
control statement as found in the sources. Both
representations are living in parallel and are linked
together. As a result, the low-level and high-level
optimizations may be applied on the same program
representation. Thus, the compilation process is
equivalent to reduce the high-level representation until
getting only a linear Low-SUIF sequence of
instructions. The OTAWA adaptation has improved
this feature: it supports many different high-level
program representations on the same code because it
builds them from the annotations.
The last feature borrowed by OTAWA is the possibility
of chaining optimization phases. In SUIF, each
optimization is an executable program that reads the
serialized program representation from the previous
phase and produces a new serialized program
representation. Using the annotations, optimizations

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

can pass specific pieces of information along the
compilation process. The whole compilation may be
performed using either a shell script or an executable
launching each phase. Building or modifying
compilation chains is easier thanks to this possibility.
This way, adding a phase is very simple as it only
involves modifying the script.

 This feature has been included in OTAWA. For the
sake of efficiency, our analysis phases live in the
same executable and does not need the serialization
of the program representation. Yet, the uniformity of
the analysis interface allows a more flexible
composition and supports the use of plug-ins.

The features from Salto and SUIF, listed in this
section, have driven the design of OTAWA. The result
is a framework that should support easy extension
and fast development of WCET analyses.

3. Framework Architecture

This section presents the architecture of the OTAWA
framework.

2.1 Framework Overview

Figure 1 shows an overview of OTAWA as a layer
stack.

The base of the stack is the architecture abstraction
layer that provides a generic abstraction for
representing programs and hardwares to upper
layers.
The second layer provides annotations that may be
hooked to the entities of the architecture abstraction.
Facilities are given in this layer for modifying the
annotations.
In the third layer, the high-level program
representations are built using the annotation system.
They are viewed by the architecture abstraction layer
as usual annotations.
Finally, in the uppermost layer stand programs that
implement analyses and computations of the WCET.
They use information given by the other layers.
One may notice that the architecture abstraction is
accessible by any other layer. Thanks to annotations,
it is the actual backbone of the framework. All

produced information remains linked to the underlying
program code. Retrieving properties of the hardware
platform is then easier.

2.1 Architecture Abstraction

The architecture Abstraction represents the
foundation for the rest of the framework. As shown in
figure 2, one of its components, the loader, is in
charge of scanning the program binary and the
hardware configuration file in order to produce the
process representation. This one contains not only the
program representation but also the description of the
hardware platform.

Actually, the upper layers do not really work with the
final representation of the process but, instead, with
an abstract interface of entities of the process.
The link between the abstract interface and the actual
classes is performed by the loader component.
OTAWA retrieves the actual classes by scanning the
binary and by selecting a matching plug-in.
As a result, the framework can support any
architecture provided an adapted plug-in is available.
It should also be emphasized that the code
processors in upper levels becomes insensitive to the
hardware architecture.
However, information about the hardware can be
retrieved in any layer. Indeed, this kind of information
may be accessed from the platform description
database in an easy and portable way whatever the
actual architecture is.

2.2 Annotation System

The annotation system is another component of
OTAWA that aims to enlarge the framework usage.

An annotation is a piece of data with an identifier, for
retrieving it among other annotations, and a type,
providing facilities for serialization, display and so on.
An annotation may be hooked to any entity providing
annotation list services like architecture abstraction
objects or high-level program representations.

Annotations are a very generic feature that fits well
with the process of WCET computation. The different
analyses that drives to the WCET works by
capitalizing more and more information about the
behaviour of the program. If an information item is
lacking, the analysers assume a default safe value to
continue their task.

The analysers, called code processors in OTAWA,
are using annotations as such: they explore the
architecture abstract representation and pick

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

Program Representat ion

Annotat ions

Loader User Interfaces

Plat form

Process Representat ionProgram
Binary

Code Processors

Plat form
Configurat ion

Data

Modules
Data Flow

Figure 2: Architecture Abstraction Layer

WCET Analyzers
and Com putat ions

High-Level Program
Representat ion

Architecture Abstract ion

Annotat ions and
Code Processors

Figure 1: Framework Layers.

annotations provided by previous processors. Their
results are stored in the same way using other
annotations or modifying existing ones. Consequently,
the WCET may be viewed as a special annotation
produced by the WCET computation processor.

As an example, Figure 3 shows a chain of code
processors that computes the WCET by the Implicit
Path Evaluation Technique.

The resulting system supports a flexible composition
of processors. For example, if we want a rough WCET
approximation, some processors may be either fully
removed, or replaced by simpler ones.

It should also be noted that the independence,
induced by the annotations between the processors,
releases constraints on the processor chain. It does
not need to be linear as in our example. A single
processor may be replaced by a whole sub-chain,
some parts may be conditional or some results may
be obtained in different ways, possibly from external
sources.

As a last point, the chaining of code processors is
performed thanks to a unique interface.
This uniqueness may be used to plug external code
processors and the implementation of user interfaces
around the OTAWA framework.

As a result, the annotations are really the glue that
maintains the other components sets. Consequently,
the high-level program representations are built onto
them.

2.3 High-level Program Representations

OTAWA provides a set of high-level program
representations including:

● Control Flow Graph (CFG),

● Abstract Syntax Tree (AST),

● Context Tree (CT).

They are built by dedicated code processors and tied
to the architecture abstraction entities by annotations.
As the annotation system provides some extensibility
properties, it is not a matter to add new program
representations.

Code processors that process these representations
may work in two modes: either they may call the

matching processor, or they may fail if the required
representation is not available. In any case, this
avoids to rebuild many times the same representation.

A specific facility provided by OTAWA is the virtual
CFG. A virtual CFG is the copy of an actual CFG that
is then modified according the needs of code
processors. For example, a call edge may be
replaced by the CFG of the called function for
achieving inlining. In the same way, the Basic Blocks
(BB) may be split according to rules of l-blocks of
some instruction cache management algorithm [1, 13].
The virtual nodes, representing a sub-CFG, allows us
to implement efficiently a CT [13] or scope trees [14].

2.4 WCET Computation

The top layer performs the main task of OTAWA, that
is, applying some static analyses in order to compute
the WCET. Of course, this layer benefits from the
facilities provided by the components previously
mentioned.

The framework is not dedicated to some kind of
WCET computation method. It provides a set of tools
required by usual methods like ETS, IPET or any
algorithm based on a static analysis of the program.
At some point, the framework is even not especially
tailored for WCET computation. It may be used in any
case where a program in binary code needs to be
scanned.

Currently, OTAWA supports a full chain for IPET
computation and the base analyses for ETS. Although
we have no plan to implement other methods, there is
actually no limitation preventing from adding other
algorithms like, for example, the abstract interpretation
approach.

The framework has been designed and developed for
two years and it provides now enough facilities for
computing WCET and for being broadly used.

2.5 Current State

OTAWA is a library of C++ classes, some plug-ins
including a PowerPC loader and an ILP engine based
on lp_solve [16] and some utility programs. It is also
delivered with a PowerPC simulator.

We have planned to develop soon a loader for ARM
architecture and some plug-ins for supporting other
ILP engine.

From the WCET point of view, two approaches have
been developped, IPET and ETS, but other
approaches could be implemented using OTAWA as,
for example, [5, 16].

The IPET approach includes the following code
processors:

● automatic generation of CFG from binary,

● basic block timing analysis by simulation,

● generation of CFG-based ILP constraints,

● support for first-level direct-mapped instruction
cache [13, 17],

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

1. Control Flow Graph building.
2. Loop bounds acquisition.
3. Global analysis for instruction cache [12].
4. Trivial analysis of data cache.
5. Basic block timing computation by

simulation.
6. Variables assignment on CFG edges and

nodes.
7. ILP inequalities building [12].
8. ILP objective function building.
9. ILP system resolution (producing WCET).

Figure 3: WCET Computation Chain using IPET
Method

● minimal support for data cache,

● CFG timing analysis using method [18].

The ETS provides very few processors:

● automatic generation of an AST from a C source,

● ETS block timing analysis by simulation,

● basic timing schema evaluation,

● support for first-level instruction cache (direct-
mapped or set-associative with LRU replacement
policy).

Both methods share a flow fact loader and a flow fact
description file format. Although the flow information is
bound to regular loops, we plan to improve this
component.

To validate the OTAWA architecture, we have
performed two case studies.

4. Case Studies

Two case studies have been performed for checking
the ability to extend and to develop new analyses in
OTAWA. The work has been achieved by two
developers who were not proficient with OTAWA
within a delay of three months.
This survey aimed at answering two questions. Firstly,
from a qualitative viewpoint, we wanted to check if the
OTAWA Application Programming Interface is good
enough for developing quickly new analyses. In the
second, we wanted to evaluate the rough efficiency of
the framework in order to know if OTAWA is fast
enough for real WCET computation or for use in an
experimental context.

4.1 First Case Study
The goal of this study is the comparison, inside the
OTAWA framework, of two methods for handling
direct-mapped instruction cache with the IPET
approach.
The first method, described by Li and Malik [17],
models the cache by a projection of the CFG
according to each cache line. This Cache Conflict
Graph (CCG) is then processed to generate new
constraints included in the ILP system and to modify
the maximized function representing the WCET. This
method is very heavy because it adds a lot of new
constraints and variables to the ILP system. As ILP
solvers have most of the time an exponential
complexity, the overall computation time grows quickly
while a lot of memory is required for building the CCG.
Yet, this method is well integrated within the IPET
approach making the cache sensitive to any flow fact
information of the program without additional work.
The second method (CAT) has been adapted from the
work of Healy and al. [13] to IPET. For each cache
line, a Data Flow Analysis is performed on the CFG in
order to compute the state of the cache line at the
entry and at the exit of each basic block. The context
tree of the program, composed of function
environments and loops, is then built and used for
assigning a category at each point of the program

possibly inducing an instruction memory access.
These categories may be always-miss, always-hit,
first-miss or first-hit and shows if an instruction causes
a cache miss or a cache hit according to the iterations
of the container loop. Using the loop bounds, the hit
count and miss count of each memory access are
computed and injected in the ILP system as constants
added to already existing constraints. This method is
lighter than the previous one but it seems to be less
accurate than CCG as it can only benefit from loop
count flow facts. Even worse, the original algorithm
performs some simplification making some categories
assignment too pessimistic.

The actual question of the study was not to compare
the accuracy of both methods, CCG is almost ever
better than CAT, but to check if the overhead induced
by CCG is worth compared to the results of the CAT
method. OTAWA is well-suited to perform such an
experiment because both algorithms are developed
and evaluated in the same environment. The
comparison is relatively straight and fair with very few
side effects coming from the implementation.
The evaluation has been performed on the SNU-RT
benchmark from Seoul National University and the
results are represented in Figure 4. The clear bars
shows the improvement of the WCET estimation by
CCG relative to the CAT method while the dark ones
represent the increase in computation time. Both are
in percent. Most of dark bars going out of the graph
are not fully represented.

With an average accuracy improvement of only 20%,
the CCG method is much slower than the CAT
method with an average computation time increase of
160%. Choosing between these algorithms will rely on
the use of the WCET: CCG best fits the need of an
accurate WCET while CAT brings fast computation.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

select

qurt

minver

matmul

ludcmp

lms

jfdctint

insertsort

fir

fibcall

fft1k

fft1

crc

bs

0 25 50 75 100 125 150

WCET Im-
provement

Time Increase

Figure 4: CCG / CAT Comparison

4.2 Second Case Study
The goal of the second case study was to show that
OTAWA can accept other program representations
and WCET computation methods.
The ETS [10] has been chosen because it is based on
AST, a program representation very distant from the
CFG used in IPET. For building the AST, we have
developed a specific loader processor that uses an
AST description file from the Heptane tool [2].
Then, we have implemented different processors in
order to compute the WCET according to the ETS
method:
● evaluation of AST blocks execution time using a

microprocessor simulator,
● application of ETS basic rules on the AST for

computing WCET,
● analysis of instruction cache behaviour for direct-

mapped and set-associative policies based on
categorization,

● use of instruction cache information in the WCET
estimation.

The development has been completed and is fully
working although it suffers from the usual limitations of
the ETS method : the C source must be available and
it only support statement without complex conditions,
that is, without short-circuit logic operators and
function calls.

4.2 Usability Evaluation
Both case studies have been implemented by
developers non-skilled with OTAWA. Each work has
taken three months during which OTAWA has proved
to have a fast learning curve. We guess it comes
certainly from the small size of the OTAWA core and
Application Programming Interface. Once, the
annotation, the loader and the processor core have
been understood, the user has only to learn a small
set of classes dedicated to its own domain. A lot of
work is hidden behind the architecture abstraction
layer and in the existing processors.
For getting an estimation of the work done in each
case study, we have measured the produced sources
using SLOC count (Single Line Of Code), a comment-
insensitive source line unit. The resulting code is
composed of several well-commented C++ files,
including headers and sources. As the first case study
counts 1494 SLOC and the second 1054 SLOC, we
have a really small code size. It seems OTAWA has
reached an important objective, that is, an improved
productivity in the development of analyses. Of
course, it will need further experience for more
accurate results.

Yet, this experimentation has shown lacks in the API
of the framework. As a minimal API was an important
requirement during the OTAWA design, both case
studies had to develop possibly redundant facilities
that should be embedded in the framework core. For
example, both instruction cache analyses in the first
case study requires a Data Flow Analysis : if the
processors share the same DFA engine provided by
OTAWA, their development load would be reduced

and the overall performances would be improved by a
single shared optimized implementation.
Additionally, the experimentation has shown that new
features, used in case studies, should be included in
OTAWA. For example, the concept of l-block, a
partition of basic blocks according cache blocks
bounds, is used in each instruction cache processors.
So it is for the cache modelling data structures that
are used by the three algorithms of the two case
studies. This last issue show also that a
generalization work, in the sense of object
programming, should be done for better managing the
model of architecture features and improving the re-
usability of the models. For emphasizing this, the
cache replacement policy modelization is used in the
same way whatever the algorithms used in both case
studies.
Finally, the case studies have shown that some
modules of the current OTAWA implementation need
improvement in order to be really efficient. This is the
case of the flow fact loader that, as in many other
tools, only supports regular loops. Some recent
WCET papers contain some solutions that should be
implemented in OTAWA soon.

4.3 Efficiency Evaluation
As the existing OTAWA code processors and the
case studies just implement well-known algorithms, it
is not meaningful to appraise the framework according
the accuracy of the computed WCET. The key point of
this paper is rather to evaluate OTAWA as a tool for
the development of experimental algorithms.
A better efficiency criterion is the computation time
because the development of new algorithms may
require fast testing and incremental approach.
Although the extensibility and openness facilities of
OTAWA are key features, they have also a time cost
as the computation speed may be a blocking hurdle. If
the resulting analyses are too slow, the framework
may be felt as unusable and will be left out.
Figure 6, on the next page, shows WCET computation
times of the IPET method using the CCG algorithm to
take into account an instruction cache. Along an
exponential scale, the clear bars show the total time in
millisecond measured on an Intel PIV 1.4GHz 512Mb.
Most times are under one second except the fft1
benchmark which produces a peak at five seconds:
although these benchmarks are relatively small, these
results are promising. The dark bar, the time taken by
the ILP solver, shows it consumes the bigger part of
the computation time. This comes mainly from the
CCG algorithm that generates a lot of new variables
and constraints for the ILP system. Therefore new
performances gain will require an improved or a new
ILP engine.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

Figure 7, shows the computation times for the IPET
method with the CAT instruction cache management
algorithm. This figure uses the same conventions as
Figure 6. One may observe that, in accordance with
CCG / CAT comparison, the measured times are a
magnitude below the CCG times. Even if the graph is
not of great help for understanding this, the ILP solver
takes much less time: in average, the ILP solver
consumes 55% of the time for the CCG method
compared to 10% for the CAT method.

Hopefully, the computation times in both cases seems
to be tractable within an experimental context. Most
time consuming tasks are induced by a piece of code,
the ILP solver, external to the framework that may be
possibly replaced by a faster implementation.

Although OTAWA has privileged extensibility and
openness in its internal architecture, the obtained
performances are promising and the framework is
usable in the domain of WCET computation. We
strongly believe that this result may be extended to
other WCET methods. From a pragmatic viewpoint,
the power devoted to the management of internal
structures of OTAWA will not degrade too much the
intrinsic performances of the ported WCET
computation methods.

6. Conclusion

This paper presents OTAWA, an open framework
dedicated to the WCET computation by static analysis
in an experimental context. Its design has borrowed
some powerful features to existing successful generic
tools like Salto or SUIF to achieve easy extensibility
and unconstrained openness goals. As a result, we
have a tool using an abstract architecture layer for
representing the program while miscellaneous
analyses are performed using so-called code
processors that, organized in chains, store and use
annotations on the abstract architecture layer.
Although the framework is not specialized to a WCET
computation method, a particular processor chain can
implement a specific method. Currently, OTAWA
provides chains for the IPET and ETS methods.
Additionally, the framework provides some facilities
often used in WCET computation like DFA, program
high-level representations, flow fact loader and so on.
To experiment the tool, two case studies have been
performed. In the first one, we have added instruction
cache management to the IPET chain according to
two algorithms, CCG and CAT, in order to compare
their performances. In the second case study, we
have implemented a relatively full computation chain
for the ETS method. The implementation of both case
studies has been successful and has demonstrated
the usability of the framework for this task in spite of
some remaining minor pitfalls that are easy to fix in
future versions of OTAWA. Another interesting
measure in experimental context concerns the
computation time. Despite the weight of features
ensuring extensibility like annotations, the measured
times are creditable and make the framework usable
in an experimental context.

Although OTAWA has reached a milestone in its
development, the overall tool architecture is not yet
fully validated. The abstract architecture layer has
only be tested with the PowerPC processor family but
we hope to implement quickly a plug-in for the ARM
processors. So are the plug-in for ILP engine used in
the IPET method: we plan to include a plug-in for the
GLPK library.
Some place remains also for improvement. Our flow
fact loader is rather rough. Although it is not
specialized for a WCET computation method, it only
supports regular loops bounds flow facts while there
are solutions for representing more complex loop
bounds or non-loop flow facts. Moreover, the match
between flow facts and the program is very low-level:

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

select

qurt

minver

matmul

ludcmp

lms

jfdctint

insertsort

fir

fibcall

fft1k

fft1

crc

bs

1 10 100 1000
CAT Time (ms) ILP CAT Time

(ms)

Figure 5: WCET Computation Time by CAT

select

qurt

minver

matmul

ludcmp

lms

jfdctint

insertsort

fir

fibcall

fft1k

fft1

crc

bs

1 10 100 1000
CAT Time (ms) ILP CAT Time

(ms)

Figure 6: WCET Computation Time by CAT

select

qurt

minver

matmul

ludcmp

lms

jfdctint

insertsort

fir

fibcall

fft1k

fft1

crc

bs

1 10 100 1000

CCG Time (ms) ILP CCG Time
(ms)

Figure 7: WCET Computation Time by CCG

it should be handy to provide support for annotations
in source but this requires a better integration with the
compiler. In spite of some interesting attempts to
solve the problem, tracking flow fact annotations in
optimized compilation remains practically a hard task.
OTAWA needs also to improve existing code
processors or to add new ones. For example, the
support for data cache is still very crude: each load or
store instruction is considered as a cache miss.
Improvement may be performed according to different
levels including local data access, array access and
alias analysis.

As a last word, OTAWA is currently used in our team
for the development of new methods for supporting
features of modern processors like multi-issue units,
branch prediction or symmetric multi-threading. We
are also exploring the feasibility of an
incremental / adaptative approach to WCET
computation. We hope that this framework will help to
speed up the implementation of these new algorithms
and, in turn, this work will represent a real proof of the
extensibility and the openness of OTAWA.

7. Acknowledgement

We especially want to thanks M. Benoit and M. Tawk
for the work performed to implement the case studies.

8. References

[1] Y.-T. S. Li, S. Malik, “Performance analysis of
embedded software using implicit path
enumeration”, Workshop on languages, compilers,
and tools for real-time systems, 88-98, 1995.

[2] A. Colin, I. Puaut, “A modular & retargetable
framework for tree-based WCET analysis”,
Proc. of ECRTS, 37-44, 2001.

[3] S.-S. Lim, Y.H. Bae; G.T. Jang; B.-D. Rhee, S.L.
Min; Chang Yun Park, H. Shin, K. Park, C.S. Kim,
“An accurate worst case timing analysis technique
for RISC processors”, Real-Time Systems
Symposium, 97 - 108 , Dec. 1994.

[4] N. Holsti, S. Saarinen, “Status of the Bound-T tool”,
2nd International Workshop on Worst-Case
Execution Time Analysis (WCET'2002), June 2002.

[5] C. Ferdinand, F. Martin, R. Wilhelm, “Applying
compiler techniques to cache behavior prediction”,
ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Real-Time Systems, 37-46,
Jun. 1997.

[6] M. Alt, F. Martin, “Generation of efficient
interprocedural analyzers with PAG”,
Proceedings of SAS'95, Static Analysis
Symposium, LNCS 983, pages 33-50, Sep. 1995.

[7] H. Cassé, C. Rochange, P. Sainrat, “An Open
Framework for WCET Analysis”, IEEE Real-Time
Systems Symposium - WIP session, pp 13-16,
Lisbonne, Dec. 2004.

[8] R. Rohou, F. Bodin, A. Seznec, G. Le Fol,
F. Charot, F. Raimbault, “Salto : system for
assembly-language transformation and
optimization”, INRIA RR-2980, Sep. 1996.

[9] “GLISS”, http://www.irit.fr/recherches/ARCHI/
MARCH/rubrique.php3?id_rubrique=54.

[10] R.P. Wilson, R.S. French, C.S. Wilson, S.P.
Amarasinghe, J.M. Anderson, S.W.K. Tijang, S.-W.
Liao, C.-W. Tseng, M.W. Hall, M.S. Lam, J.L.
Hennessy, J.L, “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing
Compilers”, ACM SIGPLAN Notices, 29(12):31-37,
Dec. 1994.

[11] G. Holloway, C. Young, “The flow analysis
transformation libraries of machine suif”, Second
suif compiler workshop, Aug. 1977.

[12] Y.-T. S. Li, S. Malik, A. Wolfe, “Cache Modeling for
Real-Time Software: Beyond Direct Mapped
Instruction Caches”, Proc. of ACM SIGPLAN
Workshop on Language, Compiler and Tool
Support for Real-time Systems, pp 47-55,
June 1997.

[13] C.A. Healy, R.D. Arnold, F. Mueller, S.B. Whalley,
M.G. Harmon, “Bounding Pipeline and Instruction
Cache Performance”, IEEE Transactions on
Computers, 48, 1, 53-70, 1999.

[14] J. Engblom, A. Ermedahl, M. Sjoedin,
J. Gustafsson, H. Hansson, “Worst-Case
Execution-Time Analysis for Embedded Real-Time
Systems”, Journal of Software Tools for
Technology Transfer, 2001.

[15] “lp_solve”, http://groups.yahoo.com/group/lp_solve/

[16] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley,
M.G. Harmon, “Bounding pipeline and instruction
cache performance”, IEEE Trans. Computers, 48
(1):53-70, Nov. 1999.

[17] Y.-T.S. Li, S. Malik, A. Wolfe, “Efficient
microarchitecture modelling and path analysis for
real-time software”, Proceedings of the 16th IEEE
Real-Time Systems Symposium, 254-263, Dec.
1995.

[18] J. Engblom, A. Ermedahl, “Pipeline timing analysis
using a trace-driven simulator”, Proc. Of 6th
International Conference on Real-Time Computing
Systems and Applications (RTCSA'99), IEEE
Computer Society Press, Dec. 1999.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

