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OTAWA, a Framework for Experimenting WCET Computations
H. Cassé, P. Sainrat

IRIT-UPS, 118 route de Narbonne 31062 Toulouse, France.

Abstract:  In  this  article,  we  present  OTAWA,  a
framework for computing the Worst Case Execution
Time of a program. From its design, it  provides an
extensible and open architecture whose objective is
the  implementation  of  existing  and  future  static
analyses for WCET computation. Inspired by existing
generic  tools,  it  is  based  on  an  architecture
abstraction  layers  where  hooked  annotations  store
specific analyses information. Computing the WCET
is viewed as performing a chain of analyses that use
and  produce  annotations  until  getting  the  WCET
evaluation. Finally, the efficiency of the framework, in
term of development productivity, is evaluated by two
case  studies  that  show  some  pitfalls  that  we  are
currently fixing but also the success of the approach.
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1. Introduction

1.1 Motivation

A large class of embedded software needs to proceed
in  real-time  context.  As  they  may  run  in  critical
devices like transportation,  it  must be proved that
they meet hard time constraints. One method uses the
computation of Worst Case Execution Time, WCET in
short, that evaluates the maximum execution time of a
program whatever the inputs and checks that real-
time constraints are satisfied.
Through the various ways for computing the WCET,
the approach based on static analysis allows getting
accurate and safe estimations.  Usually, the WCET
computation by static analysis requires modelling not
only the program but also the host architecture. The
classical  techniques  handle  well  the  current
embedded programs and the currently used simple
processors although the growing size of the software
induced  by  more  and  more  intelligent  devices  will
soon require more computation power and modern
processors.
Nevertheless,  modern  processors  features  like
multiple-issue  pipeline,  trace  caches,  branch
prediction,  simultaneous multithreading,  are  still  not
well  modelled  and  stay  hard  to  support  in  WCET
computation. Likely, the growing size and complexity
of embedded software may make current techniques
inefficient or too slow. These issues require either the
improvement  of  the  existing  methods,  or  the
development of new approaches.
To experiment methods for processing these issues,
we have developed a tool named OTAWA1.  Unlike
other existing tools designed for a specific analysis
algorithm,  it  provides  an  extensible  and  open

1 OTAWA stands for Open Tool for Adaptative WCET
Analysis.

framework with the ability  to support many different
approaches. We intend to use it as a sandbox where
new or improved algorithms may be easily developed.

1.2 Existing Tools

First,  we  looked  for  a  tool  supporting  the
implementation  and  the  experimentation  of  new
algorithms and we examined existing tools. To fill our
needs,  the  tool  had  to  exhibit  extensibility  and
openness properties.
The open source domain provides very few tools for
WCET computation. A very early tool is Cinderella [1]
but it seems to be no more developed since several
years. More recently, the Heptane tool [2] is delivered
by IRISA, France. It provides many neat features like
multi-target  support,  opened  sources,  modular
structure  and  visualization  facilities.  However,  we
have rejected it because it has been developed for the
Extended Timing Schema [3] approach.  Integrating or
developing   different  methods is  difficult.  Heptane
requires  program sources  for  building the Abstract
Syntax  Trees  and  thus  prevents  the  use  of
optimizations that blurs the match between the binary
and the AST. This last issue prevents from processing
off-the-shelf  components whose  sources  are  rarely
available. 
From the commercialized domain, we have mainly two
tools,  Bound-T and aiT.  Bound-T [4]  is  a  complete
multi-target solution for WCET computation developed
by  Tidorum  Ltd,  Finland  and  supported  by  the
European Space Agency. It is based on the Implicit
Path Enumeration Technique [1] method and includes
some  semi-automatic  facilities  for  computing  loop
bounds.  The  instruction  model,  far  away  from the
machine code, is so original that it should be difficult
to  support  multi-issues  processors.  Although  it
provides some facilities for external modules, it seems
to be too much closed and specialized.
AbsInt Gmbh, a German corporation, provides a tool
called  aiT [5]  that  is  used  by  several  device
manufacturers in real-time embedded applications. It
is  based  on  two  main  techniques.  The  abstract
interpretation is used for modelling the cache and the
pipeline behaviour and uses the PAG generator [6].
On  the  other  side,  Integer  Linear  Programming  is
used  for  handling  the  program  control  flow.  In
addition, aiT is delivered with many tools in order to
visualize WCET and hardware states wrapped around
the Control Flow Graph. Although aiT has been used
by several projects, its internal architecture is not well
known, possibly due to its commercialization success.
Consequently,  it  seems  to  be  too  closed  and  too
specialized for fitting our needs.
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As a result,  we have no choice except developing
OTAWA [7],  a  new  tool  providing  the  required
properties. Yet, this project is also supported by our
skills in architecture modelling and by our experience
with generic tools. Thus, such a project seemed to us
reachable.

1.3 Outline

After  this  introduction,  the second  section explains
how successful  generic tools,  Salto and SUIF, has
inspired the design of OTAWA. In the third section, we
expose the details of the framework architecture and
describe the overall approach of writing analyses in
this framework. The fourth part attempts to appraise
the success rate of the tool and presents two case
studies which allow us to experiment the development
inside  the  OTAWA.  Finally,  the  conclusion  gives
insight in future developments.

2. Framework Sources

OTAWA  development  has  been  started  for  filling
internal  needs  but  the  resolution  of  enlarging  the
framework application  domain was  motivated  by  a
significant   experience  in  generic  tools  from  the
architecture and compilation domains. Two successful
generic tools have guided the design of OTAWA.

2.1 SALTO Low-level Optimizer
SALTO [8] is the ultimate result from research from
the  previous  decade  on  modelling  RISC  and
superscalar processors and on providing architecture-
independent low-level optimizers.
Actually, SALTO is a C++ library providing an abstract
representation of the assembler and of its execution
by the processor. The specialisation of  the abstract
code is  achieved using a collection of  architecture-
aware back-ends: several ones are provided in the
basic distribution but more may be implement by the
users. The back-end contains information about the
assembly  syntax,  the  programming model  and  the
execution  model  of  the  processor.  In  addition,  a
configuration file allows tuning some components of
the processor (cache, pipeline capacity, functional unit
count and so on).
Such  a  tool  proves  that  it  is  possible  to  support
different  architectures  using  an  abstract
representation and has provided a powerful model for
achieving  this  task.  This  feature  is  particularly
important in the field of  embedded system where a
large panel of digital equipment is used. 
Nonetheless,  several  issues  prevented  a
straightforward use of  Salto in our tool.  First, Salto
implementation  only  supports  programs  in  textual
assembly sources while most of embedded program
to process are only provided as a binary: an additional
pass translating back in textual form would consume
time  and  possibly  decrease  the  reliability  of  the
computation.  Another  drawback  comes  from  the
application field of Salto: it was designed to process
low-level optimisations with a partial and rough time
analysis  while  the  WCET computation  requires  an

accurate time estimation of the activity of all processor
components. As a last resort, Salto does not provide
any  facility  for  performing  processor  simulation,  a
feature  that  is  used  in  many  WCET  computation
methods.
In the OTAWA framework, we preferred to develop
our own architecture abstraction layer based on the
Salto architecture model. This layer is built onto back-
ends  generated  by  GLISS [9],  a  tool  providing
automatic  facilities  for  describing  a  programming
model,  decoding binaries and  generating functional
simulators. 

2.2 SUIF Compiler
The  SUIF  compiler [10]  also  brought  significant
features to OTAWA. It was designed as a modular
compilation  chain  for  the  experimentation  of  new
optimization algorithms. Formerly using a single back-
end generating MIPS assembly, it has been extended
to support any processor in MachSUIF [11]. Delivered
in  the  nineties,  SUIF  is  a  perfect  example  of  a
successful generic and experimental tool.
The first feature borrowed by OTAWA concerns the
annotation system. The SUIF annotations are pieces
of  information that accept an identifier and that are
hooked to any entity in the program representation.
They are handled by any compilation phase to pass
data  to  subsequent  phases.  In  the  SUIF
implementation,  in  order  to  transmit  the  program
between phases, a standard form is provided in order
to  serialize  and  unserialize  the  program
representation and the annotations. This facilitates the
addition of new phases that can store or share their
own data. Nonetheless, SUIF annotations does not fit
well  with  the  transformations  of  the  program
representation  required  by  the  compilation:  some
annotations  are  lost  or  are  moved  on  inadequate
entities. Yet, OTAWA implementation of annotations is
not hurt by such a limitation because it processes the
program in a read-only fashion.
The next feature adapted to  OTAWA concerns the
two-level  representation  of  the  program.  The  Low-
SUIF  representation  contains  the  machine
instructions,  possibly  linked  as  an  expression  tree
while the High-SUIF represents  the program by  its
control  statement  as  found  in  the  sources.  Both
representations are living in parallel  and are linked
together.  As  a  result,  the  low-level  and  high-level
optimizations may be applied on the same program
representation.  Thus,  the  compilation  process  is
equivalent to reduce the high-level representation until
getting  only  a  linear  Low-SUIF  sequence  of
instructions.  The  OTAWA adaptation has  improved
this  feature:  it  supports  many  different  high-level
program representations on the same code because it
builds them from the annotations.
The last feature borrowed by OTAWA is the possibility
of  chaining  optimization  phases.  In  SUIF,  each
optimization is an executable program that reads the
serialized program representation from the previous
phase  and  produces  a  new  serialized  program
representation.  Using the annotations,  optimizations
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can  pass  specific  pieces  of  information  along  the
compilation process. The whole compilation may be
performed using either a shell script or an executable
launching  each  phase.  Building  or  modifying
compilation chains is easier thanks to this possibility.
This way, adding a phase is very simple as it  only
involves modifying the script.

 This feature has been included in OTAWA. For the
sake of  efficiency,  our  analysis  phases  live  in  the
same executable and does not need the serialization
of the program representation. Yet, the uniformity of
the  analysis  interface  allows  a  more  flexible
composition and supports the use of plug-ins.

The  features  from  Salto  and  SUIF,  listed  in  this
section, have driven the design of OTAWA. The result
is  a framework that should support easy extension
and fast development of WCET analyses.

3. Framework Architecture

This section presents the architecture of the OTAWA
framework.

2.1 Framework Overview

Figure 1 shows an overview of  OTAWA as a layer
stack.

The base of the stack is the architecture abstraction
layer  that  provides  a  generic  abstraction  for
representing  programs  and  hardwares  to  upper
layers. 
The second layer provides annotations that may be
hooked to the entities of the architecture abstraction.
Facilities  are  given  in  this  layer  for  modifying  the
annotations.
In  the  third  layer,  the  high-level  program
representations are built using the annotation system.
They are viewed by the architecture abstraction layer
as usual annotations.
Finally, in the uppermost layer stand programs that
implement analyses and computations of the WCET.
They use information given by the other layers.
One may notice that the architecture abstraction is
accessible by any other layer. Thanks to annotations,
it  is  the  actual  backbone  of  the  framework.  All

produced information remains linked to the underlying
program code. Retrieving properties of the hardware
platform is then easier.

2.1 Architecture Abstraction

The  architecture  Abstraction  represents  the
foundation for the rest of the framework.  As shown in
figure 2,  one  of  its  components,  the  loader,  is  in
charge  of  scanning  the  program  binary  and  the
hardware configuration file  in  order  to  produce the
process representation. This one contains not only the
program representation but also the description of the
hardware platform. 

Actually, the upper layers do not really work with the
final representation of the process but, instead, with
an abstract interface of entities of the process.
The link between the abstract interface and the actual
classes  is  performed  by  the  loader  component.
OTAWA retrieves the actual classes by scanning the
binary and by selecting a matching plug-in.
As  a  result,  the  framework  can  support  any
architecture provided an adapted plug-in is available.
It  should  also  be  emphasized  that  the  code
processors in upper levels becomes insensitive to the
hardware architecture.
However,  information  about  the  hardware  can  be
retrieved in any layer. Indeed, this kind of information
may  be  accessed  from  the  platform  description
database in an easy and portable way whatever the
actual architecture is.

2.2 Annotation System

The  annotation  system  is  another  component  of
OTAWA that aims to enlarge the framework usage.

An annotation is a piece of data with an identifier, for
retrieving  it  among other  annotations,  and  a  type,
providing facilities for serialization, display and so on.
An annotation may be hooked to any entity providing
annotation  list  services like  architecture  abstraction
objects or high-level program representations.

Annotations are a very generic feature that fits well
with the process of WCET computation. The different
analyses  that  drives  to  the  WCET  works  by
capitalizing  more  and  more  information  about  the
behaviour of  the program. If  an information item is
lacking, the analysers assume a default safe value to
continue their task.

The analysers,  called  code processors in  OTAWA,
are  using  annotations  as  such:  they  explore  the
architecture  abstract  representation  and  pick
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annotations provided by  previous processors. Their
results  are  stored  in  the  same  way  using  other
annotations or modifying existing ones. Consequently,
the WCET may be viewed as a special  annotation
produced by the WCET computation processor.

As  an  example,  Figure 3  shows  a  chain  of  code
processors that computes the WCET by the Implicit
Path Evaluation Technique. 

The resulting system supports a flexible composition
of processors. For example, if we want a rough WCET
approximation, some processors may be either fully
removed, or replaced by simpler ones.

It  should  also  be  noted  that  the  independence,
induced by the annotations between the processors,
releases constraints on the processor chain. It does
not need to be linear as  in  our example. A single
processor  may be replaced by  a  whole  sub-chain,
some parts may be conditional or some results may
be obtained in different ways, possibly from external
sources.

As a last point, the chaining of code processors is
performed  thanks  to  a  unique  interface.
This uniqueness may be used to plug external code
processors and the implementation of user interfaces
around the OTAWA framework.

As a result, the annotations are really the glue that
maintains the other components sets. Consequently,
the high-level program representations are built onto
them.

2.3 High-level Program Representations

OTAWA  provides  a  set  of  high-level  program
representations including:

● Control Flow Graph (CFG),

● Abstract Syntax Tree (AST),

● Context Tree (CT).

They are built by dedicated code processors and tied
to the architecture abstraction entities by annotations.
As the annotation system provides some extensibility
properties,  it  is  not  a  matter  to  add  new program
representations.

Code processors that process these representations
may work  in  two  modes:  either  they  may call  the

matching processor, or they may fail if  the required
representation  is  not  available.  In  any  case, this
avoids to rebuild many times the same representation.

A specific facility provided by OTAWA is the virtual
CFG. A virtual CFG is the copy of an actual CFG that
is  then  modified  according  the  needs  of  code
processors.  For  example,  a  call  edge  may  be
replaced  by  the  CFG  of  the  called  function  for
achieving inlining. In the same way, the Basic Blocks
(BB) may be split  according to rules of  l-blocks of
some instruction cache management algorithm [1, 13].
The virtual nodes, representing a sub-CFG, allows us
to implement efficiently a CT [13] or  scope trees [14].

2.4 WCET Computation

The top layer performs the main task of OTAWA,  that
is, applying some static analyses in order to compute
the WCET. Of  course, this  layer  benefits  from the
facilities  provided  by  the  components  previously
mentioned. 

The  framework  is  not  dedicated  to  some  kind  of
WCET computation method. It provides a set of tools
required by  usual  methods  like  ETS,  IPET or  any
algorithm based on a static analysis of the program.
At some point, the framework is even not especially
tailored for WCET computation. It may be used in any
case where a program in binary code needs to be
scanned.

Currently,  OTAWA  supports  a  full  chain  for  IPET
computation and the base analyses for ETS. Although
we have no plan to implement other methods, there is
actually  no  limitation  preventing  from adding  other
algorithms like, for example, the abstract interpretation
approach.

The framework has been designed and developed for
two years and it  provides now enough facilities for
computing WCET and for being broadly used.

2.5 Current State

OTAWA is a library of  C++ classes, some plug-ins
including a PowerPC loader and an ILP engine based
on lp_solve [16] and some utility programs. It is also
delivered with a PowerPC simulator.

We have planned to develop soon a loader for ARM
architecture and some plug-ins for  supporting other
ILP engine.

From the WCET point of view, two approaches have
been  developped,  IPET  and  ETS,  but  other
approaches could be implemented using OTAWA as,
for example, [5, 16].

The  IPET  approach  includes  the  following  code
processors:

● automatic generation of CFG from binary,

● basic block timing analysis by simulation,

● generation of CFG-based ILP constraints,

● support  for  first-level  direct-mapped  instruction
cache [13, 17],
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● minimal support for data cache,

● CFG timing analysis using   method [18].

The ETS provides very few processors:

● automatic generation of an AST from a C source,

● ETS block timing analysis by simulation,

● basic timing schema evaluation,

● support  for  first-level  instruction  cache  (direct-
mapped or set-associative with LRU replacement
policy).

Both methods share a flow fact loader and a flow fact
description file format. Although the flow information is
bound  to  regular  loops,  we  plan  to  improve  this
component.

To  validate  the  OTAWA  architecture,  we  have
performed two case studies. 

4. Case Studies

Two case studies have been performed for checking
the ability to extend and to develop new analyses in
OTAWA.  The  work  has  been  achieved  by  two
developers  who  were  not  proficient  with  OTAWA
within a delay of three months.
This survey aimed at answering two questions. Firstly,
from a qualitative viewpoint, we wanted to check if the
OTAWA Application Programming Interface is  good
enough for developing quickly new analyses. In the
second, we wanted to evaluate the rough efficiency of
the framework in  order  to  know if  OTAWA is  fast
enough for real WCET computation or for use in an
experimental context.

4.1 First Case Study
The goal of this study is the comparison, inside the
OTAWA  framework,  of  two  methods  for  handling
direct-mapped  instruction  cache  with  the  IPET
approach.
The  first  method,  described  by  Li  and  Malik [17],
models  the  cache  by  a  projection  of  the  CFG
according to  each  cache line.  This  Cache Conflict
Graph  (CCG)  is  then  processed  to  generate  new
constraints included in the ILP system and to modify
the maximized function representing the WCET. This
method is very heavy because it adds a lot of new
constraints and variables to the ILP system. As ILP
solvers  have  most  of  the  time  an  exponential
complexity, the overall computation time grows quickly
while a lot of memory is required for building the CCG.
Yet,  this  method is  well  integrated within the IPET
approach making the cache sensitive to any flow fact
information of the program without additional work. 
The second method (CAT) has been adapted from the
work of Healy and al. [13] to IPET. For each cache
line, a Data Flow Analysis is performed on the CFG in
order to compute the state of the cache line at the
entry and at the exit of each basic block. The context
tree  of  the  program,  composed  of  function
environments and loops, is  then built  and used for
assigning a category at  each point of  the program

possibly  inducing  an  instruction  memory  access.
These  categories  may  be  always-miss,  always-hit,
first-miss or first-hit and shows if an instruction causes
a cache miss or a cache hit according to the iterations
of the container loop. Using the loop bounds, the hit
count and miss count of  each memory access are
computed and injected in the ILP system as constants
added to already existing constraints. This method is
lighter than the previous one but it seems to be less
accurate than CCG as it can only benefit from loop
count flow facts. Even worse, the original algorithm
performs some simplification making some categories
assignment too pessimistic.

The actual question of the study was not to compare
the accuracy of both methods, CCG is almost ever
better than CAT, but to check if the overhead induced
by CCG is worth compared to the results of the CAT
method. OTAWA is  well-suited to  perform such an
experiment because both algorithms are developed
and  evaluated  in  the  same  environment.  The
comparison is relatively straight and fair with very few
side effects coming from the implementation.
The evaluation has been performed on the SNU-RT
benchmark from Seoul  National  University  and  the
results are represented in Figure 4.  The clear  bars
shows the improvement of the WCET estimation by
CCG relative to the CAT method while the dark ones
represent the increase in computation time. Both are
in percent. Most of dark bars going out of the graph
are not fully represented.

With an average accuracy improvement of only 20%,
the  CCG  method  is  much  slower  than  the  CAT
method with an average computation time increase of
160%. Choosing between these algorithms will rely on
the use of the WCET: CCG best fits the need of an
accurate WCET while CAT brings fast computation.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

select

qurt

minver

matmul

ludcmp

lms

jfdctint

insertsort

fir

fibcall

fft1k

fft1

crc

bs

0 25 50 75 100 125 150

WCET Im-
provement

Time Increase

Figure 4: CCG / CAT Comparison



4.2 Second Case Study
The goal of the second case study was to show that
OTAWA can  accept  other  program representations
and WCET computation methods.
The ETS [10] has been chosen because it is based on
AST, a program representation very distant from the
CFG used in IPET. For building the AST, we have
developed a specific loader processor that uses an
AST description file from the Heptane tool [2].
Then, we have implemented different processors in
order to compute the WCET according to the ETS
method:
● evaluation of AST blocks execution time using a

microprocessor simulator,
● application  of  ETS  basic  rules  on  the  AST  for

computing WCET,
● analysis of instruction cache behaviour for direct-

mapped  and  set-associative  policies  based  on
categorization,

● use of instruction cache information in the WCET
estimation.

The development has been completed and  is  fully
working although it suffers from the usual limitations of
the ETS method : the C source must be available and
it only support statement without complex conditions,
that  is,  without  short-circuit  logic  operators  and
function calls.

4.2 Usability Evaluation
Both  case  studies  have  been  implemented  by
developers non-skilled with OTAWA. Each work has
taken three months during which OTAWA has proved
to have a fast learning curve. We guess it   comes
certainly from the small size of the OTAWA core and
Application  Programming  Interface.  Once,  the
annotation, the loader and the processor core have
been understood, the user has only to learn a small
set of classes dedicated to its own domain. A lot of
work  is  hidden  behind  the  architecture  abstraction
layer and in the existing processors.
For getting an estimation of the work done in each
case study, we have measured the produced sources
using SLOC count (Single Line Of Code), a comment-
insensitive  source  line  unit.  The  resulting  code  is
composed  of  several  well-commented  C++  files,
including headers and sources. As the first case study
counts 1494 SLOC and the second 1054 SLOC,  we
have a really small code size. It seems OTAWA has
reached an important objective, that is, an improved
productivity  in  the  development  of  analyses.  Of
course,  it  will  need  further  experience  for  more
accurate results.

Yet, this experimentation has shown lacks in the API
of the framework. As a minimal API was an important
requirement  during  the  OTAWA design,  both  case
studies had to develop possibly redundant facilities
that should be embedded in the framework core. For
example, both instruction cache analyses in the first
case  study  requires  a  Data  Flow  Analysis :  if  the
processors share the same DFA engine provided by
OTAWA, their development load would be reduced

and the overall performances would be improved by a
single shared optimized implementation.
Additionally, the experimentation has shown that new
features, used in case studies, should be included in
OTAWA.  For  example,  the  concept  of  l-block,  a
partition  of  basic  blocks  according  cache  blocks
bounds, is used in each instruction cache processors.
So it is for the cache modelling data structures that
are  used  by  the  three algorithms of  the  two case
studies.  This  last  issue  show  also  that  a
generalization  work,  in  the  sense  of  object
programming, should be done for better managing the
model of architecture features and improving the re-
usability  of  the  models.  For  emphasizing  this,  the
cache replacement policy modelization is used in the
same way whatever the algorithms used in both case
studies.
Finally,  the  case  studies  have  shown  that  some
modules of the current OTAWA implementation need
improvement in order to be really efficient. This is the
case of the flow fact loader that, as in many other
tools,  only  supports  regular  loops.  Some  recent
WCET papers contain some solutions that should be
implemented in OTAWA soon.

4.3 Efficiency Evaluation
As  the  existing  OTAWA code  processors  and  the
case studies just implement well-known algorithms, it
is not meaningful to appraise the framework according
the accuracy of the computed WCET. The key point of
this paper is rather to evaluate OTAWA as a tool for
the development of experimental algorithms.
A better efficiency criterion is  the computation time
because  the  development  of  new  algorithms  may
require  fast  testing  and  incremental  approach.
Although the extensibility  and openness facilities  of
OTAWA are key features, they have also a time cost
as the computation speed may be a blocking hurdle. If
the resulting analyses are too slow, the framework
may be felt as unusable and will be left out.
Figure 6, on the next page, shows WCET computation
times of the IPET method using the CCG algorithm to
take  into  account  an  instruction  cache.  Along  an
exponential scale, the clear bars show the total time in
millisecond measured on an Intel PIV 1.4GHz 512Mb.
Most  times  are  under  one  second  except  the  fft1
benchmark which produces a peak at five seconds:
although these benchmarks are relatively small, these
results are promising. The dark bar, the time taken by
the ILP solver, shows it consumes the bigger part of
the computation time. This  comes mainly  from the
CCG algorithm that generates a lot of new variables
and constraints  for  the ILP system. Therefore new
performances gain will require an improved or a new
ILP engine.
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Figure 7, shows the computation times for the IPET
method with the CAT instruction cache management
algorithm. This figure uses the same conventions as
Figure 6. One may observe that, in accordance with
CCG / CAT comparison, the measured times are a
magnitude below the CCG times. Even if the graph is
not of great help for understanding this, the ILP solver
takes  much  less  time:  in  average,  the  ILP  solver
consumes  55%  of  the  time  for  the  CCG  method
compared to 10% for the CAT method.

Hopefully, the computation times in both cases seems
to be tractable within an experimental context. Most
time consuming tasks are induced by a piece of code,
the ILP solver, external to the framework that may be
possibly  replaced  by  a  faster  implementation.

Although  OTAWA  has  privileged  extensibility  and
openness  in  its  internal  architecture,  the  obtained
performances  are  promising  and  the  framework is
usable  in  the  domain  of  WCET  computation.  We
strongly believe that this result may be extended to
other WCET methods. From a pragmatic viewpoint,
the  power  devoted  to  the  management  of  internal
structures of OTAWA will not  degrade too much the
intrinsic  performances  of  the  ported  WCET
computation methods.

6. Conclusion

This  paper  presents  OTAWA,  an  open  framework
dedicated to the WCET computation by static analysis
in an experimental context. Its design has borrowed
some powerful features to existing successful generic
tools like Salto or SUIF to achieve easy extensibility
and unconstrained openness goals. As a result, we
have a tool using an abstract architecture layer for
representing  the  program  while  miscellaneous
analyses  are  performed  using  so-called  code
processors that, organized in chains, store and use
annotations  on  the  abstract  architecture  layer.
Although the framework is not specialized to a WCET
computation method, a particular processor chain can
implement  a  specific  method.  Currently,  OTAWA
provides  chains  for  the  IPET  and  ETS  methods.
Additionally,  the framework provides  some facilities
often used in WCET computation like DFA, program
high-level representations, flow fact loader and so on.
To experiment the tool, two case studies have been
performed. In the first one, we have added instruction
cache management to the IPET chain according to
two algorithms, CCG and CAT, in order to compare
their  performances.  In  the  second  case  study,  we
have implemented a relatively full computation chain
for the ETS method. The implementation of both case
studies has been successful and has demonstrated
the usability of the framework for this task in spite of
some remaining minor pitfalls that are easy to fix in
future  versions  of  OTAWA.  Another  interesting
measure  in  experimental  context  concerns  the
computation  time.  Despite  the  weight  of  features
ensuring extensibility like annotations, the measured
times are creditable and make the framework usable
in an experimental context.

Although  OTAWA  has  reached  a  milestone  in  its
development, the overall tool architecture is not yet
fully  validated.  The  abstract  architecture  layer  has
only be tested with the PowerPC processor family but
we hope to implement quickly a plug-in for the ARM
processors. So are the plug-in for ILP engine used in
the IPET method: we plan to include a plug-in for the
GLPK library.
Some place remains also for improvement. Our flow
fact  loader  is  rather  rough.  Although  it  is  not
specialized for a WCET computation method, it only
supports regular loops bounds flow facts while there
are  solutions  for  representing  more  complex  loop
bounds or non-loop flow facts. Moreover, the match
between flow facts and the program is very low-level:
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it should be handy to provide support for annotations
in source but this requires a better integration with the
compiler.  In  spite  of  some  interesting  attempts  to
solve the problem, tracking flow fact annotations in
optimized compilation remains practically a hard task.
OTAWA  needs  also  to  improve  existing  code
processors or  to  add  new ones.  For  example,  the
support for data cache is still very crude: each load or
store  instruction  is  considered  as  a  cache  miss.
Improvement may be performed according to different
levels including local data access, array access and
alias analysis.

As a last word, OTAWA is currently used in our team
for the development of new methods for supporting
features of modern processors like multi-issue units,
branch prediction  or  symmetric  multi-threading.  We
are  also  exploring  the  feasibility  of  an
incremental / adaptative  approach  to  WCET
computation. We hope that this framework will help to
speed up the implementation of these new algorithms
and, in turn, this work will represent a real proof of the
extensibility and the openness of OTAWA.
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