
HAL Id: hal-02270431
https://hal.science/hal-02270431

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiences in using model checking to verify real time
properties of a landing gear control system

Frédéric Boniol, Virginie Wiels, Emmanuel Ledinot

To cite this version:
Frédéric Boniol, Virginie Wiels, Emmanuel Ledinot. Experiences in using model checking to verify real
time properties of a landing gear control system. Conference ERTS’06, Jan 2006, Toulouse, France.
�hal-02270431�

https://hal.science/hal-02270431
https://hal.archives-ouvertes.fr

Experiences in using model checking to verify real time properties of a landing
gear control system

Fréd́eric Boniol1,2, Virginie Wiels1, Emmanuel Ledinot3

1: ONERA-CERT, 2 av. E. Belin, BP 4025, 31055 Toulouse France
2: ENSEEIHT, 2 rue C. Camichel, 31071 Toulouse France

3: Dassault Aviation, 78 quai M. Dassault, 92552 Saint-Cloud France

Abstract

This paper presents experiences in using several model
checking tools to verify properties of a critical real time
embedded system. The tools we tested are Lesar, SMV,
Prover Plug In for SCADE and Uppaal. The application
is the landing gear control system of a military aircraft,
developed by Dassault Aviation. The property to be veri-
fied states that the gear must be down in at most 14 sec-
onds. Results (success and verification time) depend a lot
on the way time is handled by the verification tools.

keyword : formal verification, critical real time embed-
ded systems.

1 Introduction

Embedded critical systems need to be validated very
thoroughly; it usually results in very long and onerous test
phases. Formal techniques, fin particular formal specifi-
cation languages and associated proof tools, could be an
advantageous alternative, or at least a good complement
and allow a significative reduction of test phases. How-
ever, for these techniques to be used in practice, one issue
to consider is their efficiency on complex industrial sys-
tems.

This paper presents experiences in using model check-
ing tools to verify a real time property of a landing gear
control system implemented by Dassault Aviation. The
system was originally described in Esterel and included a
control software and physical components modelling. A
first attempt was made at validating the system against a
set of properties using Esterel model checker TiGeR, but
some properties were not verified. It was thus decided to
test other model checking tools: tools associated to Lus-
tre (Prover Plug In, Lesar), SMV (because we could use
an automatic translation from Lustre to SMV), and Up-
paal (for the ability to model the physical components in
a more realistic way using timed automata).

In order to obtain a finer evaluation of the considered
tools, we have defined several versions of the verification

task of growing complexity, by considering

• three versions of the system,

• two versions of the property,

• two different sets of hypotheses.

It is important to note that our objective is not to do a
classical benchmark of verification tools, but to evaluate
the usability of such tools in an industrial context. Our
starting point is a specification written by industrial de-
signers (in Esterel) and our concern in the translation pro-
cess is to stay as close as possible to this original specifi-
cation, thus forbidding verification oriented optimisations.

Section 2 describes the case study. Section 3 presents
the experimentation approach. Sections 4 and 5 are de-
voted to experimentations. In section 6, we synthesize
results and try to analyze them. Finally, section 7 sketches
some avenues of future work.

2 Case study

The case study is the landing gear control system of a
military aircraft. This system has to satisfy a list of re-
quirements such as “the gear should not be retracted with-
out pilot order”, “the gear should not be retracted when the
aircraft is on ground even if pilot orders it”, etc. Among
these properties, only those requiring that gears react in a
given time will be considered in this study, because they
are the most difficult to verify.

2.1 Description of the system
General description. The landing system is in charge
of manoevering landing gears and associated doors. The
system is controlled digitally in nominal mode and ana-
logically in emergency mode. The system is composed of
three gears: front, left and right gears. Each gear has got
a landing gear uplock box and a door with two latching
boxes.

Gears and doors are manoevered by hydraulical jacks.
Hydraulical power is provided by a command unit that
consists of

1

• a set of actuators: solenoid valve to isolate the emer-
gency hydraulical system, electrovalves to open and
close doors, to let down and to retract gears;

• a set of sensors giving the current state of different
parts of the system: position of landing gear actuat-
ing cylinder, of lock actuators, state of landing gear
shock absorbers, state of hydraulical system, etc.

To command the retraction and outgoing of gears, the
pilot has got a set of buttons with two positions (up and
down) and a set of lights giving the current position of
gears and doors.

When the command line is working (we will only con-
sider this case in this study), the landing system reacts to
the pilot orders by actioning or inhibiting the electrovalves
of the appropriated jacks. The outgoing of gears is decom-
posed in a sequence of elementary actions:

1. stimulation of the solenoid isolating the command
unit,

2. stimulation of the door opening solenoid,

3. once the doors are opened, stimulation of the gear
outgoing solenoid,

4. once the gears are locked down, stop the stimulation
of the gear outgoing solenoid and stimulation of the
door closure solenoid,

5. once the doors are closed, stop the stimulation of the
door closure solenoid,

6. and finally stop the isolating electrovalve.

In the same way, the retraction of gears is decomposed
in a sequence of elementary actions:

1. stimulation of the solenoid isolating the command
unit,

2. stimulation of the door opening solenoid,

3. once the doors are opened, when the shock ab-
sorbers are relaxed, stimulation of the gear retraction
solenoid,

4. once the gears are locked up, stop the stimulation
of the gear retraction solenoid and stimulation of the
door closure solenoid,

5. once the doors are closed, stop the stimulation of the
door closure solenoid,

6. and finally stop the isolating electrovalve.

Because of hydraulical constraints, a given timing must
exist between stimulation and stimulation stop of the
solenoid valves and electrovalves. Moreover, the previ-
ous sequences should be interruptible by counter orders (a
retraction order occurs during the let down sequence and
conversely).

A general description of the system is given in figure 1.

The control software. This software is in charge of
controlling gears and doors in nominal mode. It is part of
a retroaction loop with the physical system, and produces
commands for the distribution elements of the hydraulical
system from the sensors values and from the pilot orders.

The input of the software are:

• command buttons values (up or down),

• position of the six doors locks,

• position of the three actuating cylinders,

• position of the three landing gears locks,

• state of the drag struts,

• state of shock absorbers,

• an oil pressure switch giving the pressure of the hy-
draulical system after the isolating solenoid valve.

The output of the software are:

• commands to start and stop stimulation of the elec-
trovalves and solenoid valves,

• a set of warnings for the pilot in case of bad function-
ing or non response of mechanical components.

The control software consists in a set of specialised
functions:

• a monitoring function for gears and doors, that sig-
nals the landing system faulty if it detects incoher-
ences,

• a command function that implements the sequences
of outgoing and retraction of gears. This function
directly controls the mechanical components. It is
decomposed into a function that computes stimula-
tion commands for each component and functions to
manage the commands emission (management of the
timing constraints).

• a monitoring function to verify that the system reacts
correctly and to control the functional and temporal
coherence of the orders. As faults are not taken into
account in our study, we do not consider this function
in the following.

All the functions included in the control system are im-
plemented by periodic and sequential processes executed
every 40ms.

2.2 Requirements / Properties
The properties we want to prove on the system are the

following (we suppose that there is no fault):

• if the landing gear command button has been DOWN
for 14 seconds, then the gears will be down in less
than 14 seconds;

2

left gear
retraction jack

right gear

commands
system
state of the

system
control

outgoing

retraction

closing

electrovalve

electrovalve

electrovalve

opening
electrovalve

solenoid valve

retraction jack

PILOT

front gear
retraction jack

front gear
outgoing jack

front door
closing jack

front door
opening jack

opening jack
left door

opening jack
right door

closing jack
left door

closing jack
right door

outgoing jack
left gear

outgoing jack
right gear

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

Figure 1. General description of the system

3

• if the landing gear command button has been UP for
14 seconds, then the gears will be retracted in less
than 14 seconds.

The two properties are very similar, we will only con-
sider the first one in the following. This property charac-
terizes a behaviour of the control software together with
the physical system to be controlled, i.e. a model of the
real time behaviour of jacks, electrovalves, gears, doors,
hydraulical actuators, etc. These models must take into
account timings. For example an hydraulical power is op-
erational only after a given time. We will see that these
real time constraints are partly responsible for the com-
binatorial explosion that will prevent verification in some
cases.

3 Experimentation approach

In this section we present the starting point of our study
(a first experience made by Dassault), the verification ap-
proach and the methodology we adopted to be able to
achieve a fine evaluation of the tools.

3.1 Starting point
The first attempt to prove the property was made in

1995 by Dassault Aviation with the TiGeR tool (From
CMA, Sophia Antipolis). This tool was essentially a BDD
library aimed at verifying and optimising electronic se-
quential circuits. The Esterel compiler translates pro-
grams into sequential circuits that can then be verified
with TiGeR [2, 3].

TiGeR proceeds in two steps: it first computes the
BDD representing all accessible states, then it verifies the
property on this diagram. The first step is crucial, com-
puted diagrams can reach prohibitive sizes. For the verifi-
cation of the property on the landing system, this first step
could not be achieved for lack of memory. Experiences
were made on a Sun Sparc with 128Mb at Dassault and
on a DEC Alpha with 500Mb at CMA, but both attempts
were unsuccessful.

3.2 Verification approach
After this first experience without result, it was decided

to test other model checkers: on one hand tools associ-
ated to the Lustre language [4], on the other hand a real
time tool based on timed automata [1]. Lustre and Es-
terel use a discrete time model that necessitates a sam-
pling of the behaviour of the system and particularly of
the physical components. This sampling leads to an ex-
plosion of the number of states that is problematic for the
verification tools. This is one of the reasons why we chose
to also experiment a tool based on continuous time that
does not need sampling. We expected a more realistic and
sampling independent specification of the physical com-
ponents. The tools that were tested are thus:

• Prover Plug In for SCADE (Prover Technology) [15],

• Lesar (VERIMAG) [6, 12, 9],

• SMV (Cadence Berkeley Labs) [11, 10, 14],

• UPPAAL (University of Aalborg) [7, 16].

The initial specification, provided by Dassault, in-
cluded

• the description of the control system for the three
landing gears-doors,

• the description of the physical components of the
system,

• the properties to be verified.

These elements were specified in Esterel. We had to
translate these specifications to Lustre and to UPPAAL.
Both translations were done manually. The resulting spec-
ification in UPPAAL is partly discrete (the control system
is specified by a discrete automaton) and partly continuous
(the physical components and the properties are specified
by timed automata). Figure 2 synthesizes the verification
approach.

All the source files for the specifi-
cations and properties can be found at
http://www.cert.fr/francais/deri/boniol/landinggear/.

3.3 Methodology for the experimentations
In order to be able to study tool robustness more finely,

we have defined several versions of the case study of
growing complexity.

As the system is composed of three similar sets of
gears-doors, a first simplification consisted in building

• a V1 version with only one gear-door set,

• a V2 version with two gear-door sets,

• a V3 version with the three gear-door sets.

A second simplification was applied on the property.
The property states that gears must be down and doors
must be closed at the latest 14 seconds after the pilot
order (if there is no fault and no counter order) (P2).
As combinatorial explosion stems partly from timings
occurring in the system and the property, we proposed to
divide the timing by 10 (in the system and in the property)
and thus to prove that gears are down and doors are closed
1,4 seconds after the pilot order (P1).

Finally a third simplification concerns the verification
hypotheses. The general case (the most complex) only
suppose absence of fault (H2). We tried to decrease ver-
ification complexity by studying a more restrictive case
constraining the initial state of the system and the pilot’s
behaviour (H1):

• initially, gears are out and doors are closed,

• gears are always relaxed,

4

modelling
ESTEREL

ESTEREL + PLTL

properties

control software
discrete automata

physical components
modelling

timed automata

properties
CTL + timed

automata

scenarios

UPPAAL description

LesarSMVPPIUppaal

assertions

Lustre

Lustre
Lustre

Lustre

LUSTRE description

properties

modelling
physical componentscontrol software

physycal components

ESTEREL

control software

Dassault Aviation description (Esterel)

Figure 2. Verification approach

• the pilot’s behaviour is the following: order to retract
gears at time t then order to let down gears at time t’,
for any t< t’.

These three ways of simplification define 12 cases de-
pending on the version of the system (V1,V2,V3), the ver-
sion of the property (P1,P2) and the hypothesis (H1,H2)
considered. The 12 cases, from the simplest<V1,P1,H1>
to the most complex<V3,P2,H2>, allowed to determine
more precisely the limits of each tool with respect to grow-
ing complexity of the problem.

All experiments described below were done on a Sun
ultra 10 workstation with 1Go of memory.

4 Verification tools associated to Lustre

Lustre is a synchronous data flow language, we will
not describe the language here, the interested reader is re-
ferred to [4].

Three tools have been experimented: PPI [15] and
Lesar [9] that work directly on Lustre specifications, and
SMV [14] that has its own specification language but a
translator from Lustre to SMV exists and was used to ex-
periment the tool.

The size of the Lustre specification depends on the ver-
sion of the system and the version of the property. The
different sizes (in number of lines of lustre) are given in
the following table:

P1 P2
V1 903 1845
V2 1275 2217
V3 1634 2576

4.1 PPI (Prover Technology)
Prover Plug In is a verifier integrated into SCADE (an

environment for the development of critical embedded
systems, based in the Lustre language and that includes
a graphical editor, a simulator and a qualified C code gen-
erator) [13].

PPI did not give any positive result, even in the simplest
case<V1,P1,H1>. However, we obtained indirect results
using a slightly different strategy. Two proof strategies
exist in the tool:prove to be used when one thinks the
property is true and wants to prove it formally; anddebug
to be used first, when one is not sure about the validity of
the property or even its correct expression. Thedebug
strategy is usually very quick in finding counter-examples
when they exist. We thus decided to use thedebug strat-
egy with a too short delay for the property. This approach
gave interesting results. For version V1 and for a delay
strictly smaller than 1,08 second (27 cycles of 40 ms), PPI
immediately found a counter-example to the property. For
delays greater or equal to 1,08 second, PPI gave no re-
sult (neither withprove strategy, nor withdebug strat-
egy). For versions V2 and V3, counter-examples were
also found quite quickly for all delays strictly smaller than
1,44 second (36 cycles of 40 ms). Time to find counter-
examples are given in the following array:

P1,H2
V1, 26 cycles 4 s
V2, 35 cycles 21 s
V3, 35 cycles 43 s

4.2 Lesar (Verimag)
The version of the tool that was used dates from 1999.

5

Lesar is a model checker for Lustre developed at Ver-
imag. It succeeded in proving the property for versions
V1 and V2 of the system, but not for version V3 (after 15
days of computation). Detailed results are given in table
1.

The memory used by Lesar never exceeded 120Mo
even in the V3 case.

4.3 SMV (Cadence Berkeley Labs)
The version of the tool that was used dates from march

1999.
SMV is a model checker developed at Cadence Berke-

ley Labs. It has its own specification language but a trans-
lator from Lustre to SMV exists. SMV was the most effi-
cient tool, it succeeded in proving the property in all cases.
Detailed results are given in table 2.

Memory used by SMV in the case<V3,P2,H2> is 415
Mo, but only 129 Mo in the case<V3,P1,H2>, when tim-
ing are shorter. This confirms our hypothesis that the com-
binatorial explosion is partly caused by timings occurring
in the system and also in the property.
Remark: cases<V1,P1,H2> and<V1,P2,H2> could not
be tested because of a bug of the Lustre to SMV transla-
tor.

5 Verification using timed automata and
Uppaal [16]

5.1 Methodology for the translation into timed au-
tomata

A quick analysis of the case study and its specification
shows that timings occur essentially in the physical com-
ponents models. The idea here is to specify these models
using timed automata. The control software will be im-
plemented onboard the aircraft by discrete periodic pro-
cesses. The translation approach was thus:

• to specify the control system with discrete automata,

• to describe the periodic activation (every 40ms) of
the control system by a timed automaton sending
“tick” signals,

• to specify the physical components behaviour using
timed automata,

• to build the global specification by composition of all
the automata,

• to express the property using an observer automaton
and a CTL formula.

Moreover, we have to describe the automata environ-
ment (emitting the input signals). The pilot and the hy-
potheses on his behaviour was thus also represented by a
timed automaton.

The translation approach is synthesized on figure 3.

5.2 Verification with Uppaal
The version of the tool that was used dates from march

2004 (V3.4.5).
Uppaal succeeded for version V1 in the general case

(hypothesis H2). For the two more complex versions V2
and V3, Uppaal only succeeded with hypothesis H1 (con-
straining the pilot’s behaviour). In the other cases, failure
was due to lack of memory. Detailed results are given ta-
ble 3.

6 Synthesis and analysis

Before analyzing this experimentation and the perfor-
mances of each tool, it is necessary to recall the limits of
this experience. The system we considered, that is to say
the landing gear control system and its physical environ-
ment, is modelled using reactive processes including only
booleanflows or signals. The property we try to verify on
this sytem deals with the real time behaviour of the sys-
tem. The scope of the analysis is thus limited to this kind
of system and property. Moreover, much better results
might have been obtained by optimising the specifications
with respect to tools (particularly Uppaal). However, as
said in the introduction, our objective is to know whether
such tools could be used in an industrial context, where no
knowledge of the verification techniques implemented in
the tools can be assumed.

6.1 PPI
As seen in section 4.1, PPI did not give any positive

result, even in the simplest case<V1,P1,H1>. An expla-
nation may be found in the way the tool deals with Lustre
specifications. Proofs are built by induction and the num-
ber of induction steps directly depends on the length of the
delays (i.e. the depth of the “pre” statements in the Lustre
specification). The landing gear case study uses a lot of
delays and that could explain the bad results obtained by
PPI.

To confirm this diagnosis, we made a complementary
experience on an untimed property. The property (P3) we
tried to verify is the following: “it is never the case that
the gear retraction solenoid is excited and that the door is
not open.” Results using PPI are given in the following
array.

P3, H2
V1 3.2s
V2 7.4s
V3 8.5s

For the same property, results obtained by Lesar are as
followed.

P3, H2
V1 4s
V2 1mn 5s
V3 1h 9mn 46s

6

P1,H1 P1,H2 P2,H1 P2,H2
V1 40s 1mn 30s 1mn 5mn 30s
V2 9h 40mn 10H 20mn 12h 15mn 13h 50mn
V3 no result no result no result no result

Table 1. Lustre-Lesar vrification results

P1,H1 P1,H2 P2,H1 P2,H2
V1 32s (30 Mo) 1mn 20s (35 Mo)
V2 7mn 40s (246 Mo) 3mn 40s (84 Mo) 11mn 50s (215 Mo) 5mn 20s (115 Mo)
V3 6mn 40s (181 Mo) 5mn 35s (129 Mo) 12mn 40s (235 Mo) 16mn 40s (415 Mo)

Table 2. Lustre-SMV vrification results

control software Properties physical components
modelling
Esterel

PLTL + Esterel

Dassault Aviation description

h=40
tick!
h:=0

discrete automaton

control software properties
CTL + timed

automata

physical components
modelling

timed automata

generation
input

Esterel

Figure 3. Translation approach

P1,H1 P1,H2 P2,H1 P2,H2
V1 1mn 21s (53 Mb) 15mn (184 Mb) 1h 05mn (342 Mb) 5h 57min (761 Mb)
V2 2mn 24s (124 Mb) no result 1h 56mn (834 Mb) no result
V3 3mn 8s (176 Mb) no result 2h 23mn (1,15 Gb) no result

Table 3. Uppaal vrification results

7

These results show that PPI can be very efficient (more
than Lesar) on non real time properties, even if the consid-
ered specification of the system and of the environment
still contains long delays. Other experimentations have
also been successful on non real time properties in another
application context [8].

Another result concerning PPI is that even if it failed to
prove the property, it was very efficient in finding counter
examples when the property was not verified. This was
possible because PPI provides two different verification
strategies: “prove” strategy to ensure that a property is
always verified, and “debug” strategy to quickly build a
counter example of the property.

Consequently, even if PPI was not able to prove the
property on the system, we think it could be an efficient
tool to help in designing and debugging a system.

6.2 Lesar and SMV
Lesar and SMV are both symbolic model checkers.

Lesar is however an academic tool while SMV is a more
industrial and performance-oriented tool. We will thus es-
sentially focus our analysis on SMV, keeping in mind that
the results obtained with Lesar confirm the good perfor-
mances of symbolic model checkers for this particular ex-
perimentation.

SMV was the only tool to succeed in all steps of the ex-
perimentation, even the most complex ones. Two remarks
have to be made.

Firstly, memory used by SMV is 415 Mb in the most
complex case (<V3,P2,H2>), but is only 129 Mb in the
case<V3,P1,H2>, i.e. when we only diminish delay val-
ues. This confirms that combinatorial explosion is essen-
tially due to delays in the system and in the property.

Secondly, the evolution of SMV performances with re-
spect to evolution of complexity in the system and in the
property (from<V1,P1,H1> to <V3,P2,H2>) is surpris-
ing. For example, replacing V2 (two gears-doors sets) by
V3 (three gears-doors sets) does not induce an augmenta-
tion of verification time. In the same way, replacing H1 by
H2 does not lead to a significative growth in verification
time. It seems that SMV is able to exploit the charac-
teristics of the system, like its symmetry, to improve the
verification performances.

6.3 Uppaal
Combinatorial explosion observed with PPI but also

with SMV (growing memory size) is essentially due to
the kind of property we considered. A time frame of up to
14 seconds after the pilot order needs to be explored for
the property to be verified. Esterel and Lustre deal with
discrete time, so we have to express the property using
the activation period of the system (40 ms) which leads
to consider at least 350 consecutive steps of the system.
PPI, which works by unfolding of the system on the nec-
essary number of steps is thus handicapped by this kind
of property. This discretization of delays is also problem-
atic for symbolic model checkers because of the size of

memory used. We made an attempt at circumventing this
issue by using a timed formalism that does not necessitate
a sampling of the system. Uppaal was chosen to model
the system using timed automata.

Unfortunately, Uppaal was not able to verify the sys-
tem <V2,P1,H2> (two gears without hypothesis on the
pilot’s behaviour). It nevertheless succeeded in verifying
the property when the possible behaviour of the pilot was
restricted (<V2,P2,H1>). Memory used by Uppaal in this
case is 834 Mb and verification time is 1h56mn, while in
case<V2,P1,H1> memory used was 124 Mb and time
2mn. We thus observe the same explosion phenomenon
than with SMV, again due to delays in the property. A
timed formalism did not allow the reduction of this phe-
nomenon we had expected.

One reason of this failure may be found in the dis-
cretization of the control system. This system is activated
every 40 ms, this implies that the clock domain will also
be discretized. In other words, the sampling of the control
part the system implies a sampling of the physical com-
ponents even if they are described using timed automata.
Advantage of using dense time is thus lost. This result
leads us to believe that such a formalism and such a tool
might not be adapted to low levels of the development cy-
cle (as in our experiment where we used Uppaal to vali-
date a model very close to what will be embedded in the
flight computers) and that it would be much more useful
at the specification level to verify abstract specifications
or help in dimensioning the system. This hypothesis how-
ever needs to be confronted with other examples.

The last lesson from this experimentation concerns
timed automata formalism. It is a graphical formalism and
this is an advantage, in particular it was fairly easy to de-
fine scenario classes (for the pilot’s behaviour) as timed
automata. These scenarios could be obtained from Mes-
sage Sequence Charts or sequence diagrams. They pro-
vide a means to partition the system and its environment
into classes of scenarios covering the whole system’s be-
haviour.

7 Future work

The main possibility to go on with this experimenta-
tion would be to explore compositional verification. The
three sets of gears and doors are identical, the intuitive
idea would be to try to verify the property on each set sep-
arately and then to conclude that the property is verified
on the whole system. In [5], a way to implement compo-
sitional verification on Lustre specification is given. SMV
also provides modular verification capabilities that were
not explored during this experimentation but could be very
interesting.

This idea of compositional verification must however
be studied thoroughly and experimented carefully. The
intuitive idea about the decompositon of the system is not
so simple in practice, for several reasons. The three sets
of gears and doors are not isolated from each other, there

8

are several interactions to take into account. Moreover,
the system has not been designed in a modular way: the
control system does not compute three commands for each
set, but computes one global command with respect to the
state of each gear and each door.

Another example forces us to be prudent with the idea
of compositional verification. In [17], on a similar kind of
system (landing gear control system also), modular veri-
fication of properties was less efficient than global verifi-
cation. The global automaton obtained by synchronised
product of automata from each process composing the
system was of smaller size than the automata of the com-
ponent processes.

References

[1] R. Alur and D.L. Dill. A theory of timed au-
tomata.Theoretical Computer Science, 126(2):183–
235, 1994.

[2] Gérard Berry. The foundations of esterel. In
G. Plotkin, C. Stirling, and M. Tofte, editors,Proof,
language and interaction: essays in honour of Robin
Milner. MIT press, 1998.

[3] Esterel. http://www-
sop.inria.fr/meije/esterel/esterel-eng.html.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
lustre. Proceedings of the IEEE, 79(9), september
1991.

[5] N. Halbwachs, Lagnier F., and Raymond P. Syn-
chronous observer and the verification of reactive
systems. InThird International Conference on
Algebraic Methodology and Software Technology,
AMAST’93, Twente, June 1993.

[6] N. Halbwachs, F. Lagnier, and C. Ratel. Program-
ming and verifying real-time systems by means of
the synchronous data-flow programming language
lustre. IEEE Transactions on Software Engineer-
ing, special issue on the specification and analysis
of real-time systems, september 1992.

[7] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a
nutshell.International Journal on Software Tools for
Technology Transfer, 1997.

[8] O. Laurent, P. Michel, and V. Wiels. Using formal
verification techniques to reduce simulation and test
effort. In Jose Oliveira and Pamela Zave, editors,
FME 2001: Formal methods for increasing software
productivity, volume 2021 ofLecture Notes in Com-
puter Science. Springer Verlag, 2001.

[9] Lesar. http://www-
verimag.imag.fr/synchrone/tools.html.

[10] K.L. McMillan. Getting started with SMV. Cadence
Berkeley Labs, 1999.

[11] K.L. McMillan. The SMV language. Cadence Berke-
ley Labs, 1999.

[12] C. Ratel. Définition et ŕealisation d’un outil de
vérification formelle de programmes LUSTRE : le
syst̀eme LESAR. PhD thesis, Institut National Poly-
technique de Grenoble, 1992.

[13] SCADE. http://www.esterel-technologies.co.

[14] SMV. http://www-cad.eecs.berkeley.edu/ kenm-
cmil/.

[15] Prover Technology. http://www.prover.com.

[16] Uppaal. http://www.uppaal.com.

[17] M. Westhead and S. Nadjim-Tehrani. Verification of
embedded systems using synchronous observers. In
4th International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems,
FTRTFT’96, LNCS 1135, pages 405–419, Uppsala,
Sweden, September 1996.

9

