Alain Le Guennec

Bernard Dion

Bridging UML and Safety-Critical Software Development Environments

Keywords: Model-driven-design, formal-methods, UML, SCADE, safety-critical

This paper presents an approach combining the respective strengths of UML and SCADE to develop safety-critical systems. By using UML to specify the system's high-level requirements and architecture, and then SCADE to formally specify the software behavior, we provide a seamless flow from the initial requirement analysis phase down to the final integration on the target platform. This flow is based on the connection of UML tools with the SCADE environment, leveraging industry standards such as UML2, XMI, and DO-178B to provide a solution that is exactly tailored to the specific needs of safety critical projects.

Introduction

Overview of UML

The Unified Modeling Language (UML) is a widely adopted standard used to describe systems and software. It is a graphical notation that defines several kinds of diagrams, each providing a particular view on the system being specified:

• Use-case diagrams help capture high-level requirements.

• Sequence diagrams, by associating scenarios to requirements, help understand the interactions of the system with its environment, as well as inner interactions.

• Structure diagrams permit a hierarchical decomposition of the system in a hierarchy of connected "blocks" or sub-systems.

• Class diagrams define interfaces, classes and block types, in an object-oriented way.

• Package diagrams help organize the artifacts and spot the inter-dependencies.

• Statecharts and activity diagrams define behavior of active classes. However, when it comes to specifying behavior of safety-critical systems in UML, several problems arise:

• The actions and computations that are commonly associated with statecharts or operation bodies are often directly written in the target programming language, like C or C++, and hence fall outside of the scope of UML. The Action Semantics for UML, which is supposed to fill this need, is unfortunately not widely supported by current UML tools.

• Even without external code "in-lined" in UML, there still is no widely agreed-upon semantics for behavioral artifacts (although there are several proposals for a UML semantics), making them difficult to analyze formally without stringent restrictions.

• The execution framework implied by UML is based on asynchronous, queue-based, communications. Such a framework is not always appropriate for the targeted application domain. Moreover, it may imply dynamic allocation of memory for queues, unless they can be proven bounded.

• Behavioral specifications in UML allow for non-determinism and potentially unbounded computations, which again is an issue for safety-critical applications. In UML, an instance of an active class (let us call it a "block" in the following) represents a logical flow of control that reacts to its environment by pulling input messages out of its message queue one at a time, doing some computation (following the "run-tocompletion" principle) and sending one or several output message(s) to other instances as a response. 1.2 Overview of SCADE On the other hand, SCADE (the Safety Critical Application Development Environment) is both a notation and a toolset that was specifically developed to describe and implement safety critical systems for application domains such as aeronautics or automobile. The SCADE notation includes both block diagrams and safe state machines, as shown on the Figure 1 In SCADE, a Node (which we can also call a "block") performs logically atomic computations, providing deterministic output values corresponding to a given set of input values, according to the previous memorized state. The computation is often triggered by a periodic clock (although it need not be), after inputs are sampled from the environment and hold.

The SCADE toolset supports a model-driven paradigm in which the SCADE model is the software specification: tool is used to measure the coverage of the SCADE model with respect to a given requirements-based test suite. • The SCADE Suite Design Verifier (DV) supports corner bug detection and formal verification of safety requirements. In this paper, we will not further comment on the model coverage and the formal verification activities. The interested reader may refer to [START_REF] Bouali | Using Formal Verification in Real-Time Embedded Software Development[END_REF][START_REF] Dion | Efficient Development of Embedded Automotive Software with IEC 61508 Objectives using SCADE Drive[END_REF].

The C code generator is certified with respect to DO-178B level A (avionics) and IEC 61508 up to SIL 4 (other industrial domains, such as automotive or railways), thus providing a guarantee that the generated code is correct with respect to the model. 1.2 About combining UML and SCADE Notwithstanding the importance of precise and formal behavioral specifications as offered by SCADE, the high-level view offered by UML structure diagrams is often what is used in the early phases of a design when System Engineers are sketching the architecture of the application, assembling "blocks" that are connected together and that communicate through well-defined interfaces. The use of UML is appropriate at that level. There clearly is added value in combining UML and SCADE together, as each of them has strengths that the other can benefit of:

• UML is best used to describe the overall architecture of the application • SCADE is best used to formally describe the behavior of safety-critical software parts (note that less critical, or communication intensive sub-systems can remain in UML)

Therefore, a UML "block" and a SCADE "block" have some syntactical similarities, in that they both react to a set of inputs and provide a set of outputs in response. The sets of possible inputs and outputs form the overall "interface" of the block (note that we use interface in a quite broad way here, not to be confused with the actual interface syntactic construct of UML: Indeed the "interface" of a UML "block" can be composed of several provided or required UML interfaces). Another syntactic similarity is that UML "blocks" and SCADE "blocks" can be further decomposed into inter-connected sub-blocks. These syntactic similarities form the basis of the bridge between UML and SCADE. The biggest difference between UML and SCADE lies in how inputs and outputs relate to time. This "time factor" leads us to consider several situations:

• Purely safety-critical applications, where all software behavior is eventually specified with SCADE. • Hybrid applications, where some safetycritical sub-systems in SCADE communicate asynchronously with other sub-systems through a communication framework as commonly provided by UML environments.

Purely safety-critical applications in UML2 and SCADE

The primary goal of our bridge between UML and SCADE is to allow the designer to seamlessly refine a block defined in UML with behavior specified within SCADE, without ever having to manually duplicate (and maintain!) interface information at the boundary between the two languages. In UML on the other hand, the possible inputs and outputs of a block type are deduced from the features (attributes, signal-reception or operations) that the block provides or that the block requires, respectively. Features are usually exposed only through specific ports of the block, which represent interaction points between the block and its surrounding environment. The system is made of a controller block (called "cruise_control", of type "CruiseControl"), that we intend to specify in SCADE, and several sensors (on the left) and actuators (on the right). More precisely, left and right blocks represent software drivers managing the sensors/actuators and exposing the corresponding services to the controller block through well-defined ports. Features are usually grouped into interfaces. Therefore, a port has a set of provided interfaces and a set of required interfaces. A symmetric (or mirror) port located on the other side of an assembly connector provides the required interfaces of its peer port, and vice-versa. Provided and required interfaces together form a protocol for communication between two blocks through a pair of conjugated ports. For instance, the "On" port of block "cruise_control: CruiseControl" provides the "IButtonCB" interface. Its peer port is the "pressed" port of the "On: Button" block which requires the same "IButtonCB" interface.

Mapping rules

From UML blocks to SCADE blocks: For each class (block type) in UML that we want to refine in SCADE, there shall be a corresponding SCADE node with the same name and a related interface: Inputs and outputs of the SCADE block are derived from the UML block according to the following rules, organized according to the various kinds of features to be considered: UML signal reception: One possible feature of a UML interface is the reception of a specific signal. Communication with signals is the simplest case: When a signal reception for signal S belongs to an interface "I" provided by a port "p" of a block type "B", it means that instances of "B" can receive occurrences of "S" via "p". Considering the above discussion on the representation of "sporadic" signals in SCADE, if "B" is also the corresponding SCADE node, then it means that "B" possesses an input named "p_S_input" and typed by a structure with the following fields:

• The first field is a boolean flag that indicates the presence status of "S" for a given execution of "B".

• The following fields correspond to the parameter conveyed by signal "S", and therefore have corresponding types. If there are no parameters, the type is "bool" directly. Symmetrically, if interface "I" were a required interface of port "p", then SCADE node "B" would possess an output named "p_S_output" and typed as above. Note that there can be a reception for a same signal "S" in both provided or required interfaces of one or several ports of "B", hence the use of prefixes when naming I/Os in SCADE. For instance, the "On" port has a provided interface "IButtonCB" featuring one reception for signal "pressed", which maps to a SCADE input named "On_pressed", of type "bool":

CruiseControl On_pressed_input : bool UML operation call: An operation call is usually realized by two signals: A call signal, and a call return signal. When an operation "op" belongs to an interface provided by a port "p" of a block-type "B", the corresponding SCADE node "B" will have:

• An input "p_op_call" corresponding to the call signal, whose type is a structure with a first field being the boolean presence status and the following fields representing the in and in-out parameters of the operation.

• An output "p_op_result" corresponding to the return signal, whose type is also a structure with a first field being the boolean presence status, the remaining fields being the in-out, out and return parameters of the operation.

Symmetrically, if interface "I" were a required interface of port "p", then SCADE node "B" would possess an output with a default name of "p_op_call" for the call-signal and an input "p_op_result" for the return-signal, with types as specified previously. UML attribute: Starting with UML2, attributes are also allowed within interfaces (even though most UML1.x tools allowed for attributes in interfaces already). When an attribute/property "a" of type "T" belongs to an interface "I" provided by a port "p" of a block type "B", it means that instances of "B" "maintain information corresponding to the type and multiplicity of the property and facilitate retrieval and modification of that information". Therefore, an attribute potentially corresponds to two derived operations, the classical accessor and mutator operations. Read-only attributes only have an accessor. Some UML tools or UML profiles also allow for write-only attributes, with only a mutator. The I/Os of the corresponding SCADE nodes are derived as for operations calls to accessors and mutators, with the following subtle differences:

• Since the value of the attribute is provided "all the time", there is no need for an input call-signal (which is considered as implicit) nor for a boolean presence status in the return-signal for the accessor operation in SCADE. The SCADE node "B" will simply have an output "p_a_output" of type "T" (if "a" is not write-only).

• Since the mutator does never return any value, and is supposed to execute "instantly", there is not need for an output return-signal for the mutator. The SCADE node "B" will only have an input "p_a_input" of type "[bool, T]" (if "a" is not read-only). For instance, the "speed" port of CruiseControl has a required interface "ISpeed" featuring a read-only "speed" integer attribute (provided by the speed sensor), whose accessor maps to a SCADE input "speed_speed" of type "int". The "throttle" port has a required interface "IThrottle" featuring a "throttle" write-only integer attribute, whose mutator maps to a SCADE output "throttle_throttle" of type "[bool, int]": Handling of multiplicities: If a UML port has a multiplicity greater than one, it is replicated by expansion when mapped to SCADE (the multiplicity must of course be statically computable). Attributes with a multiplicity greater than one map to arrays. Note: The mapping strategy must remain flexible. Indeed, there are numerous profiles for UML that might impact what shall be considered an input or an output from a SCADE point of view. For example, some profiles such as UML/RT [START_REF] Selic | Using UML for Modeling Complex Real-Time Systems[END_REF] or SysML [START_REF]The SysML partners[END_REF] introduced the notion of directionality for attributes to simplify port and protocol specification. Ignoring such "semantic variation points" introduced by profile annotations would result in a SCADE model that would not reflect the intent of the UML model.

Taking block hierarchy into account

Although hierarchy can be expressed in SCADE directly, using SCADE block diagrams, there are at least two reasons why it can be useful to consider a mapping between structure diagrams of UML2 and SCADE block diagrams:

• UML offers good graphical structuring capabilities when doing pure structural decomposition (connectors and ports can convey several messages in a very compact graphical notation).

• When designing at system-level it is not always possible to foresee which subsystems will eventually be specified using SCADE and which won't. It would be a pity not reusing the existing inter-connection when doing the SCADE design in later stages of the development. Since this section focuses on purely safety-critical applications where the behavior of all blocks is specified with SCADE, we can discard the UML communication framework and map the block assemblies specified by UML structure diagrams directly into corresponding SCADE block diagrams. Note that it would be possible to generate textual SCADE equations representing block assemblies, instead of block diagrams (which are equations with presentation / layout information attached). However, graphical block diagrams have one major advantage: They are much easier to review. This is especially important in the context of certification (such as DO-178B), since the SCADE diagrams will be the reference for certification, not the UML diagrams. Indeed, neither the UML tools nor the UML/SCADE bridge are certified as DO-178B development tools).

The following mapping rules state how to transform this UML structure diagram into a corresponding SCADE block diagram directly: Parts: A UML part represents a nested sub-block. A part can also have a multiplicity ("1" by default). Parts of a block in UML are turned into calls to the SCADE nodes corresponding to the parts' respective block-types. If a part has a (static) multiplicity greater than one, it is expanded into as many node-calls. Connectors: Assembly connectors are used to link sub-blocks together through ports having symmetrical interfaces. Delegation connectors are used to link sub-blocks to their parent block, through ports having compatible interface. In SCADE, connectors are mapped into equations linking outputs of the source to inputs of the target, and vice-versa (a UML port can indeed be bi-directional). The mapping allows for connecting a port p1 of a block b1 to a port p2 of a block b2 if b1*p1 = b2*p2 when considering the multiplicities of parts and ports (the equations are replicated accordingly.)

Example: Let us assume that the CruiseControl block has been further refined within UML into subblocks, before it was decided to specify its inner working with SCADE. Figure 13 illustrates Note that SCADE blocks are not necessarily leaf blocks from a structure point of view. Some SCADE blocks can be further decomposed, using other SCADE blocks that may not exist in the UML model.

Behavioral modeling using data-flow block diagram:

The "ThrottleCmd" block appearing in Figure 13 and The "CruiseStateMgt" block is responsible for managing functional modes of the Cruise Control. SSMs offer several benefit over UML statecharts, such as handling of simultaneous events, of absent events, and fixed transition priorities, providing a good expressive power while keeping the behavior precise and deterministic at the same time:

Figure 1 :

 1 Figure 1: SCADE Block-diagrams and Safe State Machines

Figure 2 :

 2 Figure 2: Workflow of the SCADE toolset Verification activities are supported by a combination of three different tools: • The SCADE Suite Simulator supports interactive or batch simulation of a SCADE model, for both data flows and safe state machines. • The SCADE Suite Model Test Coverage (MTC) tool is used to measure the coverage of the SCADE model with respect to a given requirements-based test suite. • The SCADE Suite Design Verifier (DV) supportscorner bug detection and formal verification of safety requirements. In this paper, we will not further comment on the model coverage and the formal verification activities. The interested reader may refer to[START_REF] Bouali | Using Formal Verification in Real-Time Embedded Software Development[END_REF][START_REF] Dion | Efficient Development of Embedded Automotive Software with IEC 61508 Objectives using SCADE Drive[END_REF].

2 . 1

 21 Syntactic bridge at block interface In this section, we define a syntactic mapping between a block interface in UML and a block interface in SCADE. Thanks to this mapping, interfaces of blocks defined in UML can be directly reused within SCADE when specifying the behavior of said blocks. SCADE is based on the synchronous data-flow paradigm. Inputs and outputs of a SCADE block are typed data-flows. The type of a data-flow can be simple (bool, int, real) or structured (a structure or tuple made of a set of typed fields). In the special case when the first field of a structured input data-flow is of type bool (or when the input data-flow's type itself is bool), this boolean value can be used as a "signal presence status" in triggers of transitions in SCADE Safe State Machines. Symmetrically, when the first field of a structured output data-flow is of type bool (or when the output data-flow's type itself is bool), this boolean value represents the "signal presence status" of the output signal, set to true if and only if the signal is emitted during the execution of a SCADE node. Input or output flows associated with such a boolean presence status can be used to represent sporadic or transient signals which are considered only for some specific executions of the SCADE node.

Figure 3 :

 3 Figure 3: Overview of the CruiseControl system

Figure 4 :

 4 Figure 4: Interfaces involved in the CruiseControl

Figure 5 :

 5 Figure 5: A UML block viewed from SCADE

Figure 6 :

 6 Figure 6: I/Os for signal reception in UML

Figure 7 :

 7 Figure 7: I/Os for signal reception in SCADE

Figure 8 :

 8 Figure 8: I/Os for operation call in UML

Figure 9 :

 9 Figure 9: I/Os for operation call in SCADE

Figure 10 :Figure 11 :

 1011 Figure 10: I/Os for an attribute accessor in UML

Figure 12 :

 12 Figure 12: I/Os for attributes in SCADE

Figure 14

 14 Figure 13: Internal structure of the CruiseControl block Figure 14 is a SCADE block diagram corresponding to the UML structure diagram of Figure 13:

Figure 14 :

 14 Figure 14: Cruise Control SCADE block diagram 2.4 Completing the behavioral model within SCADE After a first level of structure has been mapped into SCADE, it is now possible to further refine the various SCADE blocks already defined, using either data-flow block diagrams, or Safe State Machines.Note that SCADE blocks are not necessarily leaf blocks from a structure point of view. Some SCADE blocks can be further decomposed, using other SCADE blocks that may not exist in the UML model.

Figure 15 :Figure 16 :Figure 17 :

 151617 Figure 15: Behavior of the ThrottleCmd blockThe "ThrottleCmd" block (defined in Figure16) refers to another SCADE block called "SaturateThrottle".

Figure 18 :

 18 Figure18: Behavior of the CruiseStateMgt SSM block 2.5 Considerations for an iterative and incremental development process with UML and SCADE More often than not, the UML part of the specification will not be definitive, and might undergo significant changes even after work has begun specifying behavior within SCADE. It was therefore of the utmost importance that the UML/SCADE bridge allow for incremental synchronization between the UML and the SCADE models. Changes made in UML can be merged without losing work.

Hybrid Applications

Principles

In hybrid applications, a sub-system whose behavior is specified with SCADE is connected to other subsystems (not necessarily specified with SCADE) through the communication framework as prescribed by UML. The behavior of the blocks has to conform to the run-to-completion scheme of UML and blocks have to use message queues for their communications. Since some blocks in the system are done in SCADE, it is important to reconcile the asynchronous nature of the framework with the synchronous nature of individual SCADE nodes. Our work is inspired of existing work [START_REF] Camus | Combining SDL with Synchronous Data Flow Modeling for Distributed Control Systems[END_REF] done in the context of SDL instead of UML. The most natural way to achieve this integration is for the SCADE block to consider some specific input signal(s) as a special "clock" signal. Such an input clock signal will not be turned into a boolean input data-flow of the SCADE node. Instead, reception of a clock signal (only) will trigger the actual execution of the SCADE node. Other incoming messages are also processed and removed from the queue: They are "combined" upon arrival in the input vector of the SCADE node, which summarizes all inputs the node will consider altogether at once when executed later. The principles are illustrated in Figure 19 below. Whereas in the previous "purely safety-critical" case a UML structure diagram could be considered directly as an extended view of a plain SCADE block diagram (with a one-to-one mapping of block interfaces, parts and connectors), here a <<SCADE>> UML block on a UML structure diagram is better considered as a surrogate/capsule/wrapper for an encapsulated SCADE node. There is no more a complete one-to-one mapping of interfaces (because of clock signals), and the connection semantics can no more be considered as "plain synchronous data-flows" (because the framework uses message queues of unknown size a priori). The clock signal can be external to the <<SCADE>> UML block (it is an input of the block in UML) or internal to the <<SCADE>> UML block (through a periodic timer for instance). The wrapping of SCADE nodes within <<SCADE>> UML blocks is at the same time conceptual (it describes the semantics of the integration) and practical (it leads to the generation of "glue" code for code-level integration, allowing for co-execution/cosimulation of the whole system). The principles explained on Figure 19 give some hints about the code-generation algorithm that will produce the wrappers necessary to integrate the C code generated by the qualified SCADE code generator KCG into the UML run-time framework provided by UML tool vendors (usually in C or C++). We are currently designing a new wrapper codegenerator that implements the idea presented here.

Conclusion

We have presented a complete workflow that combines the respective strengths of UML and SCADE to tackle large-scale safety-critical system development. The high-level structuring capabilities of UML coupled with the precision and expressive power of SCADE behavioral descriptions help deliver clear and correct-by-construction software artifacts. The verification tools part of the SCADE suite can be used to prove the SCADE parts of the system correct and to generate certifiable C code from the specifications. The code-level integration between UML and SCADE will allow to co-simulate hybrid applications, therefore helping spot problems within that kind of applications as early as possible.

Glossary