Roberto Lopez Toro

Jean-Pierre Seuma Vidal

Hugues Malgouyres

Gilles Motet
email: gilles.motet@insa-toulouse.fr

UML Inconsistencies Assessment

Keywords: UML, inconsistency, assessment, critical systems ¡

The UML modelling language provides diagrams allowing multiple viewpoints of one system to be described. However, certain sets of elements of a model can be inconsistent. Inconsistencies are not drawbacks of the language as they highlight the presence of faults in the models. This paper proposes an assessment of the inconsistencies in order to estimate the effort which must be provided to handle them.

UML model inconsistencies 1.Inconsistencies

The UML modelling language provides numerous diagrams allowing multiple perspectives of one system to be modelled. Moreover, a given application model often leads to the design of various instances of one diagram. In addition, a diagram may use numerous instances of each feature provided by this diagram. For instance, we examined a model of an avionics system composed of more than 100 class diagrams and more than 80 sequence diagrams. These sequence diagrams used more than 1400 messages. Consequently, an UML model of a complex system contains numerous pieces of information.

Moreover, the various viewpoints described by the diagrams are often expressed by various persons, at different phases of the development and maintenance. Therefore, these viewpoints contain redundant or complementary pieces of information which must be consistent all together.

In practice, a model of a complex application may contain numerous inconsistencies [START_REF] Lange | An Empirical Investigation in Quantifying Inconsistency and Incompleteness of UML Designs[END_REF]. However, the inconsistency concept is not a drawback of the UML language. Indeed the existence of an inconsistency highlights the presence of faults in the model. Therefore, the notion of inconsistency of models may provide an opportunity to increase the assurance of the correctness of the developed application. However, to reach this objective, the inconsistencies have to be controlled by the engineers.

An example of inconsistency

This section provides an inconsistency example to illustrate the concept and its interests.

One aim of the analysis phase is to specify the functionality of the application. UML use case diagram permits notably to graphically represent these functionalities with use cases. It also allows to formalize relationships among use cases like the "extend" relationship. An extend relationship specifies that the behavior of a use case is extended by another use case. This description involves:

• the extended and the extending use cases;

• the extension point that belongs to the extended use case;

• an extend relationship from extending use case to the extended one; it specifies the extension point and an optional condition.

Figure 1 i) illustrates the correct use of these UML features. This model specifies that the use case called "Check Safety Belt" can be extended by the "Notify" extension point. This extension happens when "safety belt of an occupied seat is unfasten" and consists in performing the use case called "Notify Safety Belt Unfasten". The consistency rule numbered 637 in [START_REF] Malgouyres | UML 2.0 Consistency Rules, Mars[END_REF] expresses that each extension point has to be referenced by an extension relationship. Figure 1 ii), and 1 iii) present inconsistent models violating this rule. In the figure ii), the extended use case contains an extension point called Warn which is not referenced. So, the reader of this model does not know if the use case called "Check Safety Belt" can only be extended by "Notify Safety Belt Unfasten" or if it can be extended by another use case. In the figure 1 iii), it is mentioned that the use case called "Check Safety Belt" can be extended but the extension remains undefined. These inconsistencies can have several causes. For instance, these models can provide partial pieces of information at a certain time which will be completed when additional pieces of information will be available. Human error is another origin. Anyway, these inconsistencies relate ambiguities which have to be handled and consistency checking permits to underline them. Note that usage of UML allows to formalize some concepts that are usually expressed in natural language. Using UML and checking consistency permit thus to ensure 1

Control of the inconsistencies

At first, to be detected, the inconsistencies have to be identified, that is, the list of all the possible inconsistencies must be established. To reach this goal we studied the UML standards [START_REF]UML 2.0 Infrastructure Final Adopted Specifcation[END_REF][START_REF]Unified Modeling Language 2.0 Superstructure Specification[END_REF] to extend the wellformedness rules explicitly specified. This leads to the definition of more than 650 consistency rules whose violation expresses an inconsistency type [START_REF] Seuma Vidal | UML 2.0 consistency rules identification[END_REF]. They concern the UML language or its metamodel [START_REF]Unified Modeling Language 2.0 Superstructure Specification[END_REF]. A technical report available on Internet presents these rules [START_REF] Malgouyres | UML 2.0 Consistency Rules, Mars[END_REF]. This preliminary step is very important as only the identified inconsistencies can be handled. Then, the inconsistencies existing in models have to be detected. Unfortunately, the commercial tools are not efficient.

We assessed the capability of 3 CASE tools to detect the inconsistencies in UML model: Visual Paradigm (VP, Professional Edition version 3.1, March 2004), Rational Rose Enterprise Edition (IBM, July 2004), Ameos (Aonix, July 2004). The table 1 provides the results. It shows that only 25% of inconsistencies are detected. Note that a lot of inconsistencies could not be tested because the UML features were not supported by the tool. Currently, this limitation is probably reduced due to a best support of the version 2.0 of UML.

Numerous research activities aim at improving these tools. However, they often handle specific elements of the language such as, activity diagrams [START_REF] Dong | Using pi-calculus to formalize UML activity diagram for business process modeling[END_REF][START_REF] Eshuis | Tool support for verifying UML activity diagrams[END_REF] or specific type of consistency such as static consistency [START_REF] Walkowiak | Consistency Checking of USDP Models[END_REF][START_REF] Gryce | Lightweight Checking for UML Based Software Development[END_REF]. This is due to the fact that these tools are based on formal languages which only treat the verification of certain aspects of the modelling. Consequently, to increase the detection efficiency, numerous tools must be jointly used. However, the actual coverage rate, that is, the list of the checked inconsistencies is not known. To handle this issue, we are developping an Unified checker for the Unified Modeling Language [START_REF] Malgouyres | A UML model consistency verification approach based on meta-modeling formalization[END_REF].

However, the development of such a tool will require several years. Moreover, its performance on real complex application should be assessed to establish the tractability of a total checking. For this reason, research activities on the assessment of inconsistencies are done. They aim at estimating the risk of the inconsistencies, that is, the likelihood of their presence in a model, and the severity of their consequences on the developed system. These rates of the risks obtained by this assessment will help in deciding the actions to be done. For instance, specific treatment will be performed for an inconsistency whose risk is high.

Assessment

This section presents a study to estimate inconsistency modelling problems that has been made with Thales Avionics. The object-oriented modelling has been largely adopted in industry in the last years. However to use modelling techniques based on UML in critical systems, it is important to assess the benefits and drawbacks of UML.

To assess the risk of each inconsistency, two approaches were considered: interviewing experts (expert judgement) and analyzing models (feedbacks). These two methods provide complementary results: the first one gives qualitative assessment and the second one quantitative assessment. [START_REF]Microsoft Solutions for Security and security center of excellence[END_REF] shows the benefits and the drawbacks of the two approaches. In [START_REF] Feather | Combining the best attributes of qualitative and quantitative risk management tool support[END_REF] the results shows the advantages of the combination of the two approaches. For a qualitative assessment, hard numerical values are not assessed but relative values are calculated. On the contrary, quantitative assessment is based on quantitative criteria. The difference is in granularity of the details. We use both methodologies in this work. These approaches are presented in sections 2.1 and 2.2.

The expression of the results of the estimation process needs two generic parameters:

• The likelihood which measures the probability of the harmful event occurrences which are here the inconsistency;

• The severity which assesses the consequences of its occurrence.

At first, we propose criteria and metrics to estimate each parameter for the inconsistencies. Then the first results of these qualitative and quantitative estimations are provided.

Expertise

The expertise often uses qualitative assessments whereas feedback is based on quantitative ones. In this qualitative methodology we defined four specific criteria whose estimation is given by the assignment of a metric value. We used the probability as a measure of the likelihood and the difficulty of detection and the impact on the final code as measure of the severity.

Criteria and Mesures

Two criteria are considered to estimate the severity of an inconsistency type.

1. Impact of the presence of this inconsistency on the generated code. This criterion and the associated metrics are defined in the asked question: If this inconsistency appears within a model, the impact on the final code is Very important, Average, Null.

2. Difficulty of detection. This criterion and the associated metrics are defined in the asked question: Within a model, the detection of the inconsistency seems to you Evident, Obtained with effort, Very hard.

These two criteria measure two complementary aspects of the severity of the damages of an inconsistency.

The first criterion (impact on the code) assesses the generation of an erroneous program. It concerns the effects on the following steps of the development. The second criterion (difficulty of the detection) will certainly affect the future maintenance of the delivered model.

The confidence in the assessments, that is, in the answers to the questions, is ranked by 3 values: Very good or good, Average, Little.

Two criteria are considered to estimate the likelihood of an inconsistency type.

1. Inconsistency occurrence. This criterion and its metrics are defined in the asked question: Supposing that this UML feature is used, the presented associated inconsistency can occur Very frequently, Frequently, Sometimes, Hardly ever.

2. Difficulty of understanding the consistency rule. It assesses the knowledge of the engineers on the studied consistency. The more the consistency meaning is unclear, the more this inconsistency may occur in models. This criterion and the associated metrics are defined in the asked question: This consistency rule seems to you Clear, Comprehensible, Complex.

The confidence in the assessment of the likelihood is correlated to the frequency of the use of the feature. So, it is ranked by 4 values: Very often, Quite often, Punctually, Never.

The selection of 50 consistency rules was made in order to cover the most relevant features of the structure diagrams (class diagrams, package diagrams and object diagrams).

The complexity and the origin of the chosen rules were also considered in the selection process. Finally, we balanced the set of rules between complexity (number of features or constructions involved), origin (OMG standard, papers, etc.) and relevance (user target).

Sessions and Results

To obtain an efficient interview, it is very important at the beginning to establish clearly the role of each participant. The interview is an evaluation of the use of the UML language itself. The expert was asked to use the experience acquired through his/her participation in different projects of systems development and to give qualitative answers for the formulated questions.

To limit the duration of the interview, we selected consistency rules concerning the structure diagrams of UML 2.0. These consistency rules handle approximately 24 features of the structure diagram including Operation, Property, Interface, Behavior, Association Class, Generalization, Substitution and Association. This selection was made according to the frequency of use of these features in the developments based on UML.

To preserve an acceptable size of this paper and as the results are business sensitive, we do not enumerate all of them. We selected four of them: two are specific to one feature and two provide a global opinion on UML.

Association and property These two features are chosen as they lead to two typical results. The size of the plots is proportional to the number of rules. The assessement is distributed (scatter plot). Therefore, the expert has not a final opinion on the hazardous capability of this feature considering the potential presence of inconsistencies in models when this feature is used. It seems that a correlation exists between the inconsistency occurrence and the detection difficulty. This feature will require a special attention during the risk treatment phase.

Figure 3 concerns the feature Property. The associated inconsistencies are grouped. The risk is intermediate. Only the rule whose number is 71 requires a specific treatment to reach this intermediate risk level.

Global estimation Figures 4 and5 summarize all the results, that is, the inconsistencies concerning all the handled features. The likelihood is estimated by the Inconsistency occurrence. The severity is assessed by the Detection difficulty criterion (figure 4) or by the induced Faults in programs (figure 5).

The two lines represent acceptability levels. The zone between these two dashed lines is called ALARP (As Low As Reasonably Possible). It expresses the fact that other criteria have to be considered to decide if the risk is acceptable or not. On one hand, Figure 4 shows that most of the estimation values are in the ALARP zone. This means that the presence of these potential inconsistencies in UML models does not lead to the rejection of the studied features. On the other hand, Figure 5 highlights the fact that the inconsistencies make unacceptable the automatic code generation without any risk treatment. As the relationship between inconsistency and fault in the generated program is high (3=Very important impact), one way to reduce the risk is to decrease the inconsistency occurrence by prevention means discussed in section 3.

Feedback

The second approach consists in deducing the assessment analyzing real models (feedback). The quantitative approach has been conducted on complex models developed by Thales Avionics. This study concerns two of the subsystems of the flight manager system of an aircraft: the middleware which provides generic services (internal communications or data version checking) and the NAVDB which aims at managing the flight data base planning.

The feedback approach consisted in a manual checking of the consistency rules on the UML models.

Criteria and metrics used for this estimation study are presented in section 2.2.1. In section 2.2.2 we present the estimation process and the results.

Criteria and Metrics

Two criteria are used to evaluate the severity: the difficulty of manual checking and the capability of the used UML CASE tool to detect inconsistencies. The difficulty of manual checking parameters has been quantified qualitatively as: Easy, Medium or Difficult. This criterion and these values are similar to those used in the expertise phase.

The capability of the tool to detect the inconsistencies is quantified according to the stage of the detection. Different levels of seriousness situation are used as metrics. The worst situation is when the inconsistency is not detected, the intermediate situation is detection during model checking (before code generation) and the best is when the inconsistency is detected at modelling-time.

The criteria of likelihood is the probability of the in-consistency occurrence, i.e., the ratio of the number of inconsistency occurrences divided by the number of inconsistencies that can appear (deduced from the model).

Results

The consistency rules in [START_REF] Malgouyres | UML 2.0 Consistency Rules, Mars[END_REF] cover all the UML diagrams.

During our study we have exploited only rules concerning Class and Sequence diagrams and the associated consistency rules. We note for example that 97.5% of the features of the Class diagrams are used in the models. The final number of considered consistency rules are 350 for this study. Due of the scope of this study and to preserve confidential data, we only present one of the results obtained in the interactions constraints feature. Most of the models were making using the 1.4 UML specification.

To realize this assessment of the use of interaction constraints, we assigned the values to the metrics. The manual checking difficulty has been evaluated to medium taking the duration of the detection into account. The tool detection capability has been evaluated to undetected. Figure 6 shows these interesting results.

The probability obtained reviewing the two models was 97% and 93% respectively on middleware and NAVDB systems. This means that the consistency rule was almost never respected in the models. Of course, we considered here one of the most extreme assessment.

Assessment result handling

Once the set of inconsistencies has been identified, and once likelihood and severity values have been assessed, an attempt to reduce their values by a specific treatment can be done.

It is very important to understand that each identified consistency rule concerns one feature of UML 2.0 or several of them (in the case of inter-diagram consistency rules for instance). Thus, for a given UML 2.0 feature, a list of consistency rules is associated with this feature.

For a given criticity level, maximum values of the likelihood and severity are specified (notion of acceptability level). Then, two ways can be considered when one of the values is too high :

• the use of the associated feature can be excluded, or

• the assessed values can be reduced.

This section considers this second approach. The exclusion of the use of the UML feature which is the cause of the inconsistency is not satisfactory since the problem is just postponed. Moreover, the benefits provided by these excluded features for modelling, will be lost. Furthermore, this approach would lead to the strong reduction of the usable UML features, which is not desirable. The estimation of the benefits of each UML feature use is an important issue because a lot of estimation couple This requires other pieces of information, such as the benefits or the risk reduction costs, to conclude on the feature use acceptability.

Reduction of the likelihood

In order to reduce the likelihood, it will be more suitable to advocate the use of prevention guidelines and to strengthen the consistency checking. The risk prevention aims at preventing the presence of an inconsistency in the models. First of all, the notion of inconsistency and the UML inconsistencies have to be taught. Secondly, clear modelling guidelines and easily applicable must be written to prevent their introduction in models.

Figure 7 illustrates an activity diagram. The specification semantics tells that tokens arriving at a fork node are duplicated across the outgoing edges. Tokens offered by the incoming edge are all offered to the outgoing edges. When an offered token is accepted on all the outgoing edges, duplicates of the token are made and one copy traverses each edges.

A prevention guideline could be explained as an alternative to the following potential locking : "If guards are used on edges outgoing from forks, the modelers should ensure that no downstream joins depend on the arrival of tokens passing through the guarded edge. If that cannot be avoided, then a decision node should be introduced to have the guard, and shunt the token to the downstream join if the guard fails". Figure 7 shows a solution following the guideline.

Let us mention that this guideline is not only usable for fork outgoing edges, but also for guards on edges between two nodes.

Reduction of the severity

The possible criteria which permit to estimate the severity, as seen in section 2, can be either the impact of the inconsistency on the generation of code, or the difficulty to detect the inconsistency manually. In the first case, we have to consider that actual CASE tools nearly just take into account class diagram for generating code, while other useful pieces of information are present in other diagrams. As a result, the measure of the impact of an inconsistency on the code is strongly dependent on the capabilities of generation of actual tools. In the second case, we noticed that the detection is easier if redundant pieces of information exist in the models. Thus, we proposed several protection guidelines in [START_REF] Malgouyres | UML 2.0 Consistency Rules, Mars[END_REF], facilitating the detection of inconsistencies, which intend, if followed, to avoid the effects of the inconsistencies. They have to be applied systematically in order to reduce the severity.

Figure 8 illustrates a "derive" dependency between an attribute of a class and another class. A dependency with stereotype "derive" indicates that the client of the relationship can be computed from the supplier (target of the arrow). It is possible to specify formally which expression permits to compute the client from the supplier, but it is not compulsory. In fact, the information given in the note of the figure 8 results from the application of this guide.

One of the rules we defined in [START_REF] Malgouyres | UML 2.0 Consistency Rules, Mars[END_REF] expresses: "If the expression which is useful to calculate the derived element is formulated explicitly, this expression must satisfy the rules dealing with expressions". Another rule states that "The type of client element and the type of the expression eventually used to describe the derivation have to be identical".

In order to help the designer to detect easily an inconsistency concerning the previous rules, we advocate to "specify formally the expression which permits to compute the client from the supplier." Thus, it is possible to verify that the element is effectively a derived element and to check that all the elements necessary to compute it are known. It permits to check in addition that all these elements can be accessed and used to obtain a consistent value of the derived element. In this exemple, it would have been difficult to check the consistency of profitDoneOnArticle attribute, without the information given in the note.

Finally, another way to deal with probability and severity reduction is to strengthen the checking capability of CASE tools. Indeed, the consistency checkers must be developed not only to handle certain classes of inconsistencies but to detect all the identified ones. To conclude, the use of guidelines in Thales Avionics showed that the number of inconsistencies done by designers decreased.

Conclusion

Assessment of UML features is needed to use them in critical systems and will be useful during certification process. We proposed in this paper an assessment of these features based on inconsistencies. Inconsistencies are UML properties that have to be respected by each UML model. Checking model consistency permits to highlight problems during all development process phases.

The assessment is obtained by two ways: interviews of experts and analysis of real models. This study permits to judge UML feature by feature or globally.

At last, we introduced how to handle inconsistencies in order to reduce the assessment values. As acknowledged during the analysis of the real models, prevention guidelines permit to reduce likelihood of inconsistencies advising modelers. Protection guidelines permit to reduce severity of inconsistencies making easier the manual detection or allowing automatic checking.

Figure 2 :

 2 Figure 2: Association feature risk estimation

Figure 3 :

 3 Figure 3: Property feature risk estimation

Figure 4 :

 4 Figure 4: Global feature risk estimation: Difficulty of detection

Figure 5 :

 5 Figure 5: Global feature risk estimation: Faults in program

Figure 6 :

 6 Figure 6: Interactions constrains features estimation

FixFigure 7 :

 7 Figure 7: Fork outgoing edge with guard, ensured with a decision node

Figure 8 :

 8 Figure 8: Abstraction dependency with Derive stereotype

Table 1 :

 1 Synthetic Results of Error Detection Rates

		Visual Paradigm Rational Rose Ameos
	Detected	20.85 %	25.07 %	23.94 %
	Not Detected	56.62 %	44.51 %	46.76 %
	Cannot be tested	22.54 %	30.42 %	29.30 %