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Abstract: This paper gives an account of an on-
going attempt to prove the safety properties, of a 
hand-coded safety critical embedded software of 
industrial size. The method used is based on 
annotating the C source files with assertions that 
encode the safety-related functional properties to be 
satisfied by the software, and then generating proof 
obligations to be discharged by some theorem 
provers. We discuss what has been achieved and 
what difficulties were encountered, from which we 
derive requirements regarding the evolution of the 
verification tools involved in that experiment. 

Keywords: Software verification, Hoare Logic, 
Theorem Proving, Caveat, Caduceus, Why, Coq, 
Simplify. 

1. Introduction 

Since 1990, Dassault Aviation has carried out 
numerous formal methods studies and assessments. 
The first ones were focused on synchronous 
languages (first Esterel [4], then Lustre), for control 
and data flow formal specification, coding and model 
checking through collaborations with research 
teams. Over the last few years, much effort was 
devoted to the integration of UML modelling and 
signal flow programming (Matlab, Scade, Esterel), in 
order to introduce these new methods and tools in 
the Flight Control System (FCS) software 
development process.  

Following the Model Driven Engineering approach 
(MDE), parts of an embedded software were re-
engineered with Matlab/Simulink, Rational Rose and 
Esterel Studio [17]. By the end of 2003, the first 
control module formally specified in a graphical way, 
automatically generated (~15 Kloc), and proven was 
embedded in a military aircraft operational software. 

In the meantime, some experiments on formal 
verification of hand-written code were initiated, 
because in numerous situations pieces of software 
of high criticality level cannot be generated from 
formal specification models. This is especially the 
case for programs encoding algorithms with complex 
control or data structures (nested loops, extensive 
use of pointers, etc.), or for system level 
programming (drivers, schedulers, coding/uncoding 
of data formats etc.). This is also the case when 

software engineers don't want to be constrained by 
restricted specification languages. 

This is the basis of our motivation to assess the 
theorem proving approach to formally verify 
annotated hand-coded imperative programs, from 
which are generated proof obligations to be later 
discharged by automatic deduction tools, or by 
interactive theorem provers when the available 
decision procedures fail. 

In the following, we will briefly introduce the 
underlying technical background and the two tools 
we have been assessing for the last two years: 
Caveat [6],[3] and Caduceus [5]. Then we proceed 
by stressing some of the lessons we learnt and by 
presenting some general requirements to improve 
these formal verification tools. We aim to use them 
operationally in the mid-term, trying to follow the way 
that has been paved by B-method & tool [1]. 

2. Background 

To be able to present our past and current 
experiments in proving the correctness imperative 
programs, we propose at first a brief and non formal 
presentation of the underlying method and 
foundational background. For rigorous explanations, 
please seek the abundant references and tutorials 
related to the subject, for instance [13]. 

2.1 Reminder of basics : Floyd-Hoare’s logic 
Correctness proof of imperative program is 
essentially based on Floyd-Hoare's logic [12]. The 
main purpose of this logic is to provide a set of rules 
defining how to formally reason about the properties 
of imperative programs. 
Hoare's logic is based on a triple which describes 
how the execution of a statement changes the state 
of data variables. A Hoare triple is defined as : 

{p} S {q} 
 
where p and q are respectively the precondition and 
the postcondition (expressed as first order logic 
formulas), and S is a programming statement. The 
whole expression means that if p holds before the 
execution of S, then q will hold after the execution of 
S, if S terminates (partial correctness). 



ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8 

 The assignment rule is the following one : 
 
Rassign: ----------------- 

{p[y/x]} x:=y {p} 
 
which states that if p holds after the assignment 
(x:=y), then p, where all occurrences of x have been 
substituted by y, holds before that assignment. For 
example, {x>-1} x:=x+1 {x>0} is a valid triple. 

In the same way, Hoare defined the following well 
known rules: 
Rsequence: {p} S {q} {q} T {r} 
  --------------------- 

{p} S ; T {r} 
 
Rcondition: {p /\ C} T {q}{p /\ ¬C} E {q} 
  ------------------------------ 

{p} if C then T else E {q} 
 
Rloop:   {p}=>{inv}   {inv /\ C} S {inv}
   {inv /\ ¬C} => {q} 

--------------------------------- 
{p} while (C) do S {q} 

 
where inv is an invariant of the loop, which holds 
before, after, and for each execution of the loop 
body. As a matter of fact, this rule describes a 
recurrence principle. Since these rules are partial 
correctness rules, loop termination for instance has 
to be established. This is done by identifying a loop 
variant (var) which must be positive when entering 
the loop, and decrease towards 0 at each loop turn. 

2.2 Verification conditions, proof obligations and 
weakest preconditions 

A weakest precondition (WP) is computed by 
backward propagation of a given property through 
statements, according to Hoare's logic rules. Hence, 
a WP function takes two arguments: a statement S 
and a property q, and returns the most general 
condition c over the execution state just before 
executing S, such that q is valid after S execution. 
This is usually written: 

c := WP( S, q ) 

A verification condition is defined w.r.t. a given 
property q to be proved valid after execution of a 
statement S, and a precondition p which holds 
before S, as follows: q holds after S if p holds before 
S. Formally, we can write the verification condition 
as: 

p => WP( S, q ) 

Sometimes, verification conditions may be too 
difficult to prove in only one formula like the previous 
one. Typically, for loops, the verification condition 
has to be split into several proof obligations; if we 
want to prove valid the following triple: 

{p} while (C) do S {q} 
whose verification condition is: 

p => WP( while (C) do S, q ) 

we will have to prove valid three proof obligations 
related to invariance (the necessary invariant inv is 
generally provided by the user), and two proof 
obligations related to termination (w.r.t. the variant 
var). 
 

2.3 Hoare’s logic extensions: dealing with function 
calls 

Hoare's logic needs to be extended so that WP can 
still be computed through function calls. The solution 
can not be to inline called functions as it could make 
WP computations rapidly explode in size. The way 
current program provers work is more reasonable: 
function calls are replaced with the properties (pre 
and postconditions) of the called functions.  

In the following example, in the body of function f, 
the call to function g will be "replaced" by {preg} and 
{postg} which are respectively the precondition and 
postcondition of function g (after substitution of 
function parameters and predicate parameters): 
 
{preg} 
void g(…) { … } 
{postg} 
 
{pref} 
int f(…) { Sf1; 
g(…); 
Sf2;} 
{postf} 

Before propagation of pre/postconditions of 
called functions 

 

 
{preg} 
void g(…) { … } 
{postg} 
 
{pref} 
int f(…) { Sf1; 

{preg} /* g(…); */ {postg} 
Sf2;} 

{postf} 
After propagation of pre/postconditions of called 

functions 
 
The new verification condition to be proven valid is: 

{pref} => WP(Sf1,{preg}) 
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which specifies that the preconditions of function g 
must be satisfied by any statement executed before. 
The verification condition :  

{pref} => WP(Sf1,{postg}=> WP(Sf2,{postf})) 

which expresses backward propagation of 
postcondition postf through the code of function f, 
and "embedding" the  postconditions of function g. 

Remark about WP computation: 
It is worth mentioning that, in many tools, WP is not 
computed as described, i.e. by backward 
propagation of properties through statements. The 
actual computation is based on building a universally 
quantified formula for all successive states of all 
assigned variables, and ending with the user's 
postcondition. The following example of code and its 
associated verification condition illustrates this 
mechanism: 
 
 
int x,y; 
void g(); 
{x>y*2} 
 
void f() 
{ 
 x=0;  
  y=1;  
  g();  
  x=x+5;  
} 
{x>0}  
 
 

 
 
 
 
 
forall x0:Z, x0=0 
=> forall y0:Z, y0=1  
=> forall x1:Z, x1 > y0 * 2 
=> forall x2:Z, x2 = x1 + 5 
 
=> x2 > 0 

RHS: code with function assignments and call 

LHS: generated verification condition 

 
The two functions f and g are respectively annotated 
by postconditions. The verification condition is 
displayed on the right hand side: it is computed on 
the basis of a forward propagation and quantification 
instead of classical WP computations. 

3. Assessment of verification tools 

In this paragraph, we will focus on two different C 
program verification tools: Caveat, developed at 
CEA [6] and Caduceus developed at LRI [5]. Caveat 
and Caduceus are based on Hoare's logic and are 
both dedicated to proving correctness properties 
specified through annotations of C statements. They 
propose different, and to some extent 
complementary, features, methodologies of use, 
advantages and limitations. 

Both tools were assessed on the same embedded 
software, a 70+ Kloc module in charge of fault 

detection, isolation and recovery (FDIR) for a group 
of sensors. It mainly consists in voting algorithms 
and a failure management logic. About 70 
consolidated parameters are delivered by this sensor 
management module, and five safety properties 
have to be proved per parameter.  

3.1 Experiments with Caveat 
Caveat [6], [3] is a static analysis tool designed to 
help verify safety properties on critical software. It 
operates on ANSI C programs. It was developed by 
CEA, the French Nuclear Agency, and is used as an 
operational tool by Airbus-France (to replace some 
unit tests by formal verification), as well as EdF, the 
French electricity company.  

It is based on WP computation and first order 
rewriting techniques (proof engines). The main 
features of Caveat are navigation facilities, property 
synthesis, and automated or interactive deduction. 
 

Program verification methodology, in brief 
First step: Caveat performs an automatic analysis of 
the whole project, which leads to the generation of:  
- properties related to preventing runtime errors such 
as null pointer assignment, division by zero, out of 
bound array access, etc,  
- the input variable list,  
- the output variable list (including side-effects),  
- the functional expressions for every function output. 
Depending on selected strategies (discussed below), 
these functional expressions can be used as 
postconditions during WP computations. 
 
Second step: the user can annotate the code with: 
- other preconditions,  
- postconditions, especially when Caveat was not 
able to generate functional expression for outputs 
needed to prove a given property (failing to generate 
a functional expression is generally due to the 
presence of a loop), 
- loop invariants and termination conditions 
(variants),  
- intermediate assertions (optional), aiming to 
simplify the task of WP computation. 
 
Third step: a given property (a proof obligation, a 
postcondition, or an assertion) is selected by the 
user who then triggers the Caveat simplifier and 
prover to prove that property. Caveat returns either 
true, or false (in case of false, a counter-example is 
displayed), or provides the user with a residual 
formula (remainder) whenever the rewriting engine 
was not able to prove the property.  

In case of a residual formula, the user is provided 
with an interactive rewriter. The rewriting task (e.g.: 
transforming the given formula into conjunctive 
normal form, disjunctive normal form, splitting it by 
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case, folding/unfolding definitions, etc.) aims at 
transforming and simplifying manually the residual 
as much as possible, in order to obtain a true or 
false value or a remaining formula that can not be 
simplified anymore. Often, this remaining formula is 
a missing precondition that the user should add as a 
new annotation.  

Note that the remaining formula must be accurately 
analyzed by an expert user familiar with logic and 
with a deep knowledge of the C code, as it is 
generally not clearly readable (residuals are the 
results of WP computation and automatic rewritings 
that render original properties quite unrecognizable!). 
 
User strategies 
It is important to note that the following  strategies 
can improve effectiveness and productivity of 
program verification with Caveat: 

- postconditions annotated by the user can be 
preferred to functional expressions generated 
automatically,  
- user assertions can be left over during WP 
computations, 
- when taking into account postconditions or 
assertions, it is possible to ask Caveat to quantify 
any variable belonging to the predicates. Universally 
quantified variables do not need to be dealt with by 
WP computation. This results in saving computation 
time, and in simplifying the proof obligations and 
proof residuals.  

Any use of these strategies needs a deep analysis 
and experience, as its efficiency strongly depends 
simultaneously on the structure and size of the 
properties, verification conditions and source code. 

Experimenting on small examples is of course 
relevant, but does not provide all the needed insights 
when facing an actual industrial size software. 
 
Some lessons learnt :  
Compared with other program verification tools, and 
after experimenting with Caveat on real applications, 
the major advantage of the tool turns out to be the 
generation of functional expressions for all function 
outputs (these functional expressions are used as 
automatically generated postconditions). During our 
assessment, we definitely appreciated this 
functionality.  

Some drawbacks imposed limitations difficult to 
overcome. For example, we had too often to cope 
with the automatic prover weaknesses: this one was 
not powerful enough to handle large size pieces of 
code and large verification conditions.  

Even for some proof obligations that looked trivial, a 
proof was not always computable: the automatic 
rewriting engine of Caveat (without any heuristic or 

means to disable this automatic step) systematically 
enlarged the verification condition size so that 
subsequent manual interactions were unfeasible in 
an economically reasonable amount of time. 

Some limitations were also encountered on non 
ANSI C syntactic features, and most importantly on 
aliases (pointers pointing to the same memory 
location). Unfortunately the embedded C code we 
chose to experiment with Caveat made extensive 
use of aliases that Caveat couldn’t handle. 

These problems and a few others are going to be 
fixed. As an example, Caveat is known to be able to 
deal with aliases in its latest releases, and work is 
done to automate relevant invariant generation using 
abstract interpretation. 

Results 
We succeeded in proving four safety properties over 
a 3Kloc alias-free sample of the 70+ Kloc software 
mentioned previously. After a significant training 
period that made a software engineer become a 
Caveat experienced user, it took him nearly six man-
months to achieve this encouraging but limited 
result.  

A first objective of the evaluation was to prove five 
safety properties for one parameter on the full code, 
and then to prove the 350 properties (5 properties for 
each of the 70 parameters). But the software to be 
proven correct, which was developed in parallel with 
our experiment, turned out to make an extensive use 
of pointers and aliases. Unfortunately, two years ago 
Caveat was not able to handle true aliases 
efficiently. To try to overcome this limitation, we 
moved to Caduceus whose first assessable version 
was released in September 2004. 

3.2 Experiments with Caduceus 
Caduceus [5] is a promising new C program 
verification tool which is still under development at 
LRI - Université Paris Sud. It is a proof obligation 
generator also based on Hoare's logic, though with 
some foundational background rooted in the type- 
theoretic approach of proof assistance [10], [8]. This 
background may have some importance in the long 
run when verification of verification tools will become 
a major issue, especially for the use of this kind of 
tools on software development processes subject to 
certification. 

Program verification methodology, in brief 
At first, an important point to outline is Caduceus’ 
ability, thanks to an inner memory management 
model, to deal efficiently with aliases. This allowed 
us to apply Caduceus to our benchmark 70+ Kloc C 
embedded code, containing potential and actual 
aliases.  
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The first step of the program verification 
methodology consists in annotating the C code. For 
the moment, and it is to our opinion the main 
drawback of Caduceus, no functional expression is 
automatically generated from program expressions 
for output or global variables. This results in a big 
difference with Caveat annotations: Caduceus 
annotations are more voluminous and cumbersome 
to write because arithmetic and logical computations 
have to be manually paraphrased at the predicate 
level. On large pieces of software the size of 
annotations blows up, jeopardizing scalability.  
 
Annotations are specified as comments inside the 
code (especially for loop invariants), or in the 
function declaration files (as headers ".h" files). 
These annotations are expressed into Java 
Modelling Language (JML) and some extensions. 
JML is a behavioural interface specification. It 
combines the design by contract approach of Eiffel 
and the model-based specification approach of the 
Larch family of interface specification languages, 
with some elements of the refinement calculus. JML 
is not limited to Java code, of course, and LRI has 
adapted it to the needs of property specification on 
ANSI C programs. 

As usual, the possible annotations are preconditions, 
postconditions, invariants and variants, assertions, 
and assignments (i.e., for each function or loop, the 
list of updated/assigned variables must be provided 
by the user).  

Of course, when working on a large source code, 
some of the annotations mentioned above are very 
time-consuming to write manually. In many cases, 
trivial postconditions or preconditions, simple 
invariants and variants, and all assigned variables 
could be generated automatically.  

In the particular case of safety critical embedded 
software for which only a subset of possible C 
statements are authorized, a lot of non functional 
annotations could be generated as early as the 
parsing phase of the code.  

LRI is currently working on these issues, and some 
important results are expected in the next months. 
To deal with the 70+ Kloc code we developed an in-
house prototype of annotation generator. This 
generator, mainly developed in CAML, produced 
automatically (in 10 minutes on a 1GHz PC) all the 
expected simple invariants, variants, loop and 
function assignments, and most of the preconditions 
related to non-null pointers. The same task done 
manually by an experimented user was evaluated to 
a 3-month workload. It took 3 weeks to develop the 
first version of this prototype generator which does 
not address all possible C statements, but only those 
currently used in our benchmarking embedded code. 

Second step: what we call Caduceus is indeed a tool 
suite (Fig. 1). It is a pipeline of processors: the 
Caduceus compiler feeding the Why compiler [10], 
[16], which in turn generates proof obligations in 
different formats to be handled by different theorem 
provers: interactive proof assistants such as Coq [8] 
and PVS or decision procedures such as Simplify 
[15] and haRVey [11]. 

 
 

 

 

 

Figure 1: The Caduceus/Why processing flow 

From the end-user point of view, the Why 
compilation is completely transparent, and it is 
mentioned here because Why is used as an 
intermediate language. The Why language is able to 
express high level order functions and to manipulate 
abstract types, thus providing a powerful means for 
WP computation. Why is designed so that type 
theory based consistency checks of the generated 
proof obligations with respect to annotations could 
be performed. 

An important point to notice is that the annotation 
style depends on the targeted theorem prover: the 
way hypotheses and axioms are expressed must be 
defined according to some inner features of the 
targeted provers.  

For example, with Simplify, the following two sets of 
axioms, that both define by recurrence the sum of 
the elements of an array, are treated quite differently 
by Simplify’s deduction strategies: 
axiomA1: \forall int tab[], int i, int j; 
i>j => sum(tab,i,j)==0 
axiomA2: \forall int tab[], int i, int j; 
(i<=j)=>sum(tab,i,j)==tab[i]+sum(tab,i+1,j) 

axiomB1: \forall int tab[], int i; 
sum(tab,i,i) == 0 
axiomB2: \forall int tab[], int i, int j; 
sum(tab,i,j) == tab[j] + sum(tab,i,j-1) 

Axioms A1 and A2 behave well with Simplify’s proof 
engine, while B1 and B2 make Simplify loop for ever. 

Of course, a Simplify specialist would certainly find a 
rationale to explain that behaviour (and Prolog 
programmers will be familiar with logically equivalent 
definitions that are drastically different from the 
computational point of view!). 

But from a software engineer standpoint, this kind of 
sensitivity is somehow unfortunate: the annotated C 
source files should be unique, whatever number of 
deduction tools are used in the subsequent stages of 

Annotated C Code

Coq p.o

Caduceus 
/Why Simplify p.o 

haRVey p.o
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the verification process. The annotations should 
depend only on the software correctness properties 
to express and on human readability. One would like 
to have them not depending on tricky and obscure 
tool-feature issues. 

Some lessons learnt 
At this time, the experiment with Caduceus amounts 
nearly to one man.year effort and is still in progress. 
The lessons learnt by mid-2005 drove deep 
modifications to Caduceus, especially on the C 
memory model that axiomatizes pointers’ 
management. These modifications will be evaluated 
in 2006,.and we hope that by then many current 
limitations will be overcome. 

We successfully made the proofs at unit level, and at 
the lower levels of the software integration hierarchy. 
More precisely, the call-graph of the software is a 
11-level call tree. The main module is at, level 1 (the 
highest), and unit proofs are made at level 11 (the 
lowest). We managed to carry out proofs of the five 
properties for one parameter from level 11 to level 6. 

At levels higher than 6, the number, size and 
structure of the generated verification conditions 
were such that neither Simplify nor haRVey 
managed to prove them.  

Let us give briefly some insight on why the higher 
the proof in the program hierarchy, the more 
complex were the generated verification conditions. 
It was mainly due to Caduceus’ model and default 
assumptions on memory separation of global 
variables.  

Memory separation had to be demonstrated for 
every couple of identically typed fields of global 
structure variables (used to store sensor measures). 
Basically these verification conditions consisted in 
proving that two pointers’ base addresses and 
offsets were unequal. With more than 100 identically 
typed global structure fields at level 5, 4950 huge 
non tractable verification conditions were 
generated…  

From level 11 to level 6, an average 60% of the 
verification conditions were discharged by means of 
automatic decision procedures. Some of the 
remaining unproved formulas were proved 
interactively with Coq. Some specialized and 
effective tactics were defined in Coq with the macro 
language to assess the possibility of speeding up 
these interactive proofs. 

In the end, the feasibility of proving the five safety 
properties at the software boundaries (level 1) is not 
yet demonstrated. But the reason why we didn’t 
manage to do so are well understood. LRI has 
undertaken major modifications of the memory 
model that should lead to smaller and fewer 
verification conditions at the expense of more 

sophisticated static analyses in Caduceus. It is 
expected that Simplify will have a lower failure rate 
on valid verification conditions generated by this 
forthcoming version of Caduceus, and that making 
proofs from levels 5 to 1 will become tractable.  

We came up with a few other insights in the course 
of the experiment: 
 

• So-called "ghost" variables turned out to be 
needed in Caduceus’ annotation language: 
JML formulas are closed formulas whose 
only free variables are program variables. 
For cyclic control programs that do not store 
in state variables some past values (that 
may be useless from the programming point 
of view but that are mandatory to formally 
specify some functional temporal 
properties), one needs to add modifiable 
“virtual program variables” at the annotation 
level to store these states and refer to them. 

• Having the ability to use several automatic 
deduction tools to prove the verification 
conditions is a definite advantage: cross-
demonstration of the same property by two 
different provers (which are magic “black 
boxes” from the software engineer point of 
view) increases the level of confidence one 
may have in these verification elementary 
steps. This kind of multiple demonstration 
approach is likely to be valuable in the future 
when arguing the case for using this tool 
suite in certification contexts (DO-178C 
more specifically). 

To sum-up, we mainly faced scalability problems, but 
we expect to overcome them shortly with the next 
Caduceus release.  

We have also uncovered some phenomena that 
greatly impede our verification productivity. The most 
important one is the great sensitivity of the success 
rate of automatic deduction tools to any change 
upward in the verification process. Any change in the 
annotation style (remember the sum(tab) example 
above), or in Caduceus/Why implementation, or in 
the automatic deduction tools, may cause some 
unforeseen regressions in the progress of the 
verification task: some proved verification conditions 
were no longer automatically provable while the 
code and annotations had remained unchanged. 

Since proving a program is by far more time 
consuming than compiling or testing a program, 
some “robustness” is mandatory to have these 
techniques economically viable on large projects. 

4. Towards IPEs : Integrated Proof Environments 
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Many issues already tackled in software 
development processes should be addressed as well 
in an industrial proof assistance environment 
dedicated to program verification. 

It could be useful to consider that proof results (from 
decision procedures) or proof terms (from theorem 
proving assistants) should be seen as “binary files”, 
or object files. In that way, files of annotated C 
instructions as well as proof scripts of interactive 
provers can be considered as source files. As for the 
provers (be they automatic or interactive), they woud 
play a role similar to that of compilers. Following this 
analogy, the need for versioning, configuration 
management, automatic reassembly of “binary 
objects” etc. should appear obvious in program proof 
development processes. 

To elaborate a bit on that, we clearly felt the need for 
an integrated development environment (IDE) and 
related project management tools. 

Some interesting developments along these lines 
have been made with Eclipse at INRIA Sophia: 
JACK (Java Applet Correctness Kit) [14] already 
provides some very useful functions such as 
traceability from proof obligations to annotations, 
proof validity management, computation of project 
progress statistics, impact analysis and incremental 
automatic reconstruction of “binary objects” triggered 
at high level (at the annotation level for instance). 

Of course what turned out to be necessary in Java 
applets formal verification projects is also necessary 
for any other similar project on any other 
programming language. A Caveat and/or Caduceus 
Eclipse plug-in similar to JACK’s will be developed 
once the scalability problems are solved. 

It is likely that an industrially mature C correctness 
proof environment will also have to integrate other 
verification tools such as static analyzers, and 
perhaps even model checkers. 

As mentioned before, on industrial size projects the 
\assigns annotations can’t be manually provided 
by users. A static analyzer front-end has to generate 
them automatically. Some kinds of loop variants and 
invariants can also be automatically generated, thus 
sparing software engineers costly man.months of 
boring work. Software engineers should only be in 
charge of functional annotations and be released 
from manually setting annotations that could result 
from program control and data-flow analysis. 

We wonder whether static analysis based pre-
processors may not have to be introduced beyond 
mere assistance to setting non functional 
annotations. 

Since we are facing a complexity issue at the higher 
levels of software integration, we wonder as well 
whether a code slicer would be helpful. To reduce 

the size of the verification conditions, one would 
generate them only on slices of the code, one slice 
per annotation.  

Of course, such an approach has major drawbacks, 
especially if one envisions to use these techniques in 
D0178-compliant processes. We definitely hope that 
the new Caduceus memory model will solve the v.c 
size explosion problem. If not, we would  need to 
resort to a program slicer. 

We also had a look at other techniques to cope with 
software complexity, such as pre-processing the 
code by predicate abstraction techniques [2][7] and 
then using model checkers on the abstracted model. 
We will investigate such techniques in case of failure 
of the theorem proving approach, or later as an 
additional mean of enhancing productivity in formal 
verification of hand-coded software, especially for 
temporal properties. 

5. Conclusion 

We have discussed an on-going attempt to prove 
about 350 safety properties on a 70+Kloc manually 
written C program, featuring many aliases and 
pointer issues. 

We started with Caveat by 2003 and then moved to 
Caduceus by mid-2004, because its memory model 
could handle true aliases that Caveat could not at 
that time. It was the first release of Caduceus, which 
was still in its infancy. 

Although we used two theorem provers, with great 
support by their development teams, and devoted a 
1,5 m.y effort to the project at Dassault, we still did 
not manage to achieve our goal, 35 years after 
Hoare’s seminal paper [12], 

We are still facing scalability issues. However we 
hope to solve them in the next few months thanks to 
major modifications in Caduceus’ C memory model. 
We have obtained so far limited but encouraging 
results, therefore we remain confident in the 
feasibility of our project. 

Once the five properties are proved at the main level 
for one parameter, we will face a productivity issue. 

In some sense, the overall verification project 
consists in 70 similar verification sub-projects: the 
same five safety properties have to be proved on 70 
different but similar parts of the program (one per 
voted sensor parameter). We would like not to spend 
70 times the effort spent on the five first properties 
for the first parameter.  

Failure rates and strategies of automated deduction 
tools, Coq tactics and tacticals like any other kind of 
automation tool, will have to be tuned carefully to 
take advantage of the structure and similarities of the 
code parts, and thus spare a significant amount of 
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verification effort. True feasibility will be established 
once the 350 properties over the 70 parameters are 
proved within a 1 to 3 m.y effort. 

By then, the industrial maturity of the tools, their 
integration in some of our current processes and 
D0178 related issues will be at stake. 
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8. Glossary 

CEA Commissariat à l’Energie Atomique 
FCS Flight Control System 
IDE Integrated Development Environment 
LHS Left Hand Side 
LRI  Laboratoire de Recherche en Informatique 
MDE Model Driven Engineering 
p.o proof obligation 
RHS Right Hand Side 
UML Unified Modeling Language 
v.c verification condition 
SW Software 
WP Weakest Precondition 


