
HAL Id: hal-02270427
https://hal.science/hal-02270427v1

Submitted on 25 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Hand-Coded Software Some
Industrial Experiments and Lessons Learnt

E Ledinot, D. Pariente

To cite this version:
E Ledinot, D. Pariente. Formal Verification of Hand-Coded Software Some Industrial Experiments
and Lessons Learnt. Conference ERTS’06, Jan 2006, Toulouse, France. �hal-02270427�

https://hal.science/hal-02270427v1
https://hal.archives-ouvertes.fr

ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

Formal Verification of Hand-Coded Software
Some Industrial Experiments and Lessons Learnt

E. Ledinot1, D. Pariente1
1: Dassault Aviation, 78 Quai Marcel Dassault 92552 Saint-Cloud Cedex

{emmanuel.ledinot, dillon.pariente}@dassault-aviation.fr

Abstract: This paper gives an account of an on-
going attempt to prove the safety properties, of a
hand-coded safety critical embedded software of
industrial size. The method used is based on
annotating the C source files with assertions that
encode the safety-related functional properties to be
satisfied by the software, and then generating proof
obligations to be discharged by some theorem
provers. We discuss what has been achieved and
what difficulties were encountered, from which we
derive requirements regarding the evolution of the
verification tools involved in that experiment.

Keywords: Software verification, Hoare Logic,
Theorem Proving, Caveat, Caduceus, Why, Coq,
Simplify.

1. Introduction

Since 1990, Dassault Aviation has carried out
numerous formal methods studies and assessments.
The first ones were focused on synchronous
languages (first Esterel [4], then Lustre), for control
and data flow formal specification, coding and model
checking through collaborations with research
teams. Over the last few years, much effort was
devoted to the integration of UML modelling and
signal flow programming (Matlab, Scade, Esterel), in
order to introduce these new methods and tools in
the Flight Control System (FCS) software
development process.

Following the Model Driven Engineering approach
(MDE), parts of an embedded software were re-
engineered with Matlab/Simulink, Rational Rose and
Esterel Studio [17]. By the end of 2003, the first
control module formally specified in a graphical way,
automatically generated (~15 Kloc), and proven was
embedded in a military aircraft operational software.

In the meantime, some experiments on formal
verification of hand-written code were initiated,
because in numerous situations pieces of software
of high criticality level cannot be generated from
formal specification models. This is especially the
case for programs encoding algorithms with complex
control or data structures (nested loops, extensive
use of pointers, etc.), or for system level
programming (drivers, schedulers, coding/uncoding
of data formats etc.). This is also the case when

software engineers don't want to be constrained by
restricted specification languages.

This is the basis of our motivation to assess the
theorem proving approach to formally verify
annotated hand-coded imperative programs, from
which are generated proof obligations to be later
discharged by automatic deduction tools, or by
interactive theorem provers when the available
decision procedures fail.

In the following, we will briefly introduce the
underlying technical background and the two tools
we have been assessing for the last two years:
Caveat [6],[3] and Caduceus [5]. Then we proceed
by stressing some of the lessons we learnt and by
presenting some general requirements to improve
these formal verification tools. We aim to use them
operationally in the mid-term, trying to follow the way
that has been paved by B-method & tool [1].

2. Background

To be able to present our past and current
experiments in proving the correctness imperative
programs, we propose at first a brief and non formal
presentation of the underlying method and
foundational background. For rigorous explanations,
please seek the abundant references and tutorials
related to the subject, for instance [13].

2.1 Reminder of basics : Floyd-Hoare’s logic
Correctness proof of imperative program is
essentially based on Floyd-Hoare's logic [12]. The
main purpose of this logic is to provide a set of rules
defining how to formally reason about the properties
of imperative programs.
Hoare's logic is based on a triple which describes
how the execution of a statement changes the state
of data variables. A Hoare triple is defined as :

{p} S {q}

where p and q are respectively the precondition and
the postcondition (expressed as first order logic
formulas), and S is a programming statement. The
whole expression means that if p holds before the
execution of S, then q will hold after the execution of
S, if S terminates (partial correctness).

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

 The assignment rule is the following one :

Rassign: -----------------

{p[y/x]} x:=y {p}

which states that if p holds after the assignment
(x:=y), then p, where all occurrences of x have been
substituted by y, holds before that assignment. For
example, {x>-1} x:=x+1 {x>0} is a valid triple.

In the same way, Hoare defined the following well
known rules:
Rsequence: {p} S {q} {q} T {r}

{p} S ; T {r}

Rcondition: {p /\ C} T {q}{p /\ ¬C} E {q}

{p} if C then T else E {q}

Rloop: {p}=>{inv} {inv /\ C} S {inv}
 {inv /\ ¬C} => {q}

{p} while (C) do S {q}

where inv is an invariant of the loop, which holds
before, after, and for each execution of the loop
body. As a matter of fact, this rule describes a
recurrence principle. Since these rules are partial
correctness rules, loop termination for instance has
to be established. This is done by identifying a loop
variant (var) which must be positive when entering
the loop, and decrease towards 0 at each loop turn.

2.2 Verification conditions, proof obligations and
weakest preconditions

A weakest precondition (WP) is computed by
backward propagation of a given property through
statements, according to Hoare's logic rules. Hence,
a WP function takes two arguments: a statement S
and a property q, and returns the most general
condition c over the execution state just before
executing S, such that q is valid after S execution.
This is usually written:

c := WP(S, q)

A verification condition is defined w.r.t. a given
property q to be proved valid after execution of a
statement S, and a precondition p which holds
before S, as follows: q holds after S if p holds before
S. Formally, we can write the verification condition
as:

p => WP(S, q)

Sometimes, verification conditions may be too
difficult to prove in only one formula like the previous
one. Typically, for loops, the verification condition
has to be split into several proof obligations; if we
want to prove valid the following triple:

{p} while (C) do S {q}
whose verification condition is:

p => WP(while (C) do S, q)

we will have to prove valid three proof obligations
related to invariance (the necessary invariant inv is
generally provided by the user), and two proof
obligations related to termination (w.r.t. the variant
var).

2.3 Hoare’s logic extensions: dealing with function
calls

Hoare's logic needs to be extended so that WP can
still be computed through function calls. The solution
can not be to inline called functions as it could make
WP computations rapidly explode in size. The way
current program provers work is more reasonable:
function calls are replaced with the properties (pre
and postconditions) of the called functions.

In the following example, in the body of function f,
the call to function g will be "replaced" by {preg} and
{postg} which are respectively the precondition and
postcondition of function g (after substitution of
function parameters and predicate parameters):

{preg}
void g(…) { … }
{postg}

{pref}
int f(…) { Sf1;
g(…);
Sf2;}
{postf}

Before propagation of pre/postconditions of
called functions

{preg}
void g(…) { … }
{postg}

{pref}
int f(…) { Sf1;

{preg} /* g(…); */ {postg}
Sf2;}

{postf}
After propagation of pre/postconditions of called

functions

The new verification condition to be proven valid is:

{pref} => WP(Sf1,{preg})

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

which specifies that the preconditions of function g
must be satisfied by any statement executed before.
The verification condition :

{pref} => WP(Sf1,{postg}=> WP(Sf2,{postf}))

which expresses backward propagation of
postcondition postf through the code of function f,
and "embedding" the postconditions of function g.

Remark about WP computation:
It is worth mentioning that, in many tools, WP is not
computed as described, i.e. by backward
propagation of properties through statements. The
actual computation is based on building a universally
quantified formula for all successive states of all
assigned variables, and ending with the user's
postcondition. The following example of code and its
associated verification condition illustrates this
mechanism:

int x,y;
void g();
{x>y*2}

void f()
{
 x=0;
 y=1;
 g();
 x=x+5;
}
{x>0}

forall x0:Z, x0=0
=> forall y0:Z, y0=1
=> forall x1:Z, x1 > y0 * 2
=> forall x2:Z, x2 = x1 + 5

=> x2 > 0

RHS: code with function assignments and call

LHS: generated verification condition

The two functions f and g are respectively annotated
by postconditions. The verification condition is
displayed on the right hand side: it is computed on
the basis of a forward propagation and quantification
instead of classical WP computations.

3. Assessment of verification tools

In this paragraph, we will focus on two different C
program verification tools: Caveat, developed at
CEA [6] and Caduceus developed at LRI [5]. Caveat
and Caduceus are based on Hoare's logic and are
both dedicated to proving correctness properties
specified through annotations of C statements. They
propose different, and to some extent
complementary, features, methodologies of use,
advantages and limitations.

Both tools were assessed on the same embedded
software, a 70+ Kloc module in charge of fault

detection, isolation and recovery (FDIR) for a group
of sensors. It mainly consists in voting algorithms
and a failure management logic. About 70
consolidated parameters are delivered by this sensor
management module, and five safety properties
have to be proved per parameter.

3.1 Experiments with Caveat
Caveat [6], [3] is a static analysis tool designed to
help verify safety properties on critical software. It
operates on ANSI C programs. It was developed by
CEA, the French Nuclear Agency, and is used as an
operational tool by Airbus-France (to replace some
unit tests by formal verification), as well as EdF, the
French electricity company.

It is based on WP computation and first order
rewriting techniques (proof engines). The main
features of Caveat are navigation facilities, property
synthesis, and automated or interactive deduction.

Program verification methodology, in brief
First step: Caveat performs an automatic analysis of
the whole project, which leads to the generation of:
- properties related to preventing runtime errors such
as null pointer assignment, division by zero, out of
bound array access, etc,
- the input variable list,
- the output variable list (including side-effects),
- the functional expressions for every function output.
Depending on selected strategies (discussed below),
these functional expressions can be used as
postconditions during WP computations.

Second step: the user can annotate the code with:
- other preconditions,
- postconditions, especially when Caveat was not
able to generate functional expression for outputs
needed to prove a given property (failing to generate
a functional expression is generally due to the
presence of a loop),
- loop invariants and termination conditions
(variants),
- intermediate assertions (optional), aiming to
simplify the task of WP computation.

Third step: a given property (a proof obligation, a
postcondition, or an assertion) is selected by the
user who then triggers the Caveat simplifier and
prover to prove that property. Caveat returns either
true, or false (in case of false, a counter-example is
displayed), or provides the user with a residual
formula (remainder) whenever the rewriting engine
was not able to prove the property.

In case of a residual formula, the user is provided
with an interactive rewriter. The rewriting task (e.g.:
transforming the given formula into conjunctive
normal form, disjunctive normal form, splitting it by

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

case, folding/unfolding definitions, etc.) aims at
transforming and simplifying manually the residual
as much as possible, in order to obtain a true or
false value or a remaining formula that can not be
simplified anymore. Often, this remaining formula is
a missing precondition that the user should add as a
new annotation.

Note that the remaining formula must be accurately
analyzed by an expert user familiar with logic and
with a deep knowledge of the C code, as it is
generally not clearly readable (residuals are the
results of WP computation and automatic rewritings
that render original properties quite unrecognizable!).

User strategies
It is important to note that the following strategies
can improve effectiveness and productivity of
program verification with Caveat:

- postconditions annotated by the user can be
preferred to functional expressions generated
automatically,
- user assertions can be left over during WP
computations,
- when taking into account postconditions or
assertions, it is possible to ask Caveat to quantify
any variable belonging to the predicates. Universally
quantified variables do not need to be dealt with by
WP computation. This results in saving computation
time, and in simplifying the proof obligations and
proof residuals.

Any use of these strategies needs a deep analysis
and experience, as its efficiency strongly depends
simultaneously on the structure and size of the
properties, verification conditions and source code.

Experimenting on small examples is of course
relevant, but does not provide all the needed insights
when facing an actual industrial size software.

Some lessons learnt :
Compared with other program verification tools, and
after experimenting with Caveat on real applications,
the major advantage of the tool turns out to be the
generation of functional expressions for all function
outputs (these functional expressions are used as
automatically generated postconditions). During our
assessment, we definitely appreciated this
functionality.

Some drawbacks imposed limitations difficult to
overcome. For example, we had too often to cope
with the automatic prover weaknesses: this one was
not powerful enough to handle large size pieces of
code and large verification conditions.

Even for some proof obligations that looked trivial, a
proof was not always computable: the automatic
rewriting engine of Caveat (without any heuristic or

means to disable this automatic step) systematically
enlarged the verification condition size so that
subsequent manual interactions were unfeasible in
an economically reasonable amount of time.

Some limitations were also encountered on non
ANSI C syntactic features, and most importantly on
aliases (pointers pointing to the same memory
location). Unfortunately the embedded C code we
chose to experiment with Caveat made extensive
use of aliases that Caveat couldn’t handle.

These problems and a few others are going to be
fixed. As an example, Caveat is known to be able to
deal with aliases in its latest releases, and work is
done to automate relevant invariant generation using
abstract interpretation.

Results
We succeeded in proving four safety properties over
a 3Kloc alias-free sample of the 70+ Kloc software
mentioned previously. After a significant training
period that made a software engineer become a
Caveat experienced user, it took him nearly six man-
months to achieve this encouraging but limited
result.

A first objective of the evaluation was to prove five
safety properties for one parameter on the full code,
and then to prove the 350 properties (5 properties for
each of the 70 parameters). But the software to be
proven correct, which was developed in parallel with
our experiment, turned out to make an extensive use
of pointers and aliases. Unfortunately, two years ago
Caveat was not able to handle true aliases
efficiently. To try to overcome this limitation, we
moved to Caduceus whose first assessable version
was released in September 2004.

3.2 Experiments with Caduceus
Caduceus [5] is a promising new C program
verification tool which is still under development at
LRI - Université Paris Sud. It is a proof obligation
generator also based on Hoare's logic, though with
some foundational background rooted in the type-
theoretic approach of proof assistance [10], [8]. This
background may have some importance in the long
run when verification of verification tools will become
a major issue, especially for the use of this kind of
tools on software development processes subject to
certification.

Program verification methodology, in brief
At first, an important point to outline is Caduceus’
ability, thanks to an inner memory management
model, to deal efficiently with aliases. This allowed
us to apply Caduceus to our benchmark 70+ Kloc C
embedded code, containing potential and actual
aliases.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

The first step of the program verification
methodology consists in annotating the C code. For
the moment, and it is to our opinion the main
drawback of Caduceus, no functional expression is
automatically generated from program expressions
for output or global variables. This results in a big
difference with Caveat annotations: Caduceus
annotations are more voluminous and cumbersome
to write because arithmetic and logical computations
have to be manually paraphrased at the predicate
level. On large pieces of software the size of
annotations blows up, jeopardizing scalability.

Annotations are specified as comments inside the
code (especially for loop invariants), or in the
function declaration files (as headers ".h" files).
These annotations are expressed into Java
Modelling Language (JML) and some extensions.
JML is a behavioural interface specification. It
combines the design by contract approach of Eiffel
and the model-based specification approach of the
Larch family of interface specification languages,
with some elements of the refinement calculus. JML
is not limited to Java code, of course, and LRI has
adapted it to the needs of property specification on
ANSI C programs.

As usual, the possible annotations are preconditions,
postconditions, invariants and variants, assertions,
and assignments (i.e., for each function or loop, the
list of updated/assigned variables must be provided
by the user).

Of course, when working on a large source code,
some of the annotations mentioned above are very
time-consuming to write manually. In many cases,
trivial postconditions or preconditions, simple
invariants and variants, and all assigned variables
could be generated automatically.

In the particular case of safety critical embedded
software for which only a subset of possible C
statements are authorized, a lot of non functional
annotations could be generated as early as the
parsing phase of the code.

LRI is currently working on these issues, and some
important results are expected in the next months.
To deal with the 70+ Kloc code we developed an in-
house prototype of annotation generator. This
generator, mainly developed in CAML, produced
automatically (in 10 minutes on a 1GHz PC) all the
expected simple invariants, variants, loop and
function assignments, and most of the preconditions
related to non-null pointers. The same task done
manually by an experimented user was evaluated to
a 3-month workload. It took 3 weeks to develop the
first version of this prototype generator which does
not address all possible C statements, but only those
currently used in our benchmarking embedded code.

Second step: what we call Caduceus is indeed a tool
suite (Fig. 1). It is a pipeline of processors: the
Caduceus compiler feeding the Why compiler [10],
[16], which in turn generates proof obligations in
different formats to be handled by different theorem
provers: interactive proof assistants such as Coq [8]
and PVS or decision procedures such as Simplify
[15] and haRVey [11].

Figure 1: The Caduceus/Why processing flow

From the end-user point of view, the Why
compilation is completely transparent, and it is
mentioned here because Why is used as an
intermediate language. The Why language is able to
express high level order functions and to manipulate
abstract types, thus providing a powerful means for
WP computation. Why is designed so that type
theory based consistency checks of the generated
proof obligations with respect to annotations could
be performed.

An important point to notice is that the annotation
style depends on the targeted theorem prover: the
way hypotheses and axioms are expressed must be
defined according to some inner features of the
targeted provers.

For example, with Simplify, the following two sets of
axioms, that both define by recurrence the sum of
the elements of an array, are treated quite differently
by Simplify’s deduction strategies:
axiomA1: \forall int tab[], int i, int j;
i>j => sum(tab,i,j)==0
axiomA2: \forall int tab[], int i, int j;
(i<=j)=>sum(tab,i,j)==tab[i]+sum(tab,i+1,j)

axiomB1: \forall int tab[], int i;
sum(tab,i,i) == 0
axiomB2: \forall int tab[], int i, int j;
sum(tab,i,j) == tab[j] + sum(tab,i,j-1)

Axioms A1 and A2 behave well with Simplify’s proof
engine, while B1 and B2 make Simplify loop for ever.

Of course, a Simplify specialist would certainly find a
rationale to explain that behaviour (and Prolog
programmers will be familiar with logically equivalent
definitions that are drastically different from the
computational point of view!).

But from a software engineer standpoint, this kind of
sensitivity is somehow unfortunate: the annotated C
source files should be unique, whatever number of
deduction tools are used in the subsequent stages of

Annotated C Code

Coq p.o

Caduceus
/Why Simplify p.o

haRVey p.o

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

the verification process. The annotations should
depend only on the software correctness properties
to express and on human readability. One would like
to have them not depending on tricky and obscure
tool-feature issues.

Some lessons learnt
At this time, the experiment with Caduceus amounts
nearly to one man.year effort and is still in progress.
The lessons learnt by mid-2005 drove deep
modifications to Caduceus, especially on the C
memory model that axiomatizes pointers’
management. These modifications will be evaluated
in 2006,.and we hope that by then many current
limitations will be overcome.

We successfully made the proofs at unit level, and at
the lower levels of the software integration hierarchy.
More precisely, the call-graph of the software is a
11-level call tree. The main module is at, level 1 (the
highest), and unit proofs are made at level 11 (the
lowest). We managed to carry out proofs of the five
properties for one parameter from level 11 to level 6.

At levels higher than 6, the number, size and
structure of the generated verification conditions
were such that neither Simplify nor haRVey
managed to prove them.

Let us give briefly some insight on why the higher
the proof in the program hierarchy, the more
complex were the generated verification conditions.
It was mainly due to Caduceus’ model and default
assumptions on memory separation of global
variables.

Memory separation had to be demonstrated for
every couple of identically typed fields of global
structure variables (used to store sensor measures).
Basically these verification conditions consisted in
proving that two pointers’ base addresses and
offsets were unequal. With more than 100 identically
typed global structure fields at level 5, 4950 huge
non tractable verification conditions were
generated…

From level 11 to level 6, an average 60% of the
verification conditions were discharged by means of
automatic decision procedures. Some of the
remaining unproved formulas were proved
interactively with Coq. Some specialized and
effective tactics were defined in Coq with the macro
language to assess the possibility of speeding up
these interactive proofs.

In the end, the feasibility of proving the five safety
properties at the software boundaries (level 1) is not
yet demonstrated. But the reason why we didn’t
manage to do so are well understood. LRI has
undertaken major modifications of the memory
model that should lead to smaller and fewer
verification conditions at the expense of more

sophisticated static analyses in Caduceus. It is
expected that Simplify will have a lower failure rate
on valid verification conditions generated by this
forthcoming version of Caduceus, and that making
proofs from levels 5 to 1 will become tractable.

We came up with a few other insights in the course
of the experiment:

• So-called "ghost" variables turned out to be
needed in Caduceus’ annotation language:
JML formulas are closed formulas whose
only free variables are program variables.
For cyclic control programs that do not store
in state variables some past values (that
may be useless from the programming point
of view but that are mandatory to formally
specify some functional temporal
properties), one needs to add modifiable
“virtual program variables” at the annotation
level to store these states and refer to them.

• Having the ability to use several automatic
deduction tools to prove the verification
conditions is a definite advantage: cross-
demonstration of the same property by two
different provers (which are magic “black
boxes” from the software engineer point of
view) increases the level of confidence one
may have in these verification elementary
steps. This kind of multiple demonstration
approach is likely to be valuable in the future
when arguing the case for using this tool
suite in certification contexts (DO-178C
more specifically).

To sum-up, we mainly faced scalability problems, but
we expect to overcome them shortly with the next
Caduceus release.

We have also uncovered some phenomena that
greatly impede our verification productivity. The most
important one is the great sensitivity of the success
rate of automatic deduction tools to any change
upward in the verification process. Any change in the
annotation style (remember the sum(tab) example
above), or in Caduceus/Why implementation, or in
the automatic deduction tools, may cause some
unforeseen regressions in the progress of the
verification task: some proved verification conditions
were no longer automatically provable while the
code and annotations had remained unchanged.

Since proving a program is by far more time
consuming than compiling or testing a program,
some “robustness” is mandatory to have these
techniques economically viable on large projects.

4. Towards IPEs : Integrated Proof Environments

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

Many issues already tackled in software
development processes should be addressed as well
in an industrial proof assistance environment
dedicated to program verification.

It could be useful to consider that proof results (from
decision procedures) or proof terms (from theorem
proving assistants) should be seen as “binary files”,
or object files. In that way, files of annotated C
instructions as well as proof scripts of interactive
provers can be considered as source files. As for the
provers (be they automatic or interactive), they woud
play a role similar to that of compilers. Following this
analogy, the need for versioning, configuration
management, automatic reassembly of “binary
objects” etc. should appear obvious in program proof
development processes.

To elaborate a bit on that, we clearly felt the need for
an integrated development environment (IDE) and
related project management tools.

Some interesting developments along these lines
have been made with Eclipse at INRIA Sophia:
JACK (Java Applet Correctness Kit) [14] already
provides some very useful functions such as
traceability from proof obligations to annotations,
proof validity management, computation of project
progress statistics, impact analysis and incremental
automatic reconstruction of “binary objects” triggered
at high level (at the annotation level for instance).

Of course what turned out to be necessary in Java
applets formal verification projects is also necessary
for any other similar project on any other
programming language. A Caveat and/or Caduceus
Eclipse plug-in similar to JACK’s will be developed
once the scalability problems are solved.

It is likely that an industrially mature C correctness
proof environment will also have to integrate other
verification tools such as static analyzers, and
perhaps even model checkers.

As mentioned before, on industrial size projects the
\assigns annotations can’t be manually provided
by users. A static analyzer front-end has to generate
them automatically. Some kinds of loop variants and
invariants can also be automatically generated, thus
sparing software engineers costly man.months of
boring work. Software engineers should only be in
charge of functional annotations and be released
from manually setting annotations that could result
from program control and data-flow analysis.

We wonder whether static analysis based pre-
processors may not have to be introduced beyond
mere assistance to setting non functional
annotations.

Since we are facing a complexity issue at the higher
levels of software integration, we wonder as well
whether a code slicer would be helpful. To reduce

the size of the verification conditions, one would
generate them only on slices of the code, one slice
per annotation.

Of course, such an approach has major drawbacks,
especially if one envisions to use these techniques in
D0178-compliant processes. We definitely hope that
the new Caduceus memory model will solve the v.c
size explosion problem. If not, we would need to
resort to a program slicer.

We also had a look at other techniques to cope with
software complexity, such as pre-processing the
code by predicate abstraction techniques [2][7] and
then using model checkers on the abstracted model.
We will investigate such techniques in case of failure
of the theorem proving approach, or later as an
additional mean of enhancing productivity in formal
verification of hand-coded software, especially for
temporal properties.

5. Conclusion

We have discussed an on-going attempt to prove
about 350 safety properties on a 70+Kloc manually
written C program, featuring many aliases and
pointer issues.

We started with Caveat by 2003 and then moved to
Caduceus by mid-2004, because its memory model
could handle true aliases that Caveat could not at
that time. It was the first release of Caduceus, which
was still in its infancy.

Although we used two theorem provers, with great
support by their development teams, and devoted a
1,5 m.y effort to the project at Dassault, we still did
not manage to achieve our goal, 35 years after
Hoare’s seminal paper [12],

We are still facing scalability issues. However we
hope to solve them in the next few months thanks to
major modifications in Caduceus’ C memory model.
We have obtained so far limited but encouraging
results, therefore we remain confident in the
feasibility of our project.

Once the five properties are proved at the main level
for one parameter, we will face a productivity issue.

In some sense, the overall verification project
consists in 70 similar verification sub-projects: the
same five safety properties have to be proved on 70
different but similar parts of the program (one per
voted sensor parameter). We would like not to spend
70 times the effort spent on the five first properties
for the first parameter.

Failure rates and strategies of automated deduction
tools, Coq tactics and tacticals like any other kind of
automation tool, will have to be tuned carefully to
take advantage of the structure and similarities of the
code parts, and thus spare a significant amount of

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

verification effort. True feasibility will be established
once the 350 properties over the 70 parameters are
proved within a 1 to 3 m.y effort.

By then, the industrial maturity of the tools, their
integration in some of our current processes and
D0178 related issues will be at stake.

6. Acknowledgement

The authors are grateful to P. Baudin, J. Raguideau,
D. Schoen, J.C Filliâtre and C. Marché for their
reactivity and technical support for the last two
years.

7. References

[1] Behm P., Benoit P., Faivre A., Meynadier J-M :
"Météor : A successful application of B in a Large
Project", FM99 - Formal Methods, (Toulouse,
France), 1999 LNCS 1708, Springer Verlag p369-
388.

 [2] Thomas Ball, Rupak Majumdar, Todd Millstein,
Sriram K. Rajamani, Automatic predicate
abstraction of C programs, Volume 36, Issue 5,
ACM Press New York, NY, USA, May 2001.

[3] P. Baudin, A. Pacalet, J. Raguideau, D. Schoen
and N. Williams, "CAVEAT: A Tool for Software
Validation", International Conference on
Dependable Systems and Networks DSN 2002,
Washington D.C., USA, June 2002.

[4] Gérard Berry, Amar Bouali, Xavier Fornari,
Emmanuel Ledinot, Eric Nassor, Robert de
Simone, “Esterel: a formal method applied to
avionic software development”, Science of
Computer Programming, v.36 n.1, p.5-25,
Jan.1.2000

[5] http://caduceus.lri.fr

[6] http://www-list.cea.fr

[7] Edmund Clarke, Daniel Kroening, Natasha
Sharygina, Karen Yorav, Predicate Abstraction of
ANSI-C Programs Using SAT, Formal Methods in
System Design, v.25 n.2-3, p.105-127, September-
November 2004.

[8] http://coq.inria.fr

[9] Patrick Cousot, Radhia Cousot, “Abstract
interpretation: a unified lattice model for static
analysis of programs by construction or
approximation of fixpoints”, Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, p.238-252, January 17-
19, 1977, Los Angeles, California.

[10] Filliâtre J.C. “Preuves de programmes impératifs en
théorie des types", Thèse de l’Université Paris Sud-
Orsay, juillet 1999.

[11] http://www.loria.fr/equipes/cassis/softwares/haRVey

[12] C. A. R. Hoare, “An axiomatic basis for computer
programming”, Volume 12 , Issue 10, p576 - 580,
ACM Press New York, NY, USA October 1969.

[13] Hoare C. A. R., Jifeng H. : "Unifying Theories of
Programming", Prentice Hall, 1998.

[14] http://www-sop.inria.fr/everest/soft/Jack

[15] D. Detlefs, G. Nelson, and J. Saxe. Simplify
theorem prover - http://
research.compaq.com/src/esc/simplify.html.

[16] http://why.lri.fr

[17] Yann Le Biannic, Eric Nassor, Sylvain Dissoubray,
Emmanuel Ledinot, « Spécification Objet UML de
logiciels temps-réel ». Proceedings de la
conférence Real Time Systems, Paris 28-30 mars
2000.

8. Glossary

CEA Commissariat à l’Energie Atomique
FCS Flight Control System
IDE Integrated Development Environment
LHS Left Hand Side
LRI Laboratoire de Recherche en Informatique
MDE Model Driven Engineering
p.o proof obligation
RHS Right Hand Side
UML Unified Modeling Language
v.c verification condition
SW Software
WP Weakest Precondition

