A V Sanchez

O R Polo

O L Gomez

M K Revuelta

S S Prieto

D M Luna

EDROOM: a free tool for the UML2

Keywords: Real Time Software Embedded System, Components, Object Oriented Modelling

come L'archive ouverte pluridisciplinaire

Introduction

The Embedded Real Time systems are generally complex systems that must handle a set of events with prefixed time constraints. Often, the systems must also satisfied other requirements related with the limitation of resources: targets based on low consumption microcontrollers or limitation in the memory banks are common requirements in these kind of systems. Because of these characteristics, specific solutions are often adopted in the development of embedded real time systems: • Use of tiny real time kernels, following the POSIX 1003.13 specification [START_REF]Standardized Application Environment Profile -POSIX real time application support (aep)[END_REF]. They fit well with their requirements and its use is broadly extended.

• Use of Embedded C ++ [START_REF] Plauger | Embedded C++: An overview[END_REF]. It offers the benefits of the object oriented languages but withot the overload in time and size of the Standard C++. In 1988, Stankovic [10] published a paper that pointed to the main problems of real time system development. One of the most relevant was the lack of use of methodologies for constructing them. In the same line, Zalewsky [START_REF] Zalewski | Real-Time Software Architectures and Design Patterns: Fundamental Concepts and Their Consequences[END_REF] describe how methodology based CASE tools can improve the development process of real-time systems. A key point of these tools is that they must integrate automatic code generation in order to avoid the misunderstanding of the graphical design during the codification phase. However, the use of computer assisted graphical modelling and automatic code generation is often not considered for a variety of reasons: sometimes they are too expensive or the learning curve to obtain benefits is large, sometimes it does not fit well with the required target or the generated code exceed the desired size. In this paper we present the adaptation of a free tool, known as EDROOM [START_REF] Polo | ROOM Model Based Automatic Code Generator for Real Time Control Systems[END_REF], to develop real time software embedded systems. EDROOM is inspired on the ROOM [START_REF] Selic | Real-Time Object Oriented Modelling[END_REF] modelling language and provides graphical modelling and automatic Embedded C++ code generation. The generated code is supported over a EDROOM services library that has been redesigned to run on a tiny real time kernel. This library has a two level structure with an extremely thin kernel interface in order to facility the port to any kernel. The interface specification is provided with a group of code test bench to validate the ports. Other improvement added to EDROOM is the static control of all memory resources in order to completely avoid the dynamic allocation. As a result of all these new features, EDROOM is now a cross multiplatform tool suitable for developing real time embedded systems using Embedded C++ and tiny real time kernels. EDROOM is easy to use due to its extremely simple graphical notation and the few number of different service primitives that the developer must invoke. Finally, It is worth to point up that EDROOM, as is based on ROOM, is compliant with the new UML2 [11] graphical notation for component based system design and hierarchical behaviour. In the following four sections the whole information is explained in detail. In the first one the ROOM design methodology is summarized. The second introduces the EDROOM tool and explains the fundaments of its new features. The forth shows the test bench to validate the service library port to any architecture. Finally the last section presents the conclusions.

ROOM

ROOM is a formalism for modelling real time systems using the object oriented paradigm. ROOM lets us describe the structure, communication and behaviour of the real time system using diagrams. The encapsulated component based structure of ROOM work as cluster of completely independent entities that send and received messages through their ports. The code added in their behaviour is blind of what is behind the ports so none dependency between them is maintained.

EDROOM

EDROOM basic functionality

The EDROOM was thought as a CASE tool for real time systems. Its objective was to facilite the developers work supporting a methodology based on a graphical modelling language. The ROOM formalism was taken as a reference, but the number of elements of the sintaxis has been minimized in order to make it easy to use. EDROOM, on the other hand, is compliant with the new UML2 graphical notation for component based system design and hierarchical behaviour. EDROOM includes a graphic editor to define the multilevel structure of the model and the behaviour of its components. It is capable to generate automatically real time control code starting from a graphical model of the system. The figure 4 shows part of the structure of a model, made with EDROOM, that includes 5 components and their interconnections. The behaviour of the component classes are also defined in a graphical way. The figure 5 shows an example of the behaviour edited with EDROOM.

Only two kind of graphical diagrams, the structural view (figures 4) and the behavioural view (figure 5) are used in the EDROOM model definition. This simplicity reduces the learning curve and make easy understand the created models. EDROOM provide forms to define communication protocols, and allows to instanciate their asociated ports using a drag and drop mechanism. Finally, it lets the developer integrate the detail level implementation in the behavioural view in order to request the communication, timing, interrupt, memory and scheduling services. After cover all the project phases, the generated source code is compiled and linked with the EDROOM service library, that implements the communication, timing, memory, interrupt and scheduling services in the final target. This library has a two layer structure that makes easy the port to any RTOS. The upper one is platform independent and It offers the EDROOM services to the automatically generated code. The lower, on the other hand, is platform dependent and requires the services directly to the RTOS. It also includes only five basic primitive class that must be implemented for the new RTOS: Pr_Task, Pr_Semaphore, Pr_Time and Pr_IRQ_Event, Pr_IRQ_Manager. The figure 6 shows the two layers structure of the virtual machine Figure 6: Two layer structure of the EDROOM Service Library.

!

EDROOM runs on Ms-Windows, and it works as a cross multiplatform tool suitable for developing real time embedded systems. The generated source code EDROOM service library is supported by several real time kernels (RTKernel, CMX, RTAI,...) and it is flexible to fit to any others. The component classes defined in one model can be migrated to other design without effort, only with a drag and drop action. This facility joint to the multiplatform code generation, supported by the corresponding EDROOM service library, makes possible the creation of fully platform independent and highly reusable components.

New features on EDROOM for developing embedded real time systems

The EDROOM service library has been redesigned to be Embedded C++ compliant. The use of templates has been eliminated and no multiple inheritance is employed. The exception handling, also, has been established as optional.

All the memory management has been redesigned to be statically predefined without the use of dynamic memory allocation. The EDROOM service implements the component message queues from static data pools and emulates their dynamic behaviour. The data attached to the messages are also allocated from pools whose dimensions are defined by the user in the behaviour view. Both kind of pools are managed in a tranparent way for the EDROOM service and it is not necessary the user be worried to deallocated them. The high level primitives exported for the EDROOM service has been reduced to 10 in order to make the modelling task as simple as possible. Finally, the structure view provided a context menu to fix the dimension of each component stack and its message queue.

EDROOM experience

EDROOM has been employed during several years by our research group in the development of real time systems. The most relevant aplications has been the vertical aceleration control system of a fast ferry replica [START_REF] Polo | Control Code Generator used for Control Experiments in Ship Scale Model[END_REF] and the on-board software for the first Spanish nano-satellite named NANOSAT. This satellite was taken with it four experiments through wich I.N.T.A. seeks to confirm the value of various new technologies. All the on-board software was coded with the EDROOM tool running under the CMX [START_REF] Cmx | [END_REF] operating system on a 68332 hardware platform. The new feactures of EDROOM has been essential to meet the memory footprint requirement (less than 250KB). The EC++ generated code and the use of a tiny real time kernel as CMX (10 KB to provide the basic services to the EDROOM library) have thrown satisfactory results with a footprint of 160KB. Moreover, due to the graphical modelling characteristic has been possible to carry out software modifications in a very short time, which has been very important during the test phase.

EDROOM Test Suite

It is important to ensure the correct EDROOM functionality for each possible real time operating system (RTOS) targets. In order to facilitate the EDROOM port to another operating system the tool is furnished with two sets of code test benches. The EDROOM functionality tests verify the correct tool operation on the target RTOS. The timing performance benchmarks measure basic timing parameters for the target RTOS.

EDROOM functionality tests

All the test are coded under the lower EDROOM layer. As we explain in the section 4, this layer exports the needed interface to support all the code generated by EDROOM. Because of the lower layer supports the generated code, the test must be correctly designed. Three test classes are been designed to check all the lower level primitives.

• Timing tests.

• Inter-process communication test.

• Semaphore tests.

Timing test.

The test checks all the timing primitives implemented by the lower layer. This test creates a task that makes some relative and absolute delays and invoke all the timing conversion methods. It also verifies that all operations are well performed. Inter-process communication test. The test checks all the primitives that are involve in the parameter send an receive operations. These are blocking operations so the test must also ensure that the process are blocked when perform one of this operations. Semaphore testing. The EDROOM lower layer implements two semaphore types. Binary semaphores and Resource semaphores. The former are only used for synchronisations between tasks. The later are used to allow mutual exclusion between tasks when accessing to the same resource. The mutual exclusion mechanism must ensure that every task requesting a certain resource wait as long as it takes for the task that owns the resource to release it, no matter what the priorities of the tasks. This constraint can be fulfilled by the priority inversion nightmare. Two tests are been developed to check both the binary semaphore and resource semaphore interfaces. The first verifies the blocking and non-blocking binary semaphore operations. The second, provokes several situations in which priority inversion must appear by creating some tasks that change their priorities and request some resources.

Timing performance benchmarks

With the before test suite the EDROOM tool is distributed with a set of tests to carry out some RTOS timing parameters such as (1) task switch latency and (2) interrupt latency. This test are also important because of the real-time constraints of the application developed with EDROOM must be accomplished and the before timing parameters must be taken into account in order to the correct real-time application design. Task switch latency. The test measurement interpretation is the time taken by the RTOS to suspend one task and resume execution within another. The test carries out this measurement by basing the test in the Hbench-OS benchmark suite [START_REF] Brown | Operating System Benchmarking in the Wake of Lmbench: A case study of performance of NetBSD on the Intel x86 Architecture[END_REF]. This benchmark synchronising all the task switch with a token pass mechanism through a pipe. Because of the lower EDROOM layer does not support pipes, the tasks synchronisation is made with the use of binary semaphores. Interrupt latency. The time measure in this test is the ones taken by the processor to respond to an interrupt request from a device seeking service. The test implementation is quite difficult and some implementations are based on architecture characteristics such as forcing interrupt. In case of the target architecture does not allow this kind of facilities the must be implemented through an external device interruption or a timer programmed interruption.

Conclusion

The free tool EDROOM has been adapted to develop real time software embedded system. Its automatic code generator has been modified to work with EC++ and tiny real time kernels in the sense of POSIX 1003.13. The new version of EDROOM is a cross development multiplatform generation tool and includes facilities for static control of all resources in order to completely avoid the use of dynamic memory. EDROOM is compliant with the new UML2 graphical notation for component based system design and hierarchical behaviour and it has been used in the software development of a small satellite (NANOSAT-01) which is fully functional nowadays. The tool is free distributed in conjunction with a group of code test bench that can be used to validate any port to another architecture and measure its timing performance.

Glossary

 The structure diagrams represent each reactive component (called actor in ROOM) using a box. The components can communicate between them only by message passing through their ports. This port based communication is compliant with the new UML2 graphical notation for component based software modelling. The components reactive behaviour is defined by means of a kind of state-chart, based on the Statecharts introduced by Harel [4]. The received messages lead the trigger of the transitions between the states. The figure 1 represents two components connected by ports used for messages interchange. Each component handle the received messages in accordance with its state chart.

Figure 1 :

 1 Figure 1: Scheme of state-chart reactive component communication based in message passing through ports.

Figure 2 :

 2 Figure 2: Multilevel structure of a ROOM model.

Figure 3 :

 3 Figure 3: Multilevel behaviour in a ROOM model.

Figure 4 :

 4 Figure 4: Component class of a ROOM model edited with EDROOM

Figure 5 :

 5 Figure 5: ROOMChart that describes the behaviour of a component class.