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 and the evolving ASAAC Standards [Ref 2] this paper will elaborate currently available support for documenting the architecture of: highly distributed real-time systems, the communication mechanisms between applications or components and capturing the properties required to indicate how they are scheduled. This paper will examine the exploitation of this design information to address, amongst others, the safety assessment of a single configuration (a set of applications or components), the assessment of run-time reconfigurations, the generation of 'blueprint' files to configure the Hardware, and the Operating System, and to manage the run-time distribution (and re-distribution) of applications. In essence this paper will elaborate a method of creating a single-source repository for all the design information (building on the Unified Modelling Language UML [6] and Systems Modelling Language [7] Standards) fit for the demanding requirements for IMS.

Federated or Networked Architectures?

It is useful to start with a definition of terms, specifically, architectures. "The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible properties of those elements, and the relationships among them." [START_REF]Software Architecture in Practice[END_REF] To elaborate further, software architectures are a complete abstract representation of a system-wide solution. Software architectures contain collaborating software artefacts that are essential both to the comprehension of the proposed solution (model) and the construction of the end product (executable). Software artefacts are defined in terms of their roles, responsibilities, connectivity, interfaces, behaviour and persistence with other artefacts within the same architecture. Software architectures also define the control of concurrency and eventual deployment of the software artefacts (especially within multithreaded n-tier distributed solutions). Software architectures may contain in part, or in totality, axiomatic solutions -patterns, frameworks and components -to localized elements, or the whole problem. Software architectures may exhibit idiomatic constraints (technical and non-technical) peculiar to the problem-domain (implementation language, re-use criteria, safety-criticality, robustness, production time, cost and availability). This definition does presume the existence of (at least one) other architectural model, the physical architecture (hardware and its connectivity) upon which the software artefacts, are deployed. Basically, the software architecture is the solution to the problem from the software perspective, the physical architecture being the solution to the problem from the hardware perspective. Federated Architectures. Although predominantly applied to avionics systems, the overarching philosophies behind IMS, supported by both ARINC-653 and ASAAC, are applicable to a much wider domain of systems and software development. Fundamentally IMS is a logical progression from federated system architectures with centralized control to wholly modular system architectures. 1, depicts a number of Line Replaceable Units (LRU's) (e.g. a Radar, an Inertial Navigation Unit (INU)) forming a federated union, typically via a set of communication networks (e.g. MIL-STD-1553B [START_REF]Interface Standard for Digital Time Division Command/Response Multiplex Data Bus[END_REF] data bus) with a central LRU (e.g. a Mission Computer) that manages and coordinates the federated union. Although the majority of avionics systems in service today employ this architecture it is not without its problems. Replacing a LRU is not as simple as its name suggests. Although standards exist for interface specifications for some LRU's (e.g. the SNU-84 Specification for INU data formats), typically suppliers of LRU's enhance the capabilities and therefore extend the interface specification. For example, by adding new messages and data formats or a different physical connector beyond that called for in the standard 1 . If a systems engineer wishes to make use of these 'nonstandard' capabilities, the simple act of replacing the LRU is compounded by the changes required to the Mission Computer, in this example, to interpret new messages and changes to the physical connector (and internal wiring). Even in this very simple example, the high degree of coupling between the Application and the Interface to the LRU's; can adversely impact the cost of maintaining existing systems, maintenance, hardware obsolescence and the propensity to use new capabilities defined for an LRU,. In some cases, due to the long lead times involved, this can also impact the initial development of the system due to re-work 2 . [START_REF]CORBA Specification[END_REF]). This architecture handles failure of processing elements, with the OSL re-configuring the distribution of applications across the remaining processing elements. In future implementations, the AL could be re-configured (without a failure)swapping one set of applications for another from a list of available configurations -where the new set of applications may exhibit a different set of capabilities provided to the end-user. For example, one configuration may exist to support a combat aircraft during a surveillance role and this may be swappedout for a different set of applications to support an air-to-air combat role. So, re-configurations are not just to address the issue of failure, they are also required for normal use. In an IMS, the blueprints are of paramount importance. Get this wrong and the whole system may catastrophically fail. Model Driven Architecture. These problems are the many of the drivers behind the Model Driven Architecture (MDA) initiative by the Object Management Group (OMG) who oversee the Unified Modelling Language (UML). "Model-Driven Architecture (MDA) is an approach to the full lifecycle integration and interoperability of enterprise systems comprised of software, hardware, humans, and business practices." [START_REF]Model-Driven Architecture and Integration Opportunities and Challenges Version 1.1 Desmond DSouza[END_REF] At the heart of the MDA are three models: the Platform Independent Model, (PIM), The Platform Specific Model (PSM), and the Generated Application. The Platform Independent Model expresses the system intent independently of any implementation technology. Regardless of the platform on which the system is implemented, this model will be valid. It will comprise the many different system viewpoints described earlier. The Platform Specific Model is created from the PIM and expresses functionality in a technology-dependent fashion.

Finally, the Generated Application is created from the PSM. To Continue. The rest of this paper will concentrate on the design and documentation of the AL, but also looks at the OSL to elaborate how UML and SysML can be used to capture the information required to construct an IMS, and more importantly how to capture the information required for validating and generating the run-time blueprints. Work is currently underway to perform verification and validation of blueprints and, as will be described here, the bulk of the information for these activities can be captured within a UML model.

Modelling IMS Application Capabilities

No guidance is given for the 'role' of an individual application that, collectively within a configuration, is both maintainable and performance-efficient. Guidance is given to ensure that some form of health monitoring, security management, fault management and re-configuration for the OSL exists. The selection of application partitions is left up to the designers of the application layer. It is suggested here that the applications are identified in the same way as 'objects' in an object oriented (OO) design.

Given the strong parallels between IMS architecture and the OO paradigm, it seems that the UML would be an obvious way of visualising an IMS. More simplistic notations being inferior to the UML in expressing the multiple perspectives required to conceptualise a complex network of interrelationships between applications, processes and threads to support information and control flow throughout a dynamically distributed and layered architecture. Further to this, the ability to extend the UML notation (through profiles) ensures that IMSspecific properties can be captured in one place and maintained within a single-source repository. Profiles. Profiles are the means by which users can customize UML for specific applications and domains. A UML profile is a coherent set of stereotypes, constraints, tag definitions, and tagged values, defined for specific purposes. [START_REF]UML 2.0 Specification[END_REF]. If we group common requirements stereotypes together into a collection, we can create a requirements profile. An IMS profile is what we are proposing for facilitating the goals defined in this paper. Conflicting Drivers. There are two, at times, conflicting heuristics at work during the development of an IMS application layer. The first is to make the 'role' of an application unique, such that it does one thing well. This also facilitates maintenance making it easier to identify where a change should be made when a role of the carrier vehicle is changed. Furthermore, when re-configurations are requested 'roles' are easier to switch-in and out compared to functionality that may be highly coupled with external LRU's. The second is that each application executes as its own executable thread (or pseudo thread). Time must be allocated for elaboration, and context switching such that it does not adversely affect the overall performance of the configuration at run-time 3 . Additionally, an application may contain many processes and each process may contain many threads. The ability to capture the characteristic properties of all threads within an application is essential: UML contains an ideal construct for defining goals for entities -Use Cases. UML Use Cases. A UML Use Case is a means of specifying the usage of a system. Use Cases can be structured to represent the usage of each layer within the layered architecture. "The Use Case construct is used to define the behaviour of a system or other semantic entity without revealing the entity's internal structure. Each Use Case specifies a sequence of actions including variants that the entity can perform interacting with actors of the entity." [START_REF]UML 2.0 Specification[END_REF]. An Actor is an entity which is eternal to the system, which interacts with the system, but is not a part of the system. Figure 3 

Modelling the Dynamics of an Application

Figure 6 shows a UML Class diagram depicting an application that contains a Process that contains a Thread. The Thread inherits from an Abstract Thread, which exists to manage the three APOS packages (Thread Management, Communications and Synchronisation) from which it constructs its listed interface operations. Further to the static architecture depicted in the Class diagram, Figure 6 also includes the State machine for the Abstract Thread showing how it changes state as a result of calls to the operations defined on its interface. Quality of service characteristics (timing, deadlines etc.) for operations defined on the Abstract Thread Class can be captured within the model. These quality of service properties are inherited by all threads, for example the time to transit from the Dormant state to the Ready state is the same for all threads in the process and is defined only once in the model.

Application Integration

The AL is composed of a set of logical partitions where each partition performs a specific role or set of functions and may be composed of an integration of lower-level processes. For example, one partition may exist to perform utility numerical calculations (e.g. implementing a direction cosine matrix for axis transformations) and another may exist to perform autopilot functions. So as to ensure each partition can be readily re-used this paper explores the idea of wrapping the functional software of each partition into a partition harness. In effect, a partition harness will standardise the provided and required interfaces for each partition and enable each partition to be viewed as a black box i.e. the complexity of any internal software is hidden behind its interface. It must be stressed that this idea is not new; Hatley & Pirbhai [START_REF]Strategies for Real-time System Specifications[END_REF] expounded such a notion back in the late 1980's. Figure 7 shows a UML Structured Class diagram depicting the architecture of a partition harness including three representative processes: There are no restrictions (other than the run-time constraint for the overall partition) on what these processes can and cannot do. They may for example, be concurrently executing threads or alternatively, a serialised processingchain. The Maintenance, Self-Test and Redundancy Management monitor the internal health of the partition. Although the OSL will identify any overrun of hard execution deadlines, the partition may also identify localised errors (constraint errors etc.) that can be captured and handled within the partition. This part of the partition may output diagnostic 4 Although not adopted wholesale amongst IMS practitioners, it is suggested here that SI Units be utilised at this point as it makes the reuse and maintenance of the algorithms within the processes (P1, P2 and P3) far easier.

information to the OSL to facilitate any redeployment of the partition subject to continuous errors being reported. Having said all this, Figure 7 is devoid of any information required to construct a blueprint and serves as an example of the nondomain-specific nature of the UML.

Extending the UML for IMS and the Software Blueprint

Unlike natural languages such as English, which are extended by loan words, semantic changes to existing words and very rarely by new words being added, the UML is a wholly extensible language through a mechanism called stereotyping. A stereotype is applied to a standard UML modelelement to make subtle semantic changes to the standard UML definition of the model-element. Additional properties can be added to the stereotype through what are known as Tag Definitions. When a stereotype is applied to a model-element its Tag Definitions are given values (hence the term Tag Values). In the above example, additional information is required about each instance of the Virtual Channels (Input1 & 2 and Output1 & 2). This includes, for example, how much data is being transferred, the start address of the data, whether the channel is 'on processor' (facilitating communication between two partitions on the same processing element), or 'off processor' (facilitating communication between two partitions on separate processing elements), and any other information required (by the OSL) for monitoring the health of the channel (e.g. corrupt hardware). When we take a look at the partition harness itself, there are also additional properties to be captured for the blueprint. For example, the scheduling period of the partition, the worst-case execution time, and whether the scheduling deadline is a hard (must complete on time) or soft (can overrun) constraint. Yet again, this information about the partition can be captured using a stereotype. Figure 8 shows how Stereotypes and their corresponding Tag Definitions are defined and also how they are applied to the Input1 Port on Figure 7 to complete the capture of information (accessible via the properties editor within ARTiSAN's Real-time Studio): From the information captured in the tag values of the stereotypes it is possible to automatically construct a software blueprint for each partition. Designers of the processes within the application must honour the constraints specified by these tag values during the design process i.e. they act as design constraints.

Hardware Topology and The Hardware Blueprint

The SysML (Systems Modelling Language) was created to enable Systems Engineers to use a standardised notation specifically for their needs. All the model-elements on the following two figures can be stereotyped (as above) to capture the information specific to the hardware topology and summarily extracted from the model to construct the Hardware Blueprint. Because the nodes (N1 to N6) in Figure 9 are typed by the same underlying UML class, they all inherit the same properties. Therefore all the Processing Elements in Figure 5 contain the same decomposition as depicted here in Figure 10. This allows us to define components, and reuse them throughout the system, wherever necessary.

Avionics

possible re-configurations. Not only can the UML be used to construct and maintain an IMS, it can also be used as the basis for the creation and maintenance of a safety case.

Conclusions

For over ten years the initiatives, encompassed today in both ARINC-653 and ASAAC, have been carefully evolving. Other technological advances in hardware, software and in the modelling languages used to document and analyse these types of systems have also evolved. Over 10-years ago, Object Modelling Technique (OMT) [ Ref 10] was used by some to document and analyse these systems. In 1996 OMT was embodied within the UML and its extension, SysML. The SysML and the UML are standardised notations for documenting systems and software. However, far from being languages with fixed semantics, they are extensible, to encompass domain-specific nomenclature.

Although intended as a vehicle for documenting the system under development, it should not be forgotten that information within a model is accessible to many other forms of analysis. An IMS Profile built on the UML and the SysML can capture the specific properties of the system under construction facilitating specialist activities such as performance and schedulability analysis, safety assessment. This is on top of the traditional purpose of the UML and the SysML that being to visualise, conceptualise and document the system under construction. Rather than using many tools to capture design information, all IMS design information can be captured within a single-source repository of a UML model. Given the complexity of interrelationships that exist within a typical IMS, the deployment of the UML for IMS must be interpreted as a positive advantage: 
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 99 Figure 9: Topology of Processing Elements (SysML Assembly Diagram) Figure 9, a SysML Structured Class Diagram, depicts the overall topology of all hardware nodes within the Avionic System whereas Figure 10 depicts the internal structure of a single hardware node.Because the nodes (N1 to N6) in Figure9are typed by the same underlying UML class, they all inherit the same properties. Therefore all the Processing Elements in Figure5contain the same decomposition as depicted here in Figure10. This allows us to define components, and reuse them throughout the system, wherever necessary.
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	High-level Use Cases (such as 'Execute Mission')					
	quite obviously require some refinement into lower-					
	level Use Cases shown here in Figure 4.					
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	Use Cases make very few (if any) assumptions					
	about underlying architecture and are therefore					
	ideally suited to capture 'capabilities'. Yet again					
	further refinement is required to elaborate the					
	sequence (or invariants) of actions required to					
	deliver the 'capability'. It is at this point that the					
	logical entities (Applications, Processes etc.) are					
	linked together to form a network. This is typically					
	done in a Use Case by Use Case manner with the					
	underlying model repository managing the overall					
	interconnections between the logical entities. UML					
	interaction diagrams are used to elaborate the					
	behaviour of Use Cases. These include activity					
	diagrams, communication diagrams, (formerly called					
	collaboration diagrams and renamed in UML 2.0),					
	and sequence diagrams. Figure 5 depicts a					
	sequence diagram. Properties can be captured for					
	each interaction, such as response duration and					
	detection lag. Timing budgets for a set of interactions					
	can also be documented. This enables a preliminary					
	assessment of overall timing requirements for the					
	user-level capability.									

This should not be read as a failing, standards must be allowed to evolve to encompass technological advances. Standards should be regarded as an expression of the currently accepted state of the art.

The author is acutely aware of this problem having worked on a project where, due to a supplier removing a specific processor from their product range, the hardware had to be changed very late in the project.

It is duly noted here that an application can contain a number of processes and that each process can be multi-threaded. However, the OSL is only interested in scheduling the application; it is left up to the internal scheduling of the application to determine thread execution within given constraints.
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As well as stereotyping each processing element and its internal components, each link between nodes (and ports) can be stereotyped to capture further quality of service properties relating to bandwidth, speed, protocol, etc. Stereotypes differ from inheritance hierarchies as they can apply to both the class itself as well as the instance. In addition, unique tag values can be specified for each stereotype application. This is especially useful for the Assembly Diagram, where each node (part, port, etc.) will have unique characteristics.

Configuration and Run-time Blueprints

A configuration blueprint links the hardware blueprint with the software blueprint and defines a performance-optimal distribution of partitions amongst the available hardware nodes. Given that all the information required to construct the configuration blueprint now exists within the UML model, it is not beyond the realms of possibility to use this information to assess a set of possible configurations. Taking this to its natural conclusion, assessment can also be made for all possible permutations of configurations and thereby determine the sub-set of all possible configurations that deliver the overall system performance.

Facilitating the Safety Assessment and Audit

Due to the distributed nature of applications and the constraints within which they must conform -coupled with the possibility of a reconfiguration -the safety assessment of an IMS is of paramount importance. Should the algorithm, within the OSL, that determines application deployment derive a suboptimal solution, the whole system may fail as the OSL repeatedly struggles to find the optimal reconfiguration:

We have been discussing static blueprints that capture the performance boundaries within which an individual application must execute (the software blueprint) and the permissible collection of applications that constitute a configuration (the configuration blueprint). Bearing in mind that an IMS can be re-configured at run-time (to cater with failures and/or mission changes), an emulation of this Run-time Blueprint must be created and analysed to assess the suitability of all permutations of re-configurations. It has been suggested [Ref 1] that some form of Genetic Algorithm [Ref 8] be implemented to assess the optimal re-configuration; to date this is work in progress. Given that safety is the responsibility of all project engineers and not just a Safety Assessor, and that properties traditionally unrelated to a safety case are now an integral part of a UML model, a single-source repository of all this information is essential to facilitate a rapid assessment of the required applications within all