Andreas Korff
email: andreas.korff@artisansw.com

AUTOSAR and SysML -A Natural Fit?

Keywords: AUTOSAR, SysML, Model-based Development, Domain-specific Modeling, Visual Modeling, UML

published or not. The documents may come

Current Situation

All current functional implementation solutions for automotive electrical and electronic development are proprietary. It is therefore quite difficult to exchange functions and applications between automotive OEMs and suppliers. If this type of development process structure continues, the foreseeable future growth in functional complexity will result in the need to invest increasingly more manpower while sacrificing complete control of the development process.

Modern cars have reached an exceptionally high level of functional complexity. Driven by new legal safety and environmental regulations, in addition to customer feature demands, automotive functionality requires ever more complex software and electronic components, which must be very closely coupled in a network structure to perform completely and correctly.

AUTOSAR

The AUTOSAR Initiative

In July 2003 the AUTOSAR (AUTomotive Open System ARchitecture) partnership was formally launched by its core partners: BMW Group, Bosch, Continental, DaimlerChrysler, Siemens VDO and Volkswagen. Afterwards Ford Motor Company, General Motors, PSA Peugeot Citroën and Toyota Motor Company become core partners as well. Since inception, many other OEMs and automotive suppliers have joined AUTOSAR as premium members. Core and premium members assign resources to the different working groups within AUTOSAR. Associate members are allowed to view finalized documents in advance to the public. Development members can be nominated to participate in the AUTOSAR working groups.

Objectives

The AUTOSAR initiative will define standards, on which the implementation of future automotive applications will be based. By following these standards, it will be possible to manage the growing E/E complexity of the development of automotive functionality. This will also result in greater flexibility for product maintenance, enhancements and updates. The solutions based on the AUTOSAR approach will be scalable in and across product lines. In addition, the exchange of functions between OEMs and suppliers will be possible. All domain areas in automotive will be addressed: Powertrain, Chassis, Safety, Multimedia/Telematics, Body/Comfort and Human Machine Interface. The automotive customer will therefore get cars of higher quality with more reliable electronic components.

Three main topics have been defined:

• A basic software core • Standardized functional interfaces and • Methods for software integration.

Technical Concept of AUTOSAR

Figure 1: The AUTOSAR Approach AUTOSAR will define a common software infrastructure based on standardized interfaces. This will include a standardization of different API's, resulting in the separability of the AUTOSAR software layers. An encapsulation of functional software components will be defined as well as the data types of the software components. In order to allow these software components to work, the software infrastructure including basic software modules will be identified and specified. These basic software modules will have standardized interfaces. Partitioning and defining the best resource usage will therefore be possible, while still allowing local optimisation to meet specific non-functional constraints.

Figure 2: The ECU Architecture

The AUTOSAR software architecture consists of a layered design: Figure 1 shows this as a UML Structure Diagram. Above the ECU-Hardware, the Basic Software provides services to the AUTOSAR Software Components. Inside the Basic Software, there are four different elements:

• The Services including RTOS services. Since the definition of an RTOS is not considered as a goal for AUTOSAR, existing RTOSes will be taken into account here. The basic Services also include communication functions for all relevant vehicle buses like FlexRay, CAN, MOST or LIN. • The Microcontroller abstraction which interfaces to the • ECU abstraction and • Complex Device Drivers, which allows direct access to Microcontroller-specific hardware, so complex sensors or actuators with specific functional and non-functional requirements can be implemented. The overall design concept in AUTOSAR is the separation of application and infrastructure. An application is formed by the connection of different AUTOSAR software components. An example is given in figure 3. As seen in the example, the AUTOSAR software component is the most important structural element. Similar to the UML 2 components, the AUTOSAR software components contain -here unique-ports to interact with their outside world. Also in AUTOSAR required and provided interfaces are defined. These are connected to the ports, which are either PPort when their interface provides data or services, or RPort when a interface is required. AUTOSAR goes beyond UML 2 to define interfaces as either "Sender-Receiver" or "Client-Server". A Sender-Receiver-Interface provides or requires data, whereas a Client-Server-Interface defines services. UML 2 stereotypes together with appropriate constraints are a promising way to support this. An example of a Client-Server connection is shown in Figure 4.

«AUTOSAR Software Component» client2 «AUTOSAR Software Component» server «AUTOSAR Software Component» client1 Service_requested «ClientServerInterface» Service_provided «ClientServerInterface» Service_requested «ClientServerInterface» Figure 4: Client-Server communication
The AUTOSAR sender-receiver communication always exchanges data asynchronously and in a non-blocking manner. New symbols can and should be used to quickly communicate this to those who read the diagrams. This is shown in figure 5. Note: Since the interface symbols "ball" and "socket" currently couldn't be replaced graphically, the synonym Interface dependencies defined within the UML have been used here. The size of an AUTOSAR software component is not defined. However, a software component is atomic, as such it cannot be divided and thus cannot run on several ECU's. In a UML model, this can be achieved by defining a 1:1 relationship between the software component and the appropriate ECU. Although an AUTOSAR software component is designed independently from the available infrastructure, its interface, functional and nonfunctional constraints must be described. Within AUTOSAR, the format and structure of the software component description has to follow the definitions of the so-called software component template. This guarantees that the description contains all the necessary information, such as the operations and attributes that the software component requires or provides to other components. In addition, the infrastructure requirements, the hardware resources needed, and specific implementation details to be followed, are specified in the software component description. If an AUTOSAR software component is implemented, this implementation is independent from the specific ECU (or the Microcontroller architecture within the ECU) to which the component is mapped. Even the software components that are needed to get the necessary data or functionality don't have to reside on the same ECU. Additionally it is possible to have multiple instances of the same software components running. There are specific AUTOSAR software components for sensors or actuators. These generally run on the ECU that the sensor or actuator is physically connected to, and encapsulate the physical nature of the sensor output or actuator input. The technical details of the ECU and its Microcontroller(s) are hidden as usual -the Sensor/Actuator software component depends on the sensor or actuator for which it is designed.

Virtual Functional Bus

In order to make AUTOSAR Software components relocatable, the concept of the Virtual Functional Bus (VFB) has been developed. Using software component descriptions as input, the VFB validates the interaction of all components and interfaces before software implementation. So the integration can be tested much earlier than today. Within the VFB, all necessary connectability between AUTOSAR Software Components is abstracted, independent from their future location in the vehicle. So if two components have to communicate, this can be specified even without the knowledge of the specific hardware on which these software components are running. Also the communication needs of an AUTOSAR Software Component are fulfilled within the VFB in an abstract manner (using its underlying layers like OS or hardware drivers).

Well-defined communication patterns within the VFB provide the abstract communication services. The realization within the different ECU's is done by the AUTOSAR Run-time Environment (RTE) after the onto the existing hardware. Within the RTE, the communication functionality is implemented in the Basic Software and its communication means. Figure 6, a graphically stereotyped UML composite structure diagram, shows the elements that can be connected via the VFB. Only the Complex Device Drivers and the ECU abstraction are specific to the Hardware used.

Technical Artifacts

In order to build up systems using the concepts of AUTOSAR, several artifacts have to be created. First every AUTOSAR Software Component will be described by its Software-Component Description. This is XML-based and includes detailed definitions of the ports, interfaces and connections between the Software Components. ECU descriptions, also in XML format, will describe the available resources. In addition, the System Constraint Description will give additional information about the constraints given by an already existing network architecture. This software to hardware mapping should be done with tool support.

UML 2.0 and its extension mechanism

When cross-referencing the ideas of UML and AUTOSAR, it is obvious that UML 2 and AUTOSAR use similar concepts, e.g. components, ports and interfaces, which are defined in the UML class model for composite structure diagrams. Therefore the UML 2 syntax can be used directly for the system description within AUTOSAR. However, some concepts in AUTOSAR require the adaptation of UML to fit to the AUTOSAR syntax. A UML Profile for AUTOSAR is necessary, which adds all AUTOSAR specific information and containers into UML 2. Some have been defined in the figures in this paper using the graphical adaptability of ARTiSAN Studio 6.0. Since the Meta model of AUTOSAR is based on the UML 2.0, the first step to make a UML tool like e.g. ARTiSAN Studio AUTOSAR-compliant is defining additions to UML specifically for AUTOSAR within an AUTOSAR Profile. Then developers can use a tool like ARTiSAN Studio to describe AUTOSAR compliant software by using the domain-specific terms and graphical elements. In order to support domain-specific modeling even further, it is necessary to be able to specify rules for modeling. This enables the user to avoid modeling errors from the beginning or helps him by adding e.g. AUTOSAR-specific elements or structures automatically to the manually edited model elements. ARTiSAN Studio 6.0 includes this capability by the possibility to add scripts to those UML stereotyped extensions, which can also be used to restrict the modeling activities to the connections and properties allowed in AUTOSAR.

SysML

The AUTOSAR structural definitions base on UML 2.0. In parallel, the OMG started a Request for Proposal in March 2003 to define a UML-based modeling language for Systems Engineering. Currently two teams, the SysML partners and the SysML Submission Team are working in parallel to meet the schedule to finalize the SysML specification by Q1 2006. The SysML is defined to be a graphical modeling language For Systems Engineering in response to the requirements developed by the OMG, INCOSE, and AP233. It re-uses a subset of UML 2.0 and add extensions to it, thus supporting the specification, analysis, design, verification and validation of a broad range of complex systems. The systems may include hardware, software, data, personnel, procedures, and facilities. SysML complements the UML 2, so both Systems Engineers using the SysML and Software Engineers working with UML 2.0 can seamlessly cooperate using the same graphical language with different characteristics.

«userModel» XYZ Model «metamodel» UML «metamodel» SysML «modelLibrary» SysML Profile «metamodel» MOF «import» «instanceOf» «instanceOf» «reuse» «instanceOf»

The SysML Profile Structure

In order to extend the UML 2, the SysML defines a SysML Profile. This is divided into several subpackages.

Figure 9: SysML Profile structure

The sub-profiles, stereotypes and tag definitions defined in the SysML Profile extend the existing meta model elements of UML 2.

SysML Graphical Notations

The In order to understand the focus of the SysML better, let's have a look on the new diagram types. They explain the gaps for systems engineering within the UML 2. This existing modelling language already incorporated very important structural modelling capabilities like structural sequences and composite structures. However, especially the ability to use and model requirements is essential for systems engineers. The frame itself represents a constraint block, the pins on the frame show parameters. In the constraint block there is the possibility to include other constraint blocks. The constraints can be linked to blocks. So flows are supported as well, i.e. flow properties, flow items and flow ports. The SysML definition for flows extends the UML 2 information flow. The activity diagrams are enhanced within the SysML to include the continuous item flows, so the behavior of elements are better and completely described.

Conclusion

The AUTOSAR initiative shows how domain-specific modeling for automotive modeling can be defined to standardize concepts, interfaces and services. This will be specified based on the UML 2.0 using a UML Profile for AUTOSAR. All necessary constructs for software components, system constraints and system definitions will be included. However, taking into account the generic systems engineering requirements for modeling complex systems, these can be used in automotive modeling as well. The SysML closes the gaps between systems and software engineering by streamlining and extending the UML 2 concepts to fit better for modeling systems of systems.

Figure 3 :

 3 Figure 3: Example application, consisting of connected software components

Figure 5 :

 5 Figure 5: Sender-Receiver communication

Figure 6 :

 6 Figure 6: Hardware Interaction

Figure 7 :

 7 Figure 7: Atomic Software Components and AUTOSAR Services connected to the Virtual Functional Bus

Figure 8 :

 8 Figure 8: Embedding of SysML and SysML models into UML 2.0 Since the work on SysML is not finalized yet, the concepts and ideas presented here contain the status of the on-going work today, in November 2005. They may change until the final SysML specification is released.

Figure 10 :

 10 Figure 10: SysML Diagram Taxonomy

Figure 13 :

 13 Figure 13: Constraint Block Example

 Figure 14: Activity Diagram Example

 SysML does not use all the thirteen diagram types defined in the UML 2.0. Instead it uses its own diagram taxonomy, where two new diagram types are introduced:

	• Requirement Diagram
	• Constraint Diagram
	Some structural diagram types are defined in a
	simpler way compared to the UML 2 to reflect
	systems engineering concepts better. Also some
	diagram type names have been changed.
				«Diagram Type»
				SysML Diagram
		«Diagram Type»	«new Diagram»	«Diagram Type»
		Structure Diagram	Requirements Diagram	Behavior Diagram
	«modified Diagram»	«modified Diagram»	Use Case Diagram	Timing Diagram
	Block Definition Diagram	Internal Block Diagram
			Instance Diagram	Sequence Diagram	State Machine Diagram
	«new Diagram»		
	Constraint Diagram		
			same as UML 2		«modified Diagram»
			Object Diagram		Activity Diagram
	Simplified	Parametric Diagram		
	Class Diagram	in SysML v0.9		
			Derived from UML 2.0
			Composite Structure Diagrams

 The UML 2 only uses eventbased modelling, which is enough for the software perspective. To build up a system also using the systems engineering perspective, it is additionally needed to be able to use e.g. physical equations.

	elements to describe requirements completely. This	systems modelling.	
	includes the requirements properties like e.g. name,				
	ID, requirement descriptions and others. Additional				
	the requirement dependencies like the fact that one				
	requirement is derived from others or a requirement				
	contains other requirements can be graphically				
	shown. The really new -and important-modelling				
	capability is that the requirements can be linked to				
	other modelling artefacts like system elements from				
	the system design or test cases. This is done using				
	stereotyped dependencies like <<verify>> for test				
	cases or <satisfy>> for design elements. The fact to				
	have all three perspectives, requirements, design				
	elements and tests, in one model will empower the				
	user to trace down any missing link between these				
	three worlds. If there is a requirement, which is not				
	satisfied by at least one design item or which does				
	not have a link to a defined test which can verify it,				
	this can be automatically analysed.						
	The next new concept within the SysML is the				
	notation of blocks. Similar to the UML 2 components,				
	the block are not restricted to software components.				
	They represent a module which can be at any level				
	in the system hierarchy, including external systems,				
	logical or physical subsystems, independent if				
	consisting of software and/or hardware. Blocks can				
	be used for black-box or white-box modelling.				
	Block definition diagrams are simplified class				
	diagrams from the UML 2. They use the composition				
	association, now between blocks.						
	def System Blocks									
	«block»	1	1	«block»				
	Tank	sink		Water System	req VehicleSystemRequirementsFlowDown		
	«flowPort» {in}	1	1	sourceFlow : Water	«reqDocument» MarketNeeds			VehicleSystemUseCases
	liquidIn : Liquid	source		sinkFlow : Water					
	«flowPort» {out} liquidOut : Liquid			1			«requirement» «trace»	«rationale» Ref: Statement of Work «trace»	UCD uc Driver	Drive Vehicle
							Vehicle System Specification	
				1	pump				
				«block» Pump	«requirement»	«requirement» R111	«satisfy»	Vehicle System Design
	«profile» SysML «profile» Blocks	«profile» Activities		«flowPort» {in} pumpedIn «flowPort» {out} pumpedOut	«profile» ModelElements	VehicleAcceleration «requirement» {id# = 102; txt = System shall accelerate from 0 -	id# txt System shall ... 111 «deriveReq»	id# = 111	«block» Vehicle 1 1 1	1	brake
	«modelLibrary» Units	«modelLibrary» ControlValues					60 mph in lest than 8 seconds under the specified ...		«rationale»		«block» Power Train	«block» Brakes
									Ref: Trade Study
	Figure 12: Block Definition Diagram	Power Subsystem Specification «requirement»	«satisfy»	Power Subsystem Design (Alternative=V6)
	«profile» Flows The internal block diagrams are stereotyped «profile» ConstraintBlocks «profile» Allocations «profile» Requirements composite structure diagrams. The compositions	«requirement» {id# = 337}	«requirement» {id# = 340}	
	already modelled in the block definition diagrams are	R337		R340	
	re-used. However, the internal connectivity is added in this diagram form.	«verify» Engine Horsepower Test «testCase»		
	The next new diagram within the current SysML	Figure 11: Requirements Diagram
	definition is the constraint diagram. Within the				
	version 0.9 of the SysML profile, it was called parametric diagram. The reason behind this addition to the UML 2 is the necessity to include time-	Within automotive development, the success of requirements management tools show the big need of this engineering perspective. Within the SysML, it
	continuous modelling and physical equations into the	will be possible to use a standardized set of profile

Glossary