J.-P Bodeveix 
  
P Dissaux 
email: pierre.dissaux@tni-world.com
  
M Filali 
  
P Farail 
  
P Gaullet 
email: pierre.gaullet@airbus.com2.fériabodeveix
  
F Vernadat 
  
Behavioural descriptions in architecture description languages Application to AADL

Introduction

The development of critical software has put forward architecture description languages. The aim of these languages is to allow a verication process at the early stages of software development. They cover many aspects like real time, information ow, distribution, execution platforms, ... The Architecture Analysis and Design Language (AADL) [START_REF] Feiler | The SAE architecture analysis & design language (AADL) standard: A basis for model-based architecturedriven embedded systems engineering[END_REF] standard was prepared by the SAE AS-2C Architecture Description Language Subcommittee, Embedded Computing Systems Committee, Aerospace Avionics Systems Division. The AADL standard is based on MetaH [START_REF] Vestal | MetaH User's Manual[END_REF], an architecture description language developed at Honeywell Laboratories under the sponsorship of the US Defense Advanced Research Projects Agency (DARPA) and US Army Aviation and Missile Command (AMCOM).

Release 1.0 of the AADL standard (SAE AS5506) has been issued in November 2004.

The AADL is a language used to describe the software and hardware components of a system and the interfaces between those components. The language can describe functional interfaces of components, such as data inputs and outputs, and nonfunctional aspects, such as timing properties. The language can describe how components are combined, such as how data inputs and outputs are connected or how software components are allocated to hardware components. More detailed information about this language may be found at: www.aadl.info.

Although some behavioural aspects can be described in AADL (e.g. static linear control ows), application behaviours rely mainly on source code written in a target language (C, Ada, ...). This paper presents a behaviour extension as properties and a dedicated annex in order to make possible a better analysis of behaviours. These extensions try to reuse as much as possible existing AADL concepts. The main features of our proposal concern:

• High level composition paradigms: we have studied how to introduce HRT-HOOD [START_REF] Burns | HRT-HOOD a structured design method for hard real-time Ada Systems[END_REF] composition paradigms within AADL.

• Dynamic aspects related to subprogram and thread behaviors. We have adopted an automata based description similar to AADL mode transitions.

Behaviour descriptions for AADL

This proposal 1 introduces some HRT-HOOD con- cepts within AADL and attach behaviours to subprograms and threads. HRT-HOOD concepts are specied through dedicated AADL properties. A behavioural annex extending AADL mode automata is dened to specify subprogram and thread behaviours.

In the following, we present the behavioral annex attached to AADL components and how synchronization mechanisms existing in HRT-HOOD can be specied in the AADL framework. Lastly, we extend the behavioral specication to take into account real-time aspects.

Subprogram and thread behaviour

An AADL mode automaton is dened with a set of modes with an initial mode and mode transitions enabled by events, using the syntax:

m1 -[ event ]-> m2

In the proposed annex, we use the same syntax to dene state transitions. However, an action is attached to a transition and activation condition can be specied by an event, a predicate or both. Furthermore, besides the initial keyword of AADL modes, we introduce a return keyword for subprogram implementation states. When reached, control returns to the caller. However, the automaton can be non deterministic and may specify several possible eective implementations. Moreover, within an automaton, we can access the subprogram parameters according 1 In fact, this proposal has been elaborated from the one [START_REF] Farail | Cotre as an AADL prole[END_REF] already done in the context of AADL 0.95. Whereas AADL ows denote sequences of calls, the proposed behavioural annex allows the expression of control ows which take into account state variables and parameters.

Thread behaviour

The behavior of a thread can be specied using the same annex. However, the thread terminates if a nal state is reached. Termination is not mandatory: the thread can be active forever.

Subprogram invocation

The AADL standard supports the declaration of subprogram call sequences which may be conditionned by a mode. Calls are identied by an occurrence.

The occurrence identier is used to specify data ows between in and out parameters of called subpro- Remark As for operation calls, sent / received messages can also appear in the action part, but the semantics are dierent: a transition is selected from among those which can be immediately red. If a synchronization is in the action part, the transition waits for the synchronization whereas if the synchronization is in the event part of the transition, the ring of the transition is conditionned by the selection of this transition among all the enabled transitions. 

Passive objects

Active objects

As in HRT-HOOD, the proposed modelization of active objects allows the separation of synchronization from computation. Active objects specify several entry points of which behavior is essentially sequencial, as described in the previous paragraph. Synchronization modes are expressed via events or the AADL client-server mode. However, these notions are not sucient to express activation conditions. To do this, we attach a behavior to the thread of the active object. This behavior is also described by an automaton and expresses the activation conditions. Consequently, one or several annexes of an active object describe the behavior of the entry points and the behavior of the active object itself. The communication between the clients, the object thread and the entry points is specied by the synchronization mode attached to the entry point. Three modes taken from HRT-HOOD are proposed and extend AADL client server protocol:

• ASER: the invocation is non blocking. These invocations are stored in a queue which can be bounded through the attribute Queue_Size.

• HSER: the invocation is blocking. The caller resumes once the call returns.

• LSER: the invocation is blocking. The caller resumes once the call is accepted. For example, the sender thread of the alternated bit protocol can be specied in AADL extended by the cotre behavioral annex as follows: the thread specication declares two input event ports receiving acknowledgements of each sign, two ouput data ports transmitting data to the receiver, each port being associated with a sign, and one input data port to get information to be transmitted.

thread sender features --data to be transmitted put: in event data port; ack0: in event port; --positive ack ack1: in event port; --negative ack --data transmission with negative tag put0: out event data port; --data transmission with positive tag put1: out event data port; end sender;

The implementation sends data with a given sign until it receives an acknowledgement of the same sign.

As either data or acknowledgement can be lost, data must be sent again. A timeout should be specied in order to avoid to frequent data sendings. When the acknowledgement has been received a new value is obtained from the put port and transmitted through ports associated to the opposite sign. The implementation remains unchanged as message sending and subprogram calls have the same syntax. It has to be noted that the subprograms declared here do not need to be implemented. All the processing is performed by the thread.

Synchronous client-server mode

The HSER mode of HRT-HOOD enables the service which has been called up to return a result to the client. The corresponding synchronization is the client-server mode of AADL. Remember that the client-server mode of AADL is not able to take account of activation conditions.

The proposed solution involves using the object thread to express the acceptance conditions of the requests sent to each server subprogram. The operation activation constraints can be expressed via a 3-way synchronization where the client and the server must be ready to synchronize and execute the subprogram code.

In the example below, it is possible to call the put operation (resp: get) if the buer is empty (resp. full). These conditions are expressed by the server's behavior automaton. The AADL client-server synchronization is performed after the condition has been checked. 

Timing aspects

Timing aspects are already present in AADL through properties associated to various components. However, the behavioral extension must also provide implementation related timing constructs.

Elapse of time

Apart from assignments, procedure calls and event notication, it is possible to associate timed actions with a transition:

• Computation(min,max) expresses use of the cpu for a non-deterministic period of time between min and max.

• Delay(min,max) expresses a suspension for a non-deterministic period of time between min and max.

Remark: with respect to the elapse of time, these two actions express the same thing. However, they are meaningful with respect to scheduling purposes.

Periodic threads

A periodic thread is declared using pre-declared AADL attributes: Dispatch_Protocol=>Periodic and its period Period. • to subprogram declarations, in accordance with the HRT-HOOD syntax,

• to subprogram import declarations,

• to subprogram calls or message dispatch.

In order to simplify the semantics of the bounded wait, a boundary can only be attached to a synchronization on a port or subprogram in LSER mode.

If a HSER call could be bounded, we would have a problem with respect to the atomicity of the server computation.

The solution we have chosen to express the bounded wait involves adding a timeout transition which is triggered when the system has remained in a given state for a certain amount of time. Thus, the time is counted down from the moment the client is ready to synchronize.

The timeout is introduced via a logic expression which takes the form g timeout T which is satised if g has been true for at least T units of time. Given that the transitions are red as soon as possible, a synchronization with timeout is expressed as follows:

s0

-[ g & p! ]-> s1 { } s0 -[ g & timeout T ]-> s2 { }
3 Properties specication

In the context of real time or concurrent programming, the properties generally address the dynamic behavior of the system -notions which are harder to capture using only predicate calculus. These properties are more often, and more easily, expressed using temporal logics assertions [START_REF] Clarke | Automatic verication of nite state concurrent system using temporal logic[END_REF][START_REF] Alur | A theory of timed automata[END_REF]. In order to help a user -not necessarily a specialist of temporal logics, we propose an interface using so called domain properties that we present now. Those domain properties are the sets of generic properties a user working in this particular eld is most likely to wish to verify. To allow specication of more specic properties, we also considered the introduction of tool properties directly written in the specication language of a given verication tool. In this draft, we will only discuss properties of the former kind.

The domain properties are organized into two categories:

(1) a set of general properties (2) a set of component specic properties

For each property, we give an equivalent one in terms of basic operators.

General properties

We distinguish two kinds of properties expressing a general behavior of a specic component. Depending on whether a property is located in the root component or in a sub-component, one species a global or a local property.

• The rst kind is state oriented and species the possibilities for a component (system) to go back to an initial state.

• The second kind is event-oriented and species liveness of the component (system) or the possibility of divergence (innite computation without observable event).

Re-initializable

• resettable_pot (≡ AG EF initial)

The component may eventually return to its initial state (from any state).

• resettable_inev (≡ AG AF initial)

The component must eventually return to its initial state (from any state).

Component liveness Let C be the subset of events of a component. We extend CTL operators EF and AF to EF C and AF C . EF C species that some path from starting from the current state contains a transition of C, AF C species that all paths starting from the current state contains a transition of C.

• is_alive (≡ AG EF C true) Always some action of the component must be possible in the future When used in the root component, this property implies absence of deadlock.

• no_livelock (≡ AG AF C true) A component may not be indenitely idle (without performing some action)

Specic properties

In order to specify more specic properties, we propose also a small set of properties patterns. In the sequel, e 1 , e 2 . . . When expression e 1 holds then expression e 2 has been necessarily satised in the past Remark: Taking benet of the presence of labels of transitions it is also possible to envisage the use of behavioral equivalences (bisimulation, testing equivalence, . . . ) to specify directly by means of an abstract automaton the desired behavior of the considered part of the system (component system).

Conclusion

We have considered behavioural aspects within an architecture description language, namely AADL. Our proposition has tried to keep as much as possible close to AADL. We are now investigating how we can dene a formal semantics to some of the AADL constructs [START_REF] Bodeveix | Towards formalizing AADL in proof assistants[END_REF]. Moreover, starting from our experience in the Cotre project [START_REF] Berthomieu | Towards the verication of real-time systems in avionics: The Cotre approach[END_REF], for verication purposes, we will also investigate the mapping of AADL constructs to those available within verication tools and more generally how to deal with AADL transformations [START_REF] Dissaux | AADL model transformation[END_REF].

  transitions g -[when sp > 0]->s1 { sp := sp -1; v := elems[sp]; } p -[when sp < 10]->s1 { elems[sp] := v; sp := sp + 1; } e -[]->s1 { v := (sp = 0); } f -[]->s1 { v := (sp = 10); } **}; end stack.default; A single annex can contain the behavior for several subprograms via several initial state declarations. The behavior of several subprograms can also be distributed in dierent annexes. The action part of a transition can call a subprogram of the current data or of another data.

2. 3

 3 Shared objectsAADL supports the notion of protected object: a protected object is a data component whose Con-currency_Control_Protocol property is positioned

For

  such purposes, we have introduced an AADL property declared as follows: Server_Call_Protocol : type enumeration (ASER,HSER,LSER) → HSER applies to (server subprogram); Remark: HSER is the implicit property attached to subprograms. Actually, it is the implicit subprogram call protocol in AADL. 2.4.1 Asynchronous client-server mode In the asynchronous mode several clients can invoke the services of a server object. The invocation is nonblocking. The requested processing is carried out in parallel with the client. The entry points are represented by ports which may support data. These events are stored in les that can be bounded via the Queue_Size attribute. The activation conditions are dened by the behavior of the thread associated with the active object. This thread can accept the events issued by the clients and may call local subprograms which perform the requested processing.

Remarks

  It may be possible to express the acceptance conditions concerning the subprogram parameters. The example below only accepts put calls with a positive argument. A call with a negative or null argument blocks the client. annex cotre_behavior {** states full : state; empty : initial state; transitions empty -[ put ?x & x > 0 ]-> full { }; full -[ get ?]-> empty { }; **} 2.4.3 Semi-Synchronous client-server mode In the HRT-HOOD semi-synchronous mode, the client is unblocked when the message is received. In this mode, only the input parameters are transmitted. The server thread synchronizes with the message sent by the client and calls a local subprogram which processes the request. The synchronization (performed by the thread associated with the server) and the computation (performed by the subprogram) are always separate. The semi-synchronous and synchronous modes are distinguished by the client wakeup time (which occurs when the request is accepted for the semisynchronous mode and at the end of processing for the synchronous mode). To do this, we associate respectiveley the LSER and HSER property values to the entry point. . Attempting to store negative or null data results in client suspension. The client is woken up before the eective subprogram call by the server thread.thread serveur features put: server subprogram buffer.put; { Server_Call_Protocol => LSER; }; end serveur; thread implementation serveur.default subcomponents buf: data buffer; annex cotre_behavior {** states s0 : initial state; p: initial state for put; r: return state; transitions --client wake up if x > 0 s0 -[ put?x & x > 0]-> s0 { }; p -[]-> r { buf.put!x }; **} end serveur.default;2.4.4 Combining synchronization modes The homogeneous declaration of the various synchronization mechanisms makes it easier the specication of the interface of a thread. The following examples describes a monitor allocated read or write access rights to clients. The entry points start_read and start_write are synchronous: a client must wait for the completion of the call before accessing the ressource. The entry points end_read and end_write can be asynchronous: the client does not need to wait for the completion of the request.

  denote boolean expression on atomic variables characterizing the behavior of the component. invariant p (≡ AG p) Property p always holds Leadsto e 1 leadsto e 2 [within d] ≡ AG (e 1 ⇒ AF ≤d e 2 ) When expression e 1 holds then expression e 2 will eventually holds [at most in d unit time later]. Reachable from reachable e 1 [from e 2 ][within d]≡ AG(e 1 ⇒ EF ≤d e 2 ) When expression e 1 holds then expression e 2 potentially holds in the future [at most in d unit time later]. After e 1 after e 2 ≡ A[¬e 2 W eak U ntil e 1 ]
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  We reuse the multiplicity property of UML to specify

	at protected.	The access control mechanisms are
	actually left open by AADL and must be dened
	via the Supported_Concurrency_Control_Protocols
	property.	
	Taking the example of the stack, we will add a
	property to the specication:
	data stack	
	features	
	put: subprogram put;
	get: subprogram get;
	empty: subprogram empty;
	full: subprogram full;
	properties	
	Concurrency_Control_Protocol => protected
	end stack;	
	arrays.