Eliminating Embedded Software Defects in a Virtual System Integration Laboratory
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Research has shown that finding software faults early in the development cycle not only improves software assurance, but also reduces software development expense and time. The root causes of the majority of embedded system software defects discovered during hardware integration test have been attributed to errors in understanding and implementing requirements. The independence that typically exists between the system and software development processes provides ample opportunity for the introduction of these types of faults. This paper shows a viable method of verifying object software using the same tests created to verify the system design from which the software was developed. After passing the same tests used to verify the system design, it can be said that the software has correctly implemented all of the known and tested system requirements.

This method enables the discovery of functional faults prior to the integration test phase of a project.

Introduction

New complex embedded systems are quick to take advantage of the unrelenting pace of advancement in computer hardware performance and capacity. Along with the increase in hardware capability has come a considerably greater increase in the functionality and complexity of control software. Unfortunately, the methods & tools we use to develop and test systems and software have not kept up with the trend. This is evidenced by the number of software faults that pass undetected into the integration and operational phases of contemporary projects. This is of concern for two important reasons. In the case of software in control of safety-or missioncritical systems, allowing a failure to pass undetected into the operational phase of a project may put lives and/or critical missions at risk. In all cases the more faults that pass undetected into integration test and beyond, the more the project will cost and the longer it will take to complete. This article presents a new, closed-loop method of simulating and verifying embedded system designs and their controlling software in a pure virtual system integration laboratory environment.

We have demonstrated and validated this method in a recently concluded research effort sponsored by the NASA Office of Safety & Mission Assurance under their Software Assurance Research Program (SARP) [START_REF] Bennett | The Use of a Virtual System Simulator and Executable Specifications to Enhance Software Validation, Verification, and Safety Assurance -Final Report[END_REF]. Our investigation showed: 1. A new method of specifying, executing, and verifying an entire system design in a pure virtual environment. 2. How uninstrumented embedded object software can be verified in a virtual system environment. 3. How the same tests used to verify the system design may be used to verify the controlling software. It follows from item 3 that if the software passes the same tests used to verify the system design then it correctly implements the known and tested system requirements. As a result, we now have a viable means of discovering requirements-induced software faults prior to the integration test phase of a project. This is significant because it has been shown that early discovery of faults reduces both project cost and duration.

Background

Root causes of software faults

The root causes of the majority of software defects discovered in integration test during the development of an embedded system have been attributed to errors in understanding and implementing requirements (see sidebar: "JPL Root-Cause Analysis of Spacecraft Software Defects" on page 2). These may be the system and/or the software requirements. We assert that this is largely a result of the independence that exists between the requirements development and the software development processes. The JPL report findings are echoed in reports of numerous other researchers such as Leveson [START_REF] Leveson | Safeware -System, Safety and Computers[END_REF] [3], Ellis [START_REF] Ellis | Achieving Safety in Complex Control Systems[END_REF], Thompson [START_REF] Thompson | A Framework for Static Analysis and Simulation of System-level Inter-component Communication[END_REF], et al. Consider some of the many avenues where requirements-related problems might be introduced:

• Assumptions/ambiguities affecting interpretation of customer descriptions of desired system behavior. • The difficulty of fully understanding the realworld environment in which the system will interact. • The difficulty in anticipating all of the possible modes and states that the system may A. Ted Bennett To compound the problem, we generally cannot know at the onset of a project if we have accurately modeled the realworld system behavior. As a project advances, however, so does our understanding of the system. Additional faults may be introduced when subsequent refinements to the system model are not adequately communicated to the software development teams.

To be more effective at creating software with a high level of assurance, not only must we reduce the number of errors attributable to misunderstanding & misimplementing requirements, but we must also improve communication between and among system & implementation teams.

Shortcomings of federated

development methods Contemporary embedded systems development projects are typically conducted in a federated manner. In other words, the system and software development activities are conducted essentially independent of each other. To illustrate this point, Figure 2 depicts the three principal loops comprising a typical project process. We will ignore hardware development activities since they are not germane to this discussion. The first loop is where the system design is created. The system designers may make use of modeling, simulation, prototyping, specification, and other tools to satisfy the need to validate control algorithms, component interactions, etc. The system architects validate and verify their design through analysis, possibly tests, and possibly by similarity with reused components.

They then document the requirements for the implementation teams to follow.

When satisfied with

JPL Root-Cause Analysis of Spacecraft Software Defects

In 1992, Dr. Robyn Lutz conducted an analysis for the Jet Propulsion Laboratory (JPL) to determine the root causes of the 387 software defects discovered during the integration test phase of the Voyager and Galileo spacecraft development efforts. The software controlling these spacecraft is distributed among several embedded computers with roughly 18,000 and 22,000 lines of source code respectively.

Lutz reported that the programming faults discovered on the two projects are distributed as shown in figure 1.

The fault classifications given in figure 1 are defined as follows:

• Functional faults comprise the three subclasses listed below: a. Operating faults: omission of, or unnecessary operations; b. Conditional faults: incorrect condition or limit values; and c. Behavioral faults: incorrect behavior, not conforming to requirements. • Interface faults are those related to interactions with other system components such as transfer of data or control.

• Internal faults are defined as coding faults internal to a software module The data show that 98% of the combined total software problems were classified as functional or interface faults that are directly attributable to errors in understanding & implementing requirements, and inadequate communication between development teams. Only 2% were due to software module coding errors [START_REF] Lutz | Analyzing Software Errors in Safety-Critical, Embedded Systems[END_REF].

The conclusions of the JPL report point to the need for improved focus in the following areas:

1. Interfaces between the software and the system domains 2. Identification of safety-critical hazards early in the requirements analysis their design (or when time runs out), the system team delivers the system specification package to the implementation teams.

Entering the second loop shown in Figure 2, the software implementation team interprets the relevant requirements -whether written in natural language, specification design language, or executable specifications -derives software requirements, and creates its design. The software developers write their own tests to verify conformance to the requirements as they have interpreted them. They may use some form of simulation, hardware development boards, inspection, analysis, or similarity comparison to facilitate verification of their code.

When a major part of the system functionality has been coded, the software team creates a build. The software is loaded into its target hardware where integration test begins in the laboratory. Connected to test equipment, simulators, and perhaps other system elements, the control software is stimulated by the hardware environment under the control of custom test software. Bugs discovered during integration test are filed as problem reports and passed back to the development team to resolve, thereby completing the third loop. We see the independence that exists between the system and software loops in this development process as the primary reason for the propagation of software faults into integration test. Further, this independent process may breed duplicity of effort where the software and system teams write their own tests to verify the same behavior at the system and software levels. Our research has shown a method of connecting the system and software development loops that allows tests written for system verification to be used to verify the software itself. This enables the software to be thoroughly debugged in a pure virtual environment before it ever gets to the hardware integration phase.

Coupling the System & SW development loops

Figure 3 illustrates our approach to connecting the system and software development loops. This new approach retains the system and software development loops but eliminates the loop where the hardware integration lab is used for software debug activities.

As before, your project begins with the development of a system design using various tools for algorithm development etc. However, in lieu of passing the design and requirements to the implementation teams as a collection of disparate specifications, the entire system and the environment in which it interacts is simulated using a form of executable specifications (ES). All parts in the simulation are bounded like their real-world counterparts so that the interface behavior of each element can be correctly modeled and specified. Parts are created with builtin failure modes that may be activated under test control.

Having modeled the behavior of the entire system environment, you now have a complete virtual system integration laboratory (VSIL) in which to validate and verify your system design. The next step is to create a suite of tests based upon nominal and off-nominal scenarios for which the system has been designed to react. Our testing philosophy is to exercise the system by driving the environment as realistically as possible, and monitoring the system behavior in response. This is generally not a viable approach for hardware system integration laboratory setups due to the costs or difficulty involved in procuring, creating, and synchronously controlling all the disparate pieces of hardware and simulators necessary to realistically drive the target system.

The completed and verified VSIL is then passed, along with the system-level tests and any supplemental written requirements, to the development teams. The teams create hardware and software designs from the specified processing, communication, interface, control, and other requirements. As soon as the hardware architecture has been established, the target embedded controller for which the software is being developed must be simulated with sufficient fidelity to run the 3).

The DE gives the SW team the ability test the SW it develops (Fig. 3, step 1) in the VSIL (Fig. 3, steps 2-4). After replacing the controller ES with the DE, the software being developed may be compiled and loaded into the DE at any time for testing in the VSIL. All of the tests created to verify the system design can be used, without modification, for software verification. Additional tests must be added to verify that software has correctly implemented lower-level requirements whose detail hasn't been addressed at the system level (e.g. built-in-test, etc.).

After running the desired tests, the software development team analyzes the results and determines the cause of any failures. The team then corrects any identified faults, recompiles the revised modules, and retests the build in the VSIL (Fig. 3, steps 1-4). In practice, step 3 is performed once since the DE becomes an integral part of the VSIL following replacement of its ES counterpart. The VSIL is tightly coupled with the integrated SW development environment used by the SW teamthereby facilitating the code/compile/load/verify process. Some of the problems discovered may require the attention of the system designers. When this necessitates a system design change, the VSIL is revised & tested and redistributed to the SW development teams. In this manner, the software is always developed & tested in the most current system design -thereby eliminating the possibility of SW problems being introduced due to miscommunication of system design changes. The SW design/code/verify/debug loop is repeatedly executed until the final build passes all tests and until all paths through the code have been exercised in the VSIL. The software has thus been thoroughly verified and is ready for integration testing with the real flight hardware. It is worth noting that since the object code itself is tested in the VSIL, the real-time operating system (RTOS), any reused/COTS modules, and all newly developed software are verified together in the virtual target environment. The VSIL itself is an MS Windows-compatible application that interfaces with standard integrated development environment (IDE) tools. A VSIL is as easily used as a typical lab test setup (e.g. emulator, simulators, target hardware), and readily distributed to all project development personnel. Since the entire system and environment are modeled in the VSIL, modifications & refinements can be coded, validated, verified, and distributed to the entire team. VSIL revisions and verification tests may be controlled using standard configuration management tools & techniques. Lastly, the VSIL is purely virtual i.e. no hardware is required other than the Windows-based PC on which it runs.

Discussion

We have presented a new method of embedded systems and software V&V that closes the loop between system & software development activities. In so doing, the system and software development processes can now be connected through common verification tests. Finding and repairing software faults early in the project development cycle can lead to substantial savings (see sidebar: "Economics of Faultfinding" on page 5).

For example, requirements and communication induced errors like 98% of those discovered during the integration phase of the Voyager & Galileo spacecraft software project, can be found and repaired at one or perhaps more orders of magnitude lower cost.

Implications

Below is a summary list of some of the ways that the methods presented in this article may be of economic benefit to embedded software development: a. Discovery of system errors early in the development cycle where it is least costly to correct them. b. Reduce interpretation-induced SW faults due to ambiguities in system requirements. c. Improve ability for dynamic, non-invasive test of system & software response to failure conditions. d. Reduce software faults caused by breakdown in communication of system requirements changes. e. New capacity for empirical software V&V in cases where analysis was only viable means, for example: realistic fault injection & failure mode testing, complex digital signal processor designs, et al. f. Provide a highly viable means of verifying automatically generated code, reused software, and RTOS. Creating a system design with the type of ES discussed herein results in a verifiable system architecture that is readily translated into component-, and interface-level designs. When contracting out the development of subsystem software, the system-level verification tests can provide an excellent way to assure that the contractor has developed the software correctly. Because ES parts may be created with intrinsic failure modes that can be invoked dynamically under

Economics of Faultfinding

Estimates of the cost to find and correct software faults at each of the principal stages of a project have been publicized and widely referenced since 1976 when Boehm first published his study [START_REF] Boehm | Software Engineering[END_REF] on the subject. Cost numbers vary depending on the type of application for which the software is being developed but the common thread they all exhibit is the substantial increase in project costs caused by carrying problems from one development stage to the next. A report released in May 2002 by the National Institute of Standards & Technology (NIST) [START_REF] Tassey | The Economic Impacts of Inadequate Infrastructure for Software Testing[END_REF] contains a thorough analysis concluding that inadequate software testing costs the United States an estimated $59.5 billion annually. The 309-page NIST report is a well-considered treatise on the economic impact of inadequate software testing. While these numbers are extrapolated from software developed for the financial services and transportation applications (CAD, CAM, etc.) sectors, the message applies even more significantly to industries engaged in developing software for safety and mission critical applications such as aerospace, medical, defense, automotive, etc. Failures of safety/mission-critical software may result in harm to, or loss of human life and/or mission objectives such as in the case of the Therac-25 radiation overdose accidents [START_REF] Leveson | Safeware -System, Safety and Computers[END_REF] and the Ariane-5 maiden launch failure [START_REF] Leveson | The Role of Software in Spacecraft Accidents[END_REF]. The Therac-25 software caused severe radiation burns in numerous cancer patients before it was implicated. The cost of allowing the Ariane-5 software defect to pass into the operational phase has been estimated to be as high as $5 billion alone. NASA recently sponsored a study to evaluate the economic benefit of conducting Independent Validation & Verification (IV&V) during the development of safety-critical embedded systems [START_REF] Dabney | Return on Investment of Independent Verification and Validation Study Preliminary Phase 2B Report[END_REF]. This study presented cost-to-repair figures focused specifically on embedded systems projects. Figure 4 shows the relative cost to repair factorsconsidered to be conservative estimates for embedded systems -used in this study. The graph in Figure 4 tells us that an error introduced in the requirements phase will cost five times more to correct in the design phase than in the phase in which it was introduced. Correspondingly, it will cost ten times more to repair in the code phase, 50 times more in the test phase, 130 times more in the integration phase, and 368 times more when repaired during the operational phase. The graph also gives the cost multipliers for problems introduced in the design, code, test, and integration phases of the development cycle. test control, the system designer can empirically verify the specified system response to a variety of off-nominal conditions. This ability allows greater latitude in the type and number of tests that can be conducted when compared with what is economically viable in a hardware integration lab.

Verifying the VSIL

The VSIL is, in fact, a model of both the system being developed and the environment in which it is designed to interact. Before it can be of use we must have confidence that the VSIL represents its target adequately.

We have adopted an effective approach that is perhaps best described as "test-as-you-go." As parts are simulated to implement specific requirements, system-level tests are created at the same time to verify that they behave correctly. Part functionality may be developed and tested incrementally as requirements are implemented. At the end of this process, all VSIL parts have been implemented & verified and a basic set of systemlevel tests have been developed. Parts developed to a high-fidelity level may require a supplemental verification activity where the realworld equivalent part is used for comparison purposes. In the case of developing an instructionset-level CPU simulation, we run test code designed to verify instruction execution on a hardware development board and compare the results with the outcome of running the same code on the simulated part. The CPU parts we've developed are not cycleaccurate but are refined to where the instructions execute within an average of four percent of the hardware performance (works well for embedded software verification). This is in keeping with our philosophy of not implementing greater fidelity than necessary.

VSIL Development Tool

We developed our first avionics simulator more than a decade ago to save time verifying software modifications and to avoid contention for lab test resources. This initiative spawned the creation of IcoSim  , our general-purpose simulator development tool, and its companion SW developer's kit (SDK). In the second quarter of 2006, we plan to make IcoSim freely available to the general public by creating an open source project [11] whose use will be governed under either a General Public License (GPL) [START_REF] General | [END_REF] and/or a Lesser General Public License (LGPL) [13].

Tool Description

We currently give IcoSim away to our customers and since it is destined to become an open source project, the descriptive details provided herein are intended to promote an understanding how we accomplish what we've presented. Written in C++ and C, IcoSim allows the use of diverse part types ranging from low to high abstraction levels. It also supports the use of mixed mode parts such as analog, digital, mechanical, hydraulic, magnetic, electro-magnetic, et al. IcoSim is well suited to creating a VSIL for use in developing embedded systems & software because the simulated parts may be bounded exactly like their real-world counterparts. In other words the inputs and outputs of each virtual part are readily modeled after the behavior of their real-world part's digital, analog, mechanical, etc. I/O.

Once its behavior is verified, a virtual part may be identified with the same part number as its counterpart, and repeatedly used wherever system designs specify.

VSIL Parts Libraries

In addition to the NASA research that validated the methodology presented, this tool has been used to create VSILs for software verification on more than two-dozen avionics projects over the past decade. It is scalable to any size system and has been used for verification of software in single and dual-redundant avionics systems ranging in criticality from Radio Technical Communications for Aeronautics (RTCA) Defense Order (DO)-178B, level A (safety-critical) to level D (low criticality). It has also been used for verification of embedded digital signal processor (DSP) software implementing Kalman filter algorithms.

Our parts library includes instruction-set level simulations of many microprocessors in use today such as the MPC555, MPC750, MC68000, MC68332, DSP56005, DSP56302, DSP56309, I80196, I8051, I8096, I8097, I8798, et al. Numerous additional peripheral and "glue" parts are in the library as well as a host of actuators and sensors that have been created in support of various VSIL projects. We have also created a collection of parts that simulate many different data buses and protocols e.g.: ARINC 419, ARINC 739, MIL-STD-1553, TTP, ASCB, CSDB, AFDX, Ethernet, SPI, PCI, CAN, etc. To support testing with a VSIL, we have simulated standard laboratory test equipment such as oscilloscopes, signal generators, and the functional capability of microprocessor emulators. The VSIL is an ideal environment for gathering dynamic software metrics without instrumenting either the target operating system or the software.

Code path coverage, MCDC reports, throughput analysis, timing analysis, and many other helpful reports are readily produced in this environment with the addition of instructions to the test script.

Costs of VSIL Development

A VSIL is made by interconnecting objects at the lowest level of abstraction to make successively higher levels of functional parts until the required environment is complete. This hierarchical, modular approach maximizes the potential for part reuse on subsequent development projects. To be efficient at making a VSIL, each part is simulated only to the level of fidelity necessary to achieve ones goals. For example an aircraft rudder is attached to a sensor that reports its angular position to avionics subsystems as required. The sensor has a mechanical link to the rudder, has inertial properties, may have inductive coils, an armature, be excited by a 400 Hz reference, etc. While we could model all of these characteristics with great precision, it would be a waste of effort if our system only required the correct transfer function of rudder angle to sensor output at a given update rate. Since part fidelity is directly proportional to effort, being selective about where to incorporate higher fidelity is key to cost-effective VSIL creation. It is difficult to quantify the costs of creating a VSIL for system and SW development because of the large number of variables involved such as: Because of the part-oriented nature of the VSIL, the cost of creating a simulator for a given project will vary in proportion to the number and complexity of new parts that must be created.

Many new embedded designs reuse proven design elements from prior projects so the cost of developing simulators diminishes with successive applications.

Supplemental VSIL Benefits

The benefit of using a VSIL for embedded systems & software development increases with project size, with system complexity, and with geographic diversity of organizations and personnel contributing to the project. In addition to the cost benefits of early SW fault discovery, a VSIL can support a project in other important ways. Some of these benefits are directly measurable but others may have less tangible value. For example:

• When contracting out development of a subsystem, supplying the vendor with a VSIL and its system test suite can be a highly effective means of verifying that the SW conforms to the requirements. While not a rigorous analysis, one avionics company's post-project review of having used a VSIL for verification of their dual-redundant avionics SW revealed some attractive cost-benefits. Based on their findings they concluded that future projects could expect a 24% schedule savings, $130,000 direct savings on laboratory equipment, and realize an overall cost savings of 14% on an average $4.5 Million project. These estimates do not include the benefits of using a VSIL throughout the operational life of a product. There are many factors that influence the cost but a typical VSIL can be developed for about 5-10 percent of the overall project cost. This places the return on investment in the range of 40-180 percent for the above project. Experiences will no doubt vary from project to project, however, these estimates can provide useful guidance when assessing the life-cycle cost/benefit of using a VSIL for development.

Summary

The new method of embedded systems and software V&V presented here goes far beyond an incremental improvement to the status quo. While not a panacea, it does provide a cost-effective, proven means of:

• Ensuring that the target software has implemented all known and tested system requirements -prior to hardware integration. • Verifying automatically generated code, reused software, and the RTOS. • Verifying response of systems & software to a wide range of realistic, dynamic failures and offnominal scenarios. • Re-verifying software following system revisions & updates. • Ensuring that hardware redesigned for obsolescence is compatible with the software. • Verifying that new and upgraded peripherals and subsystems function correctly with the target system. The approach described provides a bridge between algorithm & model development tools, and the realworld system environment in which embedded algorithms must function. This method is a highly viable way to address a number of problems that hamper efficient embedded systems & software development.
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  Re-verifying SW on obsolescence-driven hardware design changes. • Verification of system compatibility with upgrades to peripheral or subsystem units. • Eliminating or reducing reliance on test equipment set-ups that must be maintained to support SW changes following entry into service.

	• Development teams in local and remote
	locations can quickly re-verify their SW following
	system revisions that have been implemented &
	tested in a VSIL. Using standard configuration
	control procedures, the latest system revision
	can be distributed to all teams as soon as it is
	available.
	• Providing a VSIL to every programmer promotes
	a broader, "big-picture" understanding of the
	system. Every programmer tests on the whole
	system, every time.
	• Testing in a VSIL reduces the dependence on
	laboratory test stations; consequently, fewer are
	required.
	• Less dependence on laboratory test equipment
	reduces resource-contention delays during
	development.
	• A VSIL may be helpful in the operational phase
	of a project for:
	• Software re-verification following upgrade
	modifications with full regression testing.
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