
HAL Id: hal-02270344
https://hal.science/hal-02270344v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Built-in Interoperability and Scalability of an
Eclipse-based AUTOSAR Tool Platform

S Eberle, E Fourgeau

To cite this version:
S Eberle, E Fourgeau. Built-in Interoperability and Scalability of an Eclipse-based AUTOSAR Tool
Platform. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France.
�hal-02270344�

https://hal.science/hal-02270344v1
https://hal.archives-ouvertes.fr

Built-in Interoperability and Scalability of an Eclipse-based
AUTOSAR Tool Platform

S. Eberle1, E. Fourgeau2

1: Geensys, 242 boulevard Jean Jaurès, 92100 Boulogne-Billancourt
2: Geensys, 242 boulevard Jean Jaurès, 92100 Boulogne-Billancourt

Abstract: The automotive industry is experiencing a
major paradigm shift by introducing their next
generation embedded software engineering
standard AUTOSAR. This does not only create a
need for new tool environments supporting
AUTOSAR-based electrical & electronics (EE)
system design but also requires these tools to be
open, customizable, and highly interoperable.
Eclipse is a promising platform for realizing such
engineering environments and delivers many of the
necessary basic building blocks.

Keywords: AUTOSAR, Eclipse, Tool Platform

1. Introduction

The worldwide value creation in electrical &
electronics (EE) systems in automotive industry
reached estimated €127 billions in 2002 and should
amount €316 billions in 2015 according to a Mercer
study. In less than 2 years from now, software will
make up an estimated 40 percent of this value
creation. The considerable and increasing
complexity of automotive software systems, their
huge economic relevance as well as the increasingly
stringent requirements on software dominant
innovations in relation to comfort, safety, fuel
economy, emission reduction, and onboard
diagnostics have been pushing the automotive
industry toward novel engineering solutions for EE
architectures, such as the AUTOSAR software
standardization initiative, with major consequences
for EE processes and tools and new ways of sharing
development and exploitation tasks.

AUTOSAR, with contributions coming from the entire
automotive development chain (OEMs, suppliers,
tool manufacturers, semiconductor manufacturers,
software houses), has set itself the goal of
developing an open, standardized EE architecture
concept for the automotive industry, with some
distinctive principles, such as the scalability and
transferability of functions, leading to standardized
software interfaces and descriptions in terms of XML
file formats (see figure 1).

Figure 1: The AUTOSAR Architecture

However, the design of automotive systems at large,
and moreover of built-in AUTOSAR systems,
demands continuous exchange of data between
different parties. In addition, appropriate tools are
required supporting each of the interlaced
development steps which are implemented by OEMs
together with their suppliers and integration partners.
The mere existence of a standardized XML-based
data exchange format doesn’t guarantee seamless
interoperability which is required to fulfil the needs of
architecture-oriented development processes (see
figure 2).

Figure 2: The AUTOSAR Process

These processes ultimately couple SYSTEM level
and ECU level design tools in a single PRODUCT-
centric development flow, with distributed
responsibilities across the various development
stakeholders. This poses the crucial demand for the

 Page 1/4

conceptual work on a tool framework which would
serve as a tool hub enabling tools from different
origins to smoothly cooperate with each other, and
cross-linked data analysis and reports to be easily
established along the various steps of the
development cycle. By creating a versatile and open
tool platform, a growing number of contributors
including OEMs, suppliers, and tool vendors can
actively increase the dynamics of system
engineering tools exploitation.

In addition to the interoperability of commercial off-
the-shelf tools, a prominent compelling reason for
such an open platform is the need for customers to
develop dedicated, i.e. use case, workflow and
company-centric tools that are tightly linked to the
custom processes used by each stakeholder in EE
system development cycles (OEMs and suppliers
alike). An open platform enabling close integration of
off-the-shelf and custom tools will ease the setup of
such dedicated tool environments and help to cover
specific requirements along the development cycle.

2. Need for Openness and Ease of Use

Even though AUTOSAR defines common concepts
for EE architectures and parts of the underlying
development processes, there are many aspects of
the development cycle which are not covered. On
the one hand there are design activities which are
not addressed by AUTOSAR standard such as the
concrete function and behaviour of components,
dependencies between configuration parameters of
AUTOSAR basic software, etc. On the other hand
AUTOSAR is more or less limited to EE system
design and doesn’t provide much advice on the
development steps before and after design, e.g.
requirements management and tracing,
incorporation of timing and safety constraints,
simulation, test, etc. So, it’s up to each OEM and
supplier to come up with appropriate concepts and
processes for those aspects. And as usual when
things are done off-standard, the resulting concepts
and processes appear to be fairly different in each
organization and therefore can be considered
domain-specific.

These facts have an important impact on the
question how to provide an appropriate tool support
for AUTOSAR-based EE system engineering. It
becomes clear that the tool environments which are
limited to purely AUTOSAR-based aspects are not of
much value. What OEMs and suppliers need are
integrated tool solutions which provide seamless
integration and interoperation of standardized
AUTOSAR and domain-specific non-AUTOSAR
development steps and design activities.

When thinking of how to make a good tool
environment for AUTOSAR according to these
considerations, looking at other embedded system
engineering tools such as MATLAB and Simulink
can be helpful. Providing comprehensive math and
graphics functions, they are powerful computation
and modeling/simulation environments. The
interesting fact is however that the versatility and
success of MATLAB and Simulink does not arise
from their completeness. It is because they are
based on an architecture which clearly separates the
generic engineering environment core from problem-
near and typically domain-specific behavior. The
latter is realized using built-in scripting languages
which are easy to learn and can be used without
requiring in-depth knowledge of the engineering
environment core. This enables users who are
usually domain experts rather than tool experts to
adapt the engineering environment to domain-
specific contexts by conveniently modifying existing
or adding new behaviors.

This approach is an interesting starting point for
AUTOSAR-based EE system engineering
environments. The different non-AUTOSAR
development steps and design activities normally
require very dedicated kinds of skills and expertise
and may even involve specific languages,
formalisms or meta models. Due to the complexity
and specificity of these different development
methodologies and given the fact that they are
moving on and evolving quickly, it is not likely that all
these needs can be satisfied by a single case tool
from a single tool vendor. Therefore, a clear
separation in two regards has to be made. First, to
have on the one hand an open AUTOSAR tool
platform and on the other hand custom extensions
which are built on top of this platform. Second, there
are on the one hand the tool suppliers who are true
experts from a tool technology point of view and are
the best to provide such an AUTOSAR tool platform.
On the other hand there are the tool users who are
experts of the methodologies behind the respective
development steps and design activities. They are
consequently the best to know how to create the
extensions required for integrating AUTOSAR with
these methodologies into a continuous development
flow. The idea is to involve the respective experts
into tool development without requiring that any of
the parties has to know everything.

A promising approach for providing integrated tool
support covering AUTOSAR and non-AUTOSAR
aspects of EE system development is therefore to
have an open AUTOSAR tool platform providing
standardized AUTOSAR tooling services plus
extension mechanisms which are easy enough to be
used by different kinds of EE domain experts for

 Page 2/4

realizing and adding in their own tools or coupling
the platform with third-party or legacy tools.

3. Eclipse-based AUTOSAR Tool Development
Kit

Leveraging on AUTOSAR standard description files,
structured development process, scalability and
exchangeability principles, Geensys has been
striving to develop such an open and easy to extend
tool framework, capable of hosting various
AUTOSAR-compliant design and verification tools,
and providing mechanisms for being extended by
custom tools or being integrated with third-party or
legacy tools. It is called AUTOSAR Tool
Development Kit (TDK), and represents an intrinsic
part of Geensys’ AUTOSAR Builder tool suite. Alike
the AUTOSAR Builder tool suite, the TDK has been
built upon open source Eclipse technology. Eclipse
is a versatile and technology-rich platform with an
open and innovative ecosystem for Eclipse-based
add-ons and solutions. Given that Eclipse is based
on the well-known Java programming language and
its openness and extensibility it is an ideal basis for
AUTOSAR TDK.

At the bottom line, AUTOSAR TDK provides the
most important basic building blocks which are
typically required for realizing any kind of
AUTOSAR-related tool. Instead of reinventing the
wheel with each AUTOSAR tool to be realized, tool
developers and users can reuse this infrastructure
and base their own solutions upon it. AUTOSAR
TDK therefore encompasses EMF-based
implementations of AUTOSAR meta model releases
2.0, 2.1, and 3.0, and a number of related services
including AUTOSAR XSD conform serialization, rule-
based validation, tree-based viewers, form-based
and graphical editing, and template-based target
code and documentation generation (see figure 3).
All these models and services are accessible via on
open APIs. They are at the same time the common
basis for the off-the-shelf AUTOSAR design tools
realized by Geensys (see figure 4) and simplify the
task of developing custom tools or connectors to
third-party or legacy tools for AUTOSAR TDK
adopters outside Geensys.

Figure 3: Meta Models, Services and APIs offered by

AUTOSAR TDK

Figure 4: Off-the-shelf AUTOSAR design tools on

top of AUTOSAR TDK

In order to ensure that the features of AUTOSAR
TDK are not only exploitable by tool development
experts with in-depth Eclipse knowledge but also by
EE domain experts having only general
programming skills, an easy to use scripting and
plug-let environment has been added to AUTOSAR
TDK. However, rather than relying on some existing
or, even worse, inventing a new dedicated scripting
language and having all AUTOSAR TDK adopters to
learn it, the broadly known and well-understood Java
programming language is reused for that purpose.
Eclipse’s built-in Java-development environment
JDT which very is intuitive and comfortable to use
has been extended and made available as script
development and debugging environment. Equinox
and PDE have been leveraged for contributing Java-
based scripts in the form of dynamic plug-lets. As a
result, scripts become compiled and deployed on the
fly after each modification and are immediately
available for execution. Manual export and
contribution to the underlying Eclipse installation
followed by a time-consuming restart of the Eclipse
environment are no longer necessary. Users can
develop, debug, and run scripts in short cycles and

 Page 3/4

directly within the environment where they intend to
use them (see figure 5).

Figure 5: Development and running scripts inside

AUTOSAR Builder

Given these features AUTOSAR TDK enables a
wide range of application scenarios. Existing
AUTOSAR tool components can be enhanced or
adapted to fit domain or even project-specific needs.
This is typically necessary when it comes to guided
or automatic configuration of AUTOSAR basic
software modules. Dedicated tool environments can
be setup to support different process roles and
constraints. Connectors can be created to integrate
AUTOSAR with non-AUTOSAR tools, like e.g.
design tools for vehicle functions and behaviors.
Legacy artifacts such as company-specific vehicle
message matrixes can be imported and seamlessly
integrated into the AUTOSAR design flow.

5. Conclusion

AUTOSAR is the new open standard for automotive
EE architectures and represents one of the biggest
standardization activities in this sector. AUTOSAR is
accompanied by a highly innovative system
development methodology where the successive
stages have to be supported by specific tools which
are in turn open, inter-communicating, and
collaborative. Eclipse is an ideal platform for
realizing an AUTOSAR development tool kit which
complies with these three fundamental
characteristics.

AUTOSAR is nevertheless merely a design standard
and does not cover the complete EE system
development cycle. Even within the scope of
AUTOSAR there are many activities like e.g.
automation of AUTOSAR basic software
configuration which remain domain-specific. Tool
environments for AUTOSAR-based development of
EE systems can therefore hardly be complete out of
the box. Consequently, AUTOSAR tools must not
only be ready to use in terms of AUTOSAR-based

design functions. They also must be extensible by
custom tools which cover domain-specific design
activities or connectors to third-party or legacy tools
for integration with non-AUTOSAR development
steps.

Geensys responds to this demand by building
AUTOSAR tools upon an open and easy to extend
tool platform: AUTOSAR TDK. It is based on the
open source Eclipse framework and provides
common meta models, APIs and services which are
typically required by all kinds of AUTOSAR tools. It
also provides a built-in scripting support enabling
automation-like extension and customization of
existing AUTOSAR tools as well as creation of new
AUTOSAR tools. Scripts are written in fairly well-
known Java programming language, dynamically
compiled, and packaged into plug-lets and deployed
at runtime. This enables EE domain experts who
typically have general programming skills but no
dedicated Eclipse knowledge to instantly start
developing the very specific kind of tools and
connectors they need and to run and use them
within the same environment.

8. Glossary

AUTOSAR: AUTomotive Open System Architecture
EE: Electrical & Electronics
TDK: Tool Development Kit
EMF: Eclipse Modeling Framework
XSD: XML Schema Definition
XML: eXtensible Markup Language
JDT: Java Development Tooling
PDE: Plug-in Development Environment

 Page 4/4

