
HAL Id: hal-02270337
https://hal.science/hal-02270337

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scilab/Scicos: an Open Source Platform for Embedded
Real Time Systems Development

Claude Gomez, Simone Mannori

To cite this version:
Claude Gomez, Simone Mannori. Scilab/Scicos: an Open Source Platform for Embedded Real Time
Systems Development. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse,
France. �hal-02270337�

https://hal.science/hal-02270337
https://hal.archives-ouvertes.fr

Scilab/Scicos: an Open Source Platform for

Embedded Real Time Systems Development
Claude GOMEZ1, Simone MANNORI2

1: CTO, INRIA/Scilab Consortium (claude.gomez@inria.fr)
2: Embedded System Engineer, INRIA/Scilab Consortium (simone.mannori@inria.fr)
INRIA/Scilab Consortium, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

Abstract: Complex, heterogeneous, real time
embedded applications require sophisticated
developments tools for simulation and
implementation. Commercial, closed source
applications are available “on the shelf”, but the
associated financial effort and the limited flexibility
are not always compatible with the budget
constraints and the technical specifications. Some
specific requirements of the embedded applications
match very well the intrinsic proprieties of the Open
Source software. In this paper we show how
Scilab/Scicos can play the role of an Open Source
platform for embedded systems by presenting both
its development model and its applications.

Keywords: Scilab, Scicos, embedded systems, real
time, multi platform, Open Source scientific software.

1. Introduction

The purpose of this paper is to present how the
Open Source platform for numerical computation
Scilab/Scicos [1] can be used for embedded real
time systems. But as well as presenting the
functionalities, we also explain why it is important
that this platform be an Open Source platform and
which is the corresponding organization of Scilab
development.

Figure 1: Open Source trends for embedded.

2. Why is Open Source important for embedded
real time applications?

Today more and more Open Source software is
used for industrial applications [2] (fig.1). This is a
new economical model where software is given and
business is made by service and support. This has
well known advantages for users such as the
independence with respect to the vendor, the
reduction of recurring costs, the flexibility of use,
etc…
In the domain of embedded real time applications,
there are more arguments for Open Source
software:

• Safety. For safety critical applications, the
full access to the source code (of the tools
and the target’s code) is indispensable.
Every certification needs code inspection.
The release of the code under NDA
agreements is not sufficient because of the
impossibility of independent evaluations.

• Reduce non recurring costs. The
acquisition of proprietary tools is normally
associated to high initial costs. In Europe,
most of the innovative development is done
by small companies with modest budget that
cannot sustain this high initial investment.

• Reduce recurring costs. Proprietary tools
need frequent updates. These update are
available only after annual subscription. The
code produced by proprietary tools is
frequently associated to royalties.

• Performances. Using Open Source tools, it
is possible to benchmark tools and target
code keeping one eye on the sources.
Developers are free to modify the code and
experiment alternative solutions. The
inspections and the consequent
optimization, if required, can be pushed to
assembler level.

But the development of Open Source software must
be made in a professional way in order to be used by
both Academics and Companies, leaving the
possibility to be helped by the community of
contributors. This is what we show in the following
sections.

 Page 1/7

3. Scilab until 2007. Development and Structure:
the Scilab Consortium

3.1 Short history of Scilab: why Open Source?
The origin of Scilab comes from the 80’s and was
based upon the original Matlab software written in
FORTRAN code. It was first sold by a subsidiary of
INRIA and in the 90’s it comes back to INRIA. Then
it was developed by researchers from INRIA and
ENPC and it was decided to be distributed freely on
the Internet in 1994.
Numerical computations are used in a large variety
of strategic domains (defense, aerospace, energy,
communications, etc.) and there is nearly only one
such kind of software: a proprietary tool and a “de-
facto monopoly. So there is a need for Free Open
Source Software in Numerical Computation and it
was the reason of the decision to distribute Scilab as
free software.
3.2 Towards professional Open Source numerical
computation software: the Scilab Consortium
Regarding the success of this operation, mainly in
the academic domain, INRIA decided to create a
Consortium to initiate the transfer of Scilab into
professional software. The purpose was to build a
structure (fig.2) and a dedicated team for taking care
of Scilab in order to boost the use of Scilab both by
Academics and by Companies.
Scilab Consortium was created in 2003 and hosted
by INRIA. The team was created as a development
team at INRIA. Today there are 25 members in
Scilab Consortium: ANAGRAM TECHNOLOGIES,
APPEDGE, ARTENUM, AXS INGENIERIE, ATMEL ROMA,
ENGNET, CEA, CNES, DASSAULT AVIATION, ECOLE
CENTRALE DE PARIS, ECOLE POLYTECHNIQUE, EADS, EDF,
ENPC, ESTEREL TECHNOLOGIES, IFP, INRIA, KLIPPEL,
MANDRIVA, PSA PEUGEOT CITROËN, RENAULT, SCALEO
CHIP, STYREL TECHNOLOGIES, THALES and TNI.

Figure 2: Scilab Consortium model.

Since 2003, Scilab Consortium and the dedicated
team have made Scilab versions and Scilab
promotion in the world. The latest Scilab version is

Scilab 4.1.2 released October 2007. It is now
professional software (fig.3).

Figure 3: Scilab in action.

Scilab is used all around the world and there are
now about 50,000 monthly downloads from Scilab
web site.

4. Scilab after 2007: Scilab 5 and the non profit
organization

We can consider that the 5-year INRIA-hosted Scilab
Consortium was the first step for transferring Scilab
software made by researchers to Scilab software
made by development dedicated team. Now we are
starting a second step by two major actions.

4.1 New Scilab software

Next Scilab release, Scilab 5, will be available at the
end of March 2008. It is the beginning of a new
Scilab family and it can be considered as a
technological leap:

• Complete cleaning and reorganization of
source code.

• New GUI and graphics rendering with Java
technology.

Funding
INRIA

Future

Group companies and
academics

Development
Maintenance
Assistance
Promotion

Make a team

• Modularization.

Modularization is a very important improvement
(fig.4). First it allows easier collaboration with the
contributors. Second it allows changing the license:
Scilab 5 will be GPL compatible by adopting CeCILL
license [3].

Scilab license
CeCILL

Free modules: other licenses

Non free modules

Figure 4: Scilab 5 modular architecture.

 Page 2/7

So Scilab 5 will be Free Software according to the
definition of the Free Software Foundation.

It will allow Scilab to be really open software ready
for use and collaboration with a big community of
users both in Academic world and in Industrial world.

4.2 New Scilab structure

Together with new Scilab 5.0, a new organization will
take place for Scilab. New Scilab Consortium will be
a non-profit organization, following the example of
Mozilla Foundation. New Scilab Consortium will be
completely dedicated to Scilab and in charge of
Scilab development, promotion and support for the
members of the organization.

The new organization will be set up before mid 2008
and will play the role of real software publisher.

5. Generating code from Scilab

Scilab itself can be used as a tool for embedded
systems development. This work is done in the
European integrated project named “hArtes” funded
by FP6 call 5 Embedded Systems [4].
The aim of the project is to build a heterogeneous
development platform for embedded system. The
complexity of future real-time embedded systems for
consumer and professional products is becoming too
big to design monolithic processing platforms.
“Monolithic” means based on single hardware and
software architecture (e.g. micro-controller with C
compiled code). “Heterogeneous” means based on
different, mixed and interconnected, hardware and
software architecture like DSP, micro-controllers,
FPGA, ASIC, general purpose processor, etc. that
requires different programming languages and
development tools.

Figure 5: From Scilab script to C code.

Scilab Language is adopted as one of the starting
points of the project for C code generation.
For that we are reorganizing the Scilab
computational kernel in order to support “visitors
oriented” code generation tools.

The work is to create a Scilab to C translator that will
generate minimal C code from Scilab scripts (fig. 5).
Then it will be possible to put the C generated code
in processors such as FPGA or DSP.
So Scilab interpreter can be used to easily create the
program and then efficient C code is automatically
generated.

6. Scilab/Scicos for Embedded Systems

Scilab-EMB: (Scilab Embedded)

For some complex control applications the presence
on the target of the full Scilab/Scicos installation is a
reasonable solution. Modern Industrial PCs are fast
enough to run Scilab/Scicos in real time but the
associated costs and technical limitations (power,
heath, etc.) can render this solution inappropriate.
Scilab-EMB [5] is the implementation of a full,
optimized Linux and Scilab/Scicos integrated
installation on an industrial PC based on ARM
processor. The ARM processor has sufficient
performances at reduced costs with minimal power
requirements (50% cost reduction respect a
standard industrial PC, no heat sinks, no fans).

Figure 5: Scilab EMB.

The full documentation of the project it is available
on the web site [5].
The porting procedure is fully based on multi
platform open source tools. With minimal effort, it is
possible to use the porting guide for other hardware
architectures (PPC, MIPS, OMAP, etc.).
For hard real time application, a patched Linux
kernel version will be available.
The use of a platform different from x86 offer another
advantage: improved immunity from virus.

Scicos-EMB is developed by professor Ma Longhua
and Zhe Peng the Zhejiang University (China).

 Page 3/7

http://www.hartes.org/

7. Scicos for Embedded Systems

7.1 Scicos

Scicos [6] [7] is a Scilab toolbox for modeling and
simulation of dynamical systems where continuous-
time and discrete-time components are
interconnected. Implementing these simulations
using only Scilab scripts is possible but is complex
and time consuming. Scicos uses a graphical editor
where the user can place blocks and connect it with
links: the usual “block diagram” control system
representation (fig. 6).

generator

sinusoid

SystemSystem

yy

xx
uu

est. xest. x

errorerror

generator

random
Demux

+
-

Kalman FilterKalman Filter

 00.0 00.0 00.0

 00.0 00.0 00.0

 00.0 00.0 00.0

0.03

0

S-CLK

0.03

0

S-CLK

0.03

0

S-CLK

Figure 6: Typical Scicos diagram.

Scicos includes palettes of standard blocks that
cover most of the usual situations found in control
applications. The user is free to assemble standard
blocks to create custom blocks or write directly the
code. The block’s code is composed by an
“interfacing function” and a “computational/simulation
function”. The former is used by the editor to interact
with the block’s internal parameters; the latter is
used by the Scicos simulator. Usually, for optimal
performances and maximum flexibility, the
computational function is written in C code and
compiled. The Scilab language is supported for early
development, but not suggested for performance
reasons (Scilab language is interpreted, slower that
compiled C functions). FORTRAN is supported but
not suggested for new development. Other language
can be easily used if required (e.g. Java using JNI).

Figure 7: Scicos Modelica (electrical) diagram.

7.2 Scicos Modelica support

The standard Scicos blocks are “explicit” (oriented
blocks): they have inputs and output ports. This
representation, typical of the control system’s theory,
is not capable to directly model “implicit” elements
(like electrical components), where each port can be,
at the same time, input and output (fig. 7).
Scicos use the Modelica [8] representation to
implement implicit blocks.
7.3 Scicos Code Generation

The code generation [9] was initially developed to
accelerate the simulation of complex super-blocks
(hierarchical user diagrams composed by many
blocks). The code generator integrates the
information of the Scicos compiler (that decides the
sequence of the calls to each computational
function) and the computational function’s source
code to create a single source file. This file becomes
the super-block’s computational function.
This kind of code generation can be used, with some
manual effort, for embedded real time target.

8. Scicos Toolboxes for
Embedded Real Time Systems

Modern software simulation tools have changed
radically the development flow of the control for
embedded system engineers. Scilab and Scicos can
guide the designer to elaborate and optimize
complex control strategies but the results must be
implemented and tested on real systems. This
means doing some tests using the simulator
connected to the real – physical - system and
producing code to be run on the embedded target.
There are several specialized toolboxes in Scicos
targeting different specific needs:

• Scicos-HIL (Hardware In the Loop) allows
the testing and validation of models and
controllers inside the interactive, graphical,
Scicos environment.

• Scicos-RTAI is a specific code generator
capable to produce standalone hard real
time executables under Linux RTAI.

• Scicos-FLEX is another customization of the
Scicos code generator for small DSP and
micro controller target.

• Scicos-HDL is a simulator and code
generator extension for programmable logic
circuits application using HDL (High Level
Hardware Languages, VHDL and Verilog).

These toolboxes are described below.

8.1 Scicos-HIL

Modern PCs are fast enough to simulate complex
systems in real time. The main idea behind Scicos
“Hardware In the Loop” [10] is to use directly Scicos
to simulate part of a control system in close
connection with a real one (fig. 8).

+
-

C
=

10
0e

-9

R
=1

0e
3

R
=1

0e
3

L=
15

0e
-9

R
=2

2e
3

+
-

C
=

0.
1e

-9

+
-

C
=

0.
1e

-9

V MScope

 Page 4/7

Figure 8: Ball and beam demo model.

This kind of “in the loop” simulation can be used to
tune a controller or validate a model (fig.9).

Figure 9: Ball and beam HIL controller.

To implement HIL, it is indispensable to add to the
standard Scicos some I/O blocks and some real time
functions. Scilab/Scicos provides some system
independent “soft real time” capability, but the real
performances are very system dependent.

8.1.1 Scicos-HIL on Windows

Soft real time support under Windows is limited to 20
milliseconds as minimum sampling time. The I/O
support is realized using the library provided from
Measurement Computing [11]. Under Windows,
each I/O board constructor provides a custom
library. Hard real time under Windows is possible
only using expensive, closed source, patches.

8.1.2 Scicos-HIL on Linux

Recent Linux kernels (2.6.2x) [12] offer “near hard
real time” performances for sampling time up to one
millisecond. The Comedi [13] project offers a
complete set of I/O drivers (more than 200 models)
and a unified library. Comedi offers advanced
functions for board inspection and configurations.
This means that the same code can run using
different boards from different constructors.

8.1.3 Scicos-HIL on Linux - RT_PREEPT

The “real time pre emption patch” [14] is not yet a
Linux standard functionality, but many Linux
distributions begin to offer pre-configured kernel.
This patch transforms Linux in a real hard real time
OS (without loose any compatibility with standard
applications) and push the limit of the sampling time
to 100 microseconds (real performances are
configuration dependent). Probably, next year this

hard real time extension will be included in the Linux
source code main line and will be adopted by the
major distributions (IBM, Red Hat and HP are the
main sponsors of this project). We provide a patch to
the standard Scilab/Scicos real time functions that
detects and uses the hard real time features of
RT_PREEPT.
8.2 Scicos-RTAI

RTAI (Real Time Application Interface, [15]) is a hard
real time extension of the standard Linux kernel.
RTAI creates a special class of Linux process and
threads (both in kernel and user space). The
standard Linux programs continue to run in the “non
hard real time” space but can be pre-empted any
time by RTAI programs. Using this “dual kernel”
mechanism, the maximum latency (for real time
applications) is reduced to very low values: with a
well tuned machine is possible to push the sampling
time to 10 microseconds (the “suggested” minimum
sampling time is 40 microseconds).
Scicos-RTAI is a custom version of the standard
Scicos code generation that includes RTAI for hard
real time support and Comedi for I/O interface. With
a single click operation, a complex Scicos diagram is
compiled to a stand alone Linux RTAI application.
Internal parameters control and real time
visualization are realized using a RTAI-Lab [16]
control panel (fig. 10).

Figure 10: RTAI-Lab control panel.

RTAI Lab and the standalone executable exchange
real time data using a custom UDP protocol via
Ethernet network. The same Ethernet connection
can be shared between RTAI applications and
standard Linux applications (e.g. video conferencing,
see fig.10). RTAI-Lab requires a Linux-RTAI
equipped PC: RTAI-XML [17] is a client/server
application that replicates the RTAI-Lab virtual
instruments and control panels in a Java enabled
web browser (Java RTAI Lab, fig.11).

 Page 5/7

Figure 11: JRtaiLab control panel.

Before “RT_PREEPT”, RTAI was the only hard real
time open source option for Linux. RTAI is an open
source project lead by Paolo Mantegazza
(Politecnico di Milano, Italy). Scicos-RTAI is a project
developed and maintained by Roberto Bucher in
collaboration with the INRIA/Scilab Consortium and
the RTAI Team.
8.3 Scicos-FLEX

Most of the usual Scicos embedded applications are
closed loop controls: using a full PC to implement
them can be a real waste of resources. A micro-
controller/DSP is a better solution from many points
of view, but the development of micro-controller/DSP
control applications is expensive in terms of time and
hardware and software tools. Recently, micro-
controller and DSP silicon providers give free tools
(integrated development environment, assembler, C
compiler, libraries, etc.), but the coding is still very
time consuming because the programmer is
responsible of all the fine details like I/O
management and real time support. Practically, this
means that most of the development time is “lost” for
the low level device management and not invested in
the real customer’s application.
Scicos-FLEX [18] is the combination of:

• a custom code generator and specific
palettes of Scicos blocks

• a real time OS optimized for micro-
controllers (ERIKA)

• an integrated environment (RT-DRUID)
based on Eclipse

• a development board.
The control loop are designed and simulated with
Scilab/Scicos; when the simulation is ready, the
code is automatically generated, compiled, linked
with the operating system and downloaded on the
target board via USB connection (fig 12).

Figure 12: Scicos-FLEX development flow.

 The same USB port can be used to monitor and
remotely control the internal parameters of the
running controller on the target (fig. 13).

Figure 13: Scicos-FLEX (light) board.

 Scicos-FLEX is a joint development of the
INRIA/Scilab Consortium, Roberto Bucher (code
generation tools) and Evidence (real time OS,
integrated development environment, hardware
support).
8.4 Scicos-HDL

The latest FPGA devices are sufficiently rich to
implement, at cost comparable to “hard-coded”
solutions, very complex functions. This possibility
opens the door to real “system on chip” realizations
where there is only one chip in the system that
implements all the functions. Some FPGA are
capable to integrate also analog / mixed signal
functions (linear amplifier, data converter, etc.).
Silicon providers offer free (but not open source)
tools for the device configuration (using high level
definition languages such as Verilog or VHDL) and
digital only simulation tools: these tools are not
capable to simulate the full system.
Scicos-HDL [19] is an extension for Scilab/Scicos to
the world of digital design. It includes palettes of the
standard combinatorial and sequential digital basic

 Page 6/7

blocks, a palette of IP-CORE blocks and a Scicos-
HDL specific palette of tools (fig. 13).

Figure 13: Scicos-HDL main palette.

Using Scicos-HDL is possible simulate the full
analog, mixed-signal, digital system. Scicos-HDL
includes an automatic code generation tool capable
to produce Verilog or VHDL code for the “digital only
part” of the simulation (fig.14).

Figure 14: Scicos-HDL diagram.

This code can be “cut and pasted” inside the
compiler that produces binary configuration file for
the physical devices.

In the actual release (0.50), Scicos-HDL is capable
to simulate at reasonable speed only small/medium
complexity circuits. For the simulation phase,
standard Scicos functions written in Scilab or C
language are used. These simulation functions are
not optimized for speed. For next releases we are
working on the integration of the GHDL compiler
inside the Scicos simulator. GHDL [20] is a native
VHDL compiler based on the GNU-GCC structure.
GHDL is capable to translate VHDL code in an
optimized shared library usable for simulation. This

kind of integration (still in development) opens the
way to multithread co-simulation inside Scicos, with
evident advantages of speed on multi cores and
multi processors PC. We are integrating the GHDL
produced shared libraries as separate, independent
threads using semaphores for the synchronization.

Scicos-HDL is developed by Zhang Dong and Kang
Cai (Ningxia University, LIAMA, China Institute of
Automation, Chinese Academy of Sciences) in close
collaboration with the INRIA/Scilab Consortium.

9. Conclusion

The Open Source software can be a valid alternative
to closed source solution, not only for economic
reasons but also for intrinsic flexibility of the
development model that matches most of the
technical challenges of the embedded world.

10. References

[1] www.scilab.org
[2] www.linuxdevices.com/articles/AT7065740528.html
[3] www.cecill.info/index.en.html
[4] www.hartes.org
[5] www.zjufrontech.com/scilab
[6] www.scicos.org
[7] S. L. Campbell, J-Ph. Chancelier et R. Nikoukhah:

"Modeling and Simulation in Scilab/Scicos", Springer,
2005.

[8] www.modelica.org
[9] ref. [7], cap. 12, pag.253
[10] www.scicos.org/scicoshil.html
[11] www.measurementcomputing.com
[12] www.kernel.org
[13] www.comedi.org
[14] http://rt.wiki.kernel.org
[15] www.rtai.org
[16] RTAI-Lab pages on www.rtai.org
[17] http://artist.dsi.unifi.it/rtaixml
[18] Scicos-FLEX:

http://www.evidence.eu.com/content/view/177/2
[19] Scicos-HDL:

http://scicoshdl.sourceforge.net/index_en.htm
[20] GHDL: http://ghdl.free.fr

 Page 7/7

