
HAL Id: hal-02270335
https://hal.science/hal-02270335v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost-efficient design and production of flexible and
re-usable near real-time tactical human-machine

interfaces
O Grisvard, C Huntzinger, M. Le Berre, V Verbeque

To cite this version:
O Grisvard, C Huntzinger, M. Le Berre, V Verbeque. Cost-efficient design and production of flexible
and re-usable near real-time tactical human-machine interfaces. Embedded Real Time Software and
Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270335�

https://hal.science/hal-02270335v1
https://hal.archives-ouvertes.fr


 Page 1/7 

Cost-efficient design and production of flexible and re-usable 
near real-time tactical human-machine interfaces 

O. Grisvard1,2, C. Huntzinger1, M. Le Berre1, V. Verbeque1 
1: THALES Airborne Systems, 10 Avenue de la 1ère DFL – CS 93801 – 29238 Brest Cedex 3 – France 

2: ENST Bretagne, Technopôle Brest-Iroise – CS 83818 – 29238 Brest Cedex 3 – France 
 
 
 

Abstract: Making complex systems accessible to 
human operators supposes to design HMIs that 
provide the operator with means to manage the 
complexity in an efficient manner. This is particularly 
true in the aeronautics domain for tactical HMIs 
where complexity is present in many dimensions. 
Current technical requirements, such as being able 
to display thousands of objects updated on the basis 
of time intervals inferior to half a second, coupled 
with economic requirements such as manning and 
cost reductions, make this issue even more crucial. 
We present our approach to the design and 
production of near real-time tactical HMIs, that 
enables us to devise HMIs that meet such 
requirements while being flexible enough to be re-
used in a wide variety of contexts and produced at a 
reasonable cost. 
Keywords: human-machine interface, near real-
time, design, cost-efficiency, re-use. 

1. Introduction 

Making complex systems accessible to human 
operators supposes to design human-machine 
interfaces (HMIs) that provides the operator with 
means to manage the complexity of the system in an 
efficient manner. This is particularly true in the 
aeronautics domain for tactical command and control 
(C2) HMIs whose purpose is to present the operator 
with a synthetic and comprehensive view of the 
situation and where complexity is present in many 
dimensions: diversity of sensors, diversity of 
missions, diversity of environments (aircrafts, 
ships…), diversity of crew configurations. Current 
technical requirements, such as being able to display 
thousands of objects updated every half-second 
while remaining highly fault-tolerant to ensure 
stability for the operator under stress, coupled with 
economic requirements such as manning and cost 
reductions, make this issue even more crucial. 
 
We present here our approach to the design and 
production of near real-time tactical HMIs, that 
enables us to devise HMIs that meet such 
requirements while being flexible enough to be used 
in a wide variety of contexts and produced at a 
reasonable cost. This approach associates rapid 
prototyping, in order to verify the compliance with 
user requirements and to identify dimensioning 

parameters, together with an innovative framework 
for HMI production based on state-of-the-art 
architectural patterns and HMI technologies. 
 
We demonstrate our approach with examples of 
HMIs in the domain of C2 systems for maritime 
patrol and surveillance. Maritime patrol (military) or 
surveillance (civilian) consists in embarking 
operators in the cabin of an aircraft in order to survey 
coastal waters and identify the mobiles at the 
surface of the sea for various purposes. The 
corresponding HMI examples are taken from 
ongoing industrial programs in this domain. 

2. Managing complexity 

In the domains for which we develop mission 
systems, complexity is present in many dimensions 
that all impact the HMI. To begin with, there is an 
intrinsic functional complexity of nowadays C2 
systems. For example, a state-of-the-art maritime 
patrol system is based on the combination of many 
sensors: radars (classic radar, SLAR – sideways 
looking airborne radar), TV/IR camera (infra-red), 
electro-magnetic detection, IFF (identification friend 
or foe), UV/IR scanner… Consequently, such a 
system can propose up to more or less six hundred 
different functions. The functional complexity of the 
resulting HMI is of course proportional to that 
intrinsic complexity. 
 
C2 systems are used for a wide variety of missions, 
depending on the domain of application, some of 
them being common to all domains, such as tactical 
situation elaboration (TSE), the others being specific 
to each domain. For example, in the domains we 
work for, the missions include the following: 
• Maritime patrol (military): TSE, anti-surface 

warfare, anti-submarine warfare, joint littoral 
warfare, targeting for cruise missiles; 

• Maritime surveillance (civilian): TSE, exclusive 
economic zone control, maritime traffic control, 
fishery control, fight against pollution, 
contraband, piracy, illegal immigration and drug 
trafficking, protection of installations (offshore, oil 
rigs, ports…), maritime search & rescue; 



 Page 2/7 

• Electronic warfare (military): TSE, radar 
detection, communication detection, radar 
jamming, self-protection, electronic intelligence. 

The mission system must be designed as to support 
the performance of these various missions, the HMI 
being the central access point for the operator(s) that 
must perform them. 
 
Additionally, mission systems are embarked on 
various platforms with heterogeneous working 
environments, for example aircrafts, helicopters, 
frigates or submarines. Each platform has its own 
set of physical constraints that have a direct impact 
on HMI design, for example: 

• Available room: constrains the ergonomics; 
• Lighting: constrains the graphics; 
• Movement, vibration: constrains the use of 

input devices; 
• … 

 
Finally, each domain also brings specific 
requirements for crew configurations. The number of 
operators may greatly vary. It ranges from one 
operator who performs all the work on board a small 
maritime surveillance plane, to nine operators on 
board the biggest maritime patrol aircraft, for which 
the work is broken down among the team members. 
In addition, the crew configuration may change 
during the mission, with operators coming in and out 
depending on the urgency of the situation. The 
workload has then to be dynamically re-dispatched 
and the mission system reconfigured accordingly. 
Additionally, the system must be highly fault-tolerant 
as to preserve stability for the operator under stress 
in critical situations. Being the operators’ point of 
entry into the system, the HMI is directly impacted by 
that aspect of complexity management. 
 
The current economic constraints impose to reduce 
as much as possible the number of operators. This 
implies to solve the difficult equation of enabling an 
ever smaller number of individuals to cope with an 
ever increasing system complexity. The solution lies 
in a design of the HMI that will make the functional 
complexity affordable to the operator, which is not a 
trivial issue (see [1] for instance). 
 
Maximising the efficiency of the operator has a direct 
technical impact as this means to accordingly 
increase the efficiency of the system while 
maintaining the standards in terms of reliability. A 
striking example is the requirements imposed on the 
HMI for tactical situation management. It is common 
nowadays to require the processing of thousands of 
moving graphical objects that are updated on the 
basis of time intervals inferior to half a second (see 
Figure 1 for an example of the resulting view). This 
of course has to be done while preserving the 

interactivity on these objects, such that there is no 
perceptible latency for the operator that manipulates 
them. 
 

 
Figure 1: A typical tactical situation 

 
Table 1 below gives examples of time requirements 
taken from a real case of a tactical HMI for maritime 
patrol or surveillance. The terms “near real-time” 
(NRT) comes from such requirements. Fulfilling 
these requirements imposes to devise new 
architectural and technical solutions in order to 
optimise data processing at each stage of the 
process, from data production by the sensor to visual 
rendering of the data on the graphical display. This 
also results in an increased complexity of the HMI, 
both at the architectural level and in terms of 
technical solutions. In particular, tactical HMIs have 
to perform automatic data fusion from various 
sensors, merging for example video streams with 
synthetic objects. Being compliant with NRT 
requirements in such a context imposes to devise 
specific architectural patterns. 
 
Action Response time definition Time 

(sec) 
Window move From command to resulting display 0.5 
Key press From key press to visual feedback 0.1 
Key print From key press to character display 0.2 
Page scroll From end of request to beginning of 

text scroll 
0.5 

X/Y entry From selection of field to visual 
verification 

0.2 

Pointing From pointing input of to visual 
feedback 

0.2 

Sketching From pointing to line display 0.2 
Local update Time for updating the screen image 

with data from the local cache 
0.5 

Table 1: HMI response time requirements 

 
All the dimensions of complexity of mission systems, 
both intrinsic and induced by their context of use, are 
reflected in the corresponding design and production 
process. A great number of actors with quite different 



 Page 3/7 

profiles play a part in that process: system 
architects, system engineers, technical experts, 
software architects, software engineers, software 
developers, etc. Even the customer is now involved, 
both through end-users and domain experts. There 
also an increasing appeal to sub-contracting in order 
to lower the production costs. Indeed, due to market 
globalisation, cost reduction becomes mandatory in 
order to remain competitive. This is another difficult 
equation to solve, producing systems ever 
increasing in size and complexity while avoiding the 
explosion of costs if not actually reducing them. 
 
In the following sections we present the approach 
that enables us to tackle the issues outlined above 
that rise from the problematic of near real-time HMI 
production for complex mission systems. Our 
approach is based on a precise separation of 
concerns through a step by step process from the 
HMI definition to its integration in the system, 
together with a multi-iterations process, iterating first 
on definition and prototyping, then on modelling and 
architecting, and finally on development and test 
(see Figure 2). 
 

DefinitionDefinition

PrototypingPrototyping

ModellingModelling

ArchitectingArchitecting

DevelopmentDevelopment

ValidationValidation

IntegrationIntegration
 

Figure 2: The HMI design and production process 

 
The three following sections detail each iteration 
step of the process. 

3. Rapid prototyping 

As mentioned above, one of the main issues of the 
design of complex systems is to be able to design 
HMIs that make the complexity of the system 
affordable to the users. Traditional approaches to 
system design focus on the system’s functions, the 
HMI being treated as a side task, not being 
particularly challenging. As a matter of fact, it is still 
nowadays often heard that HMI design is an easy 
task and that HMI production should cost nothing. 
This is a major mistake when addressing tactical 
command and control systems that are by definition 
HMI-centric. This has often led to bad HMI design 
and the rejection of the HMI by the end-users, with 

consequently important additional costs in order to 
reach customer satisfaction. This is even more 
crucial as the complexity of these systems explodes. 
If one does not allocate sufficient time an effort, the 
risk is very high to design unusable HMIs. As such, 
as costs must be kept reasonable, HMI design has 
to be re-thought completely [2]. 
 
A solution that has proven efficient and affordable in 
terms of costs is to rely on rapid prototyping to 
iterate with the end-users during HMI definition in 
order to ensure the usability of the resulting HMI 
(see [3]). The additional initial costs induced by this 
approach are largely counterbalanced by the costs 
savings in the production process, as the HMI design 
is agreed once and for all at the end of the first 
iteration step. The prototype can then be used as a 
contract between the customer and the supplier in 
order to guarantee the end-user that the final HMI 
will conform to that agreement. 
 
To support the definition step of our process, we 
have designed a solution for rapid HMI prototyping 
dedicated to tactical HMIs for C2 systems called 
SMOCK (for “Smalltalk MOCK-up”). At the 
prototyping step, the focus has to be put on easing 
the design and limiting the time required to update 
that design. Therefore, we have based our solution 
on the Smalltalk language (www.smalltalk.org) due 
to its essential property to integrate the model and 
the code, that has proven particularly suited for rapid 
code change. Figure 3 shows an example of a 
tactical HMI prototype produced with SMOCK. 
 

 
Figure 3: A tactical HMI prototype 

 
SMOCK enables HMI designers: 
• To simulate the behaviour of the HMI and the 

interactions between the operator and the 
system, validating not only the graphical design 
but also the ergonomics of the HMI; 



 Page 4/7 

• To mock-up several complete operator positions 
and to evaluate the whole in a multi-operator 
environment (see Figure 4 below), easily testing 
different crew configurations; 

• To share this vision with all the actors, including 
the customer, and proceed to light-cost iterations 
in order to reach an agreement on the HMI 
definition; 

• To simulate early dimensioning scenarios, in 
particular by integrating the calculation of a cost-
model in order to evaluate the financial impact of 
a choice in terms of ergonomics; 

• To pre-model the HMI architecture, outlining the 
basic building blocks or components and the 
interfaces between these components as well as 
identifying at an early stage in the process the 
important issues regarding efficiency, resource 
consumption, data-flows, etc. 

 

 
Figure 4: A multi-user prototype 

 
SMOCK maximises the productivity enabling short 
iterations with the customer on the HMI definition. As 
an example, it takes from one minute to change a 
button up to one day and a half to update about ten 
panels. With SMOCK, prototyping becomes a light-
weight process, as the tool can be installed rapidly 
on a laptop and frequently and easily updated. 
Finally, it benefits from additional properties of 
Smalltalk, for example openness to other 
technologies, rapid adaptation to any type of 
platform and compatibility with legacy software. 
 
SMOCK has been used successfully in real-sized 
programs for maritime patrol and surveillance 
systems. The images above are taken from one of 
these programs. One important benefit of SMOCK in 

terms of cost reduction is that the prototypes 
developed for a given program can be 
straightforwardly re-used for another program in the 
same domain as they do not have to cope with 
hardware and technical requirements and can be 
easily and rapidly adapted. 

4. A generic HMI framework 

Following prototyping, we find the central steps of 
the process that consist in modelling the HMI and 
defining its software architecture. These steps are 
crucial as they condition the code production 
process by identifying the building blocks and the 
principles on which the code decomposition and 
assembly will be based. They are initiated during the 
architecture pre-modelling phase of the prototyping 
step. 
 
Our approach to modelling and architecture falls 
within the scope of the model-driven engineering 
(MDE) and model-driven architecture (MDA) 
methodologies, as established standards for the 
development of complex software systems (see [4]). 
The MDE approach places the model as the centre 
of the software production process. The model 
contains the necessary information to ensure the 
consistency of the source code, the testing of that 
code, and the associated documentation (see Figure 
5). Additionally, following a MDA approach, we also 
include in the model the architectural patterns that 
will guarantee both the efficiency of the HMI and the 
manageability of the HMI code. 
 

Code 
under 
test

Java
code 

generation

Code 
execution: 

display the HMI

Document 
generation

Java
Code
Java
Code

UML
Model
UML

Model

Picture 
import

Test 
generation

Tests
Automatic 

non-regression 
testing

 
Figure 5: The MDE process for HMI 

 
Our approach is implemented as a specific layer 
dedicated to tactical HMI production (GFL for 
Graphical Framework Layer) on top of a generic 
framework for HMI production called JAGUAR (JAva 
Graphic Unified ARchitecture) developed conjointly 
with another division of THALES now part of DCNS. 
JAGUAR/GFL is implemented with up-to-date Java 
technology (java.sun.com). The models are 
expressed using the UML standard (www.uml.org), 



 Page 5/7 

and code generation from the model relies on a 
direct mapping of the UML class diagram into a Java 
class hierarchy. 
 
JAGUAR/GFL relies on a component-based 
approach to HMI architecting. In JAGUAR, 
components are realised on the basis of JACOMO 
(JAguar COmponent MOdel), which is a lightweight 
component model derived from the CCM (CORBA 
Component Model, see www.omg.org/technology/ 
documents/formal/components.htm) specification. In 
JACOMO, components are characterised by the 
following elements (see Figure 6 below): 
• The services they provide (facets) and use 

(receptacles); 
• The events they produce (event sources) and 

consume (event sinks); 
• A clear separation between their interface and 

their implementation; 
• A customisable behaviour using parameters 

(attributes). 
 

����

������	�


����

������	�


����������	���
���

�����

�����

���
��

�����

�	���

���
	�����

���������

 
Figure 6: The component model 

 
Such components facilitate the decomposition of the 
software and enable: 
• Explicit contracts as services provided and 

services required, event and data flows; 
• Easy abstraction from technical details (for 

instance, functional components vs. technical 
components) and from specific implementations. 

 
A direct consequence in terms of HMI production 
management is that components provide direct 
support to: 
• The HMI code production organisation with 

facilitated implementation task distribution and 
explicit contracts, especially useful when 
involving subcontracting; 

• The HMI software validation process with black-
box unitary testing at the level of elementary 
components; 

• The HMI software management with an 
independence from COTS components (for 
example the cartographic component) and an 
optimised re-usability of software components. 

 
Building on the component-based approach, GFL 
implements a new architectural pattern dedicated to 
the highly demanding processing of tactical graphical 
HMIs. This pattern is an enhanced version of the 
traditional model-view-controller (MVC) pattern for 
HMIs (see Figure 7). 
 

 
Figure 7: The MVC pattern 

 
This pattern supports: 
• Independence between the various HMI 

processes (operator inputs, displays, data 
updates); 

• Optimal management of the various HMI tasks; 
• Isolation of tasks that are costly in time or in 

resources. 
The benefit for the operator is the preservation of the 
interactivity even in the case of a highly loaded 
situation such as the one of Figure 8 (page 6). 
 
Relying on that specific architectural solution, we 
guarantee the following capacities to the operator: 
• A maximum reactivity on interactions; 
• No global slowdown or freezing of the HMI; 
• Fault tolerance and robustness to breakdowns. 
 
The quality, the efficiency and the robustness of the 
HMI is thus maximised, which enables us to ensure 
the processing of about fifteen hundred tactical 
objects during six hours of mission consuming only 
5% to 8% of the available CPU time. This has been 
measured on an up-to-date dual-core processor 
together with a standard video card. 
 



 Page 6/7 

 
Figure 8: The standard load of a tactical view 

 
Using the JAGUAR/GFL framework, we have 
developed a library of generic tactical HMI 
components that can be re-used across programs 
even in these concern different application domains. 
Indeed, we have already experimented the effective 
re-use of components developed for a maritime 
patrol system in the context of an electronic warfare 
system with HMIs that have different look and feel 
but share similar efficiency and interactivity 
requirements. Capitalisation with JAGUAR/GFL has 
been evaluated as such: 
• 35% of re-use intrinsic to the generic HMI 

production framework; 
• 35% of additional re-use of graphical HMI 

components; 
• Only 30% of the code remaining to be produced 

for each specific HMI. 
These figures clearly demonstrate a high capacity to 
reduce the costs of HMI production after a first initial 
development. 

5. Performing validation 

As mentioned above, the component-based 
approach we follow allows for unitary testing of 
individual components as black-boxes. System-wide 
testing is also facilitated by that approach as 
individual components can be tested in the system 
context using simulation of the other components or 
even simulation of the software infrastructure. Test 
productivity is thus increased by the capacity to 
perform parallel and incremental testing of the HMI 
during its implementation, not having to wait for the 
whole HMI to be developed before the validation 
phase can start. 

 
Furthermore, our approach to HMI validation targets 
the automation of tests, once again in order to 
reduce the costs. We use the prototype model in 
order to identify the characteristics of the HMI that 
must be tested. Test scenarios can be generated 
from experimentations with the prototype using logs 
of the operator’s actions. These scenarios can then 
be used by our validation environment to go through 
all the necessary HMI testing. This environment is 
currently being implemented in Smalltalk, like our 
prototyping framework. This will enable us to 
effectively couple the two in order to implement the 
test automation process. 

6. Conclusion 

We have presented here our approach and process 
for NRT tactical HMI design and production. Our 
solution integrates a rapid prototyping tool, a generic 
tactical HMI modelling and production framework 
and a validation environment. All the architectural 
and technical choices we have made have been 
driven by the need to manage the complexity of such 
HMIs, while preserving the usability for the operator 
and limiting the production costs. 
 
We have demonstrated how our approach ensures 
that end-user requirements are appropriately taken 
into account, guarantees the efficiency of the 
resulting HMI and maximises the re-use from one 
development to the other. 
 
Our current activity is focussed on the automation of 
tests as described above. The main foreseen 
perspective to our work is to study a stronger 
coupling between the prototyping phase and the 
modelling and architecting steps. The idea consists 
in re-using the model and the first architecture 
produced during the prototyping phase as a basis for 
the production of the final model and architecture of 
the HMI. This should enable us to save time and 
efforts for the production of the final HMI model and 
functional architecture. 

7. References 

[1] Boy G. & Bradshaw J.: "Perceived complexity 
versus internal complexity. Did we take into 
account expertise, reliability and cognitive 
stability?", Second Symposium on Resilience 
Engineering, Juan-Les-Pins, France, 2006. 

[2] Sedogbo C., Bisson P., Grisvard O., Poibeau T.: 
“Human-System Interaction Container Paradigm”, 
Tenth International Conference on Human-
Computer Interaction (HCI International), Heraklion, 
Crete, Greece, 2003. 

[3] Hardtke F.: “Rapid prototyping for user-friendly and 
useful human-machine interfaces”, SIAA Annual 



 Page 7/7 

Simulation Technology and Training Conference 
(SimTecT), Canberra, Australia, 2001. 

[4] France R. & Rumpe B.: "Model-driven development 
of complex software: a research roadmap", 
International Conference on Software Engineering: 
Future of Software Engineering, Minneapolis, USA,�
2007. 

8. Glossary 

C2: Command and Control 
CCM: CORBA Component Model 
COTS: Commercial Of-The-Shelf 
CPU: Central Processing Unit 
GFL: Graphical Framework Layer 
HMI: Human-Machine Interface 
IFF: Identification friend or foe 
MDA: Model-Driven Architecture 
MDE: Model-Driven Engineering 
MVC: Model View Controller 
NRT: Near Real Time 
SLAR: Sideways Looking Airborne Radar 
TSE: Tactical Situation Elaboration 
TV/IR: Tele-Vision/Infra-Red�
UML: Unified Modelling Language 
UV/IR: Ultra-Violet/Infra-Red�


