
HAL Id: hal-02270333
https://hal.science/hal-02270333

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HMI automated code generation
Mark Grant, Ken Merrick

To cite this version:
Mark Grant, Ken Merrick. HMI automated code generation. Embedded Real Time Software and
Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270333�

https://hal.science/hal-02270333
https://hal.archives-ouvertes.fr

HMI automated code generation
A. Mark Grant, B. Ken Merrick

1: SiemensVDO, France

Abstract: In today's automotive infotainment
systems a lot of time and effort (= money) is invested
in developing the HMI. One of the problems
encountered when developing HMI is the necessity
to change the spec late on in the development
phase which can result in SOP delays. As a result,
there is a continuing need to reduce the
development time for the HMI. In addition, the
OEM's invest in providing their unique branding and
have it available across the complete product range
offered. Two techniques are invoking interest in this
field:

• Cross-platform HMI frameworks
• Multi-platform code generation

This paper highlights worked carried out on the
second technique – multi-platform code generation.

1. History of the project

In the beginning of 2000 a development group was
created to provide a 'next generation' infotainment
system based on Java technology. One of the goals
was to provide a flexible HMI framework with support
for multi-modality and ease of customisation. It was
decided to define the internal format of the HMI
specification in XML. Due to budget constraints a
design tool that would allow the user to specify the
HMI graphically was postponed and so the
developers had to 'code' the XML by hand. Once the
product was shipped it was decided to provide the
design tool and so a few years later a WYSIWYG
tool was developed to allow the HMI designer to
build the HMI. An additional feature of this tool was
to plug in code generators for the different
hardware/software target systems.

2. HMI specification as XML

The industry trend for HMI (layout) specification is to
use XML as the meta-language, with the different
players providing their own schema. Examples of
this are Microsoft (WPF), Adobe (Flex) and the latest
being Google (Android).
The HMI framework developed for the above system
extended the use of XML to include the definition of
the overall HMI screen hierarchy and transitions as
well as per screen event handling.
As XML is a well formed text based language it lends
itself to automated 'data-handling' such as runtime
parsing, or in our case multi-target code generation.

 The KISS Principle

The KISS principle - Keep It Short and Simple –
means make the simple things simple and the
complex things possible.
The KISS Principle is sometimes cited on a
development project to fend off feature creep - a
tendency for product or project requirements to
increase during development beyond those originally
foreseen, leading to features that weren't originally
planned and resulting in risk to product quality or
schedule.
This is a very common design mistake. Users ask for
lots of features and developers work hard at
delivering those features, but often at the expense of
a simple to use application.
By simple, we mean "everything should be made as
simple as possible, but no simpler" (quote attributed
to Albert Einstein). If the interface doesn't make the
most common way of performing a task as simple as
possible, the interface has failed the user.

 Specifying HMI Layout

HMI consists in general, of various graphical objects
positioned on the screen in such a way as to convey
information to the user in a structured fashion. In
most cases this is in the form of Frames, with each
frame containing visual elements (widgets). More
advanced HMI can provide a better visual
appearance using transparent objects, animation
and 3D, but generally these can be abstracted to
graphical objects laid out on the screen.
If we Take a 1000 feet view of the above we can see
that the HMI layout can be defined as having at any
one time: one screen consisting of one or more
frames, each frame containing one or more widgets.
Each widget has several properties that helps
describe the visual appearance (colour,
transparency, text, icon...).

 Specifying Event handling/Data binding

An event describes, in sufficient detail, a particular
user action. Rather than the program actively
collecting user-generated events, the program is
notified when an interesting event occurs. Programs
that handle user interaction in this fashion are said to
be event driven.

 Page 1/4

Data binding is the process of tying the data in one
object to another object. It provides a convenient
way to pass data around in an application. Data
binding requires a source property, a destination
property, and a triggering event that indicates when
to copy the data from the source to the destination.

 Specifying Screen hierarchy

An applications HMI usually consists of several
screens with each set of screens exposing a set of
features. As the use selects a feature from one
screen, the next screen can propose one or more
additional options which are a subset of the current
feature. Viewed in this manner we can see that the
HMI is composed of a hierarchy of screens and the
user navigates within this hierarchy.

 Specifying transitions

Navigating from one screen to another is
accomplished using event triggers. The result of an
event trigger is referred to as a screen transition and
can be as simple as displaying one screen after
another to providing various animation effects such
as fade-in/fade-out. These transitions help provide a
workflow when navigating through the HMI and are
well defined and consistent throughout the life of the
HMI.
A special case of transitions which breaks the above
workflow is the popup transition. This transition
interrupts the normal flow and can result in a new
level of navigation (navigating through several
screens within the popup context). Once the popup
context is terminated the system must return to the
original workflow. Note that a system can have
several layers of popup and so a context stack must
be provided.

 3. Why code generation?

Code generation is the automated building of high-
level code from a description of the requirements of
the code.
Code generators are split into two major types,
passive and active. Passive generation builds a set
of code once and does not maintain the code over
the long term. Engineers are encouraged to alter the
output of a passive generator to meet their
requirements. Active generators build code and
maintain it through further generation cycles.
Code generation provides several advantages over
its hand-coded equivalent.

Quality

The quality of generated source code is directly
related to the quality of the templates. This is a
big advantage because as you increase the
quality of the templates over time you will also
increase the quality of the entire code base. You
can start out with a relatively lightweight pass at
the templates and then make them more robust
in an iterative process as your gain
understanding of the framework and proper error
handling. Contrast this process with hand-written
code, which will have unreliable quality over time
as interest in the project ebbs and flows.

There's another quality advantage, bug fixing.
Fixing 100 hand-coded classes one by one is a
lot harder than fixing one template and
generating the 100 classes again. Systemic bugs
are much more likely to get fixed in generated
code bases. In addition, optional enhancements
to increase the stability or functionality of the
code base are much more likely to happen. For
all of these reasons, a generated code base is
much more agile and robust than its hand-coded
equivalent.

Consistency

Generated code bases are extremely consistent
in interface definition. This makes it easier to
hand-write code on top of generated APIs. It also
makes it easier to build other layers of generated
code on top of them.

The easiest and most obvious way to get
maintenance changes incorporated is through
code generation. The fundamental here is that
maintenance programmers can not adequately
repeat complex processes, and that instructions
become out of date.

Once code is hand-written by an engineer they
turn thrit attention to something else and the old
code starts to atrophy until someone gives it
some more attention. Generated code is
continuously maintained by the generator. Every
generation cycle replaces the entire generated
code base with fresh code. When bugs are fixed
in the templates they are propagated across all of
the code consistently. So the output code is
always better maintained than its hand-coded
equivalent.

Productivity
The productivity of the engineering group is
unquestionably enhanced by code generation.
The more important productivity increases are
tied to the morale improvement you'll see in the
engineers working on the project. Code
generation applications meet or exceed manually
created ones in every aspect. That includes
performance, security, source control, and so on.

 Page 2/4

 Code generation using XSLT

XSLT is a template language designed to create any
type of text, XML, or Hypertext Markup Language
(HTML) output from XML input. Because source
code is text output, XSLT can create source code.
The XSLT language presents a new way of thinking
because it’s explicitly designed from the ground up
to apply patterns to information in order to transform
information into text. Because metadata is
information and source code is text, XSLT does
exactly the job presented by code generation.
Generally, XSLT processors produce one output file,
although an external utility could break the single
output file into multiple files. For example, in the
case of source code the output file can delimit the
beginning and end of each file with markers not likely
to occur as part of the source code.
Furthermore, the location of each file could be
indicated as part of the generation.
The external utility then processes the single output
file to produce multiple files in multiple locations.
Similarly, input to the XSLT processor should
preferably be one XML file including other XML files.

 Code generation using .Net

The .NET framework is a programming model for
developing, deploying, and running XML Web
services that targets all types of applications. The
.NET framework enables building open applications.
Every .NET-aware language is compiled to
intermediate language code which is executed in
Common Language Runtime (CLR). Custom
attributes are one of the most innovative features of
the .NET framework. They allow everyone to define
information which can be applied to classes,
methods, parameters, and so on.

4. Mapping to the target platform

The basic steps to carry out when specifying the
code generation are:

• Identify the Layout elements in the target
HMI framework

• Identify the widget set and properties
• Identify the event handling mechanism
• Identify the HMI menu structure and display

management.
• Identify the screen transition mechanism

Once specified the next step is the task of mapping the
source HMI schema to the match the final target
framework(s). The mapping steps are:

• Provide template code blocks to represent the
creation and layout of the visual elements

• Provide template code blocks to set/get the
specific widget properties, including type
conversion

• Implement scripts to output the relevant code
blocks when parsing the HMI layout to add the
visual elements and set the element properties

• Provide template code blocks to map input
events to HMI actions (update the screen, send
requests to the application...)

• Provide template code blocks to bind application
data to HMI elements

• Implement scripts to output the relevant code
blocks when parsing the HMI event definitions to
handle the input events

• Provide code blocks to interact with the target
display management framework

• Implement scripts to output the relevant code
blocks when parsing the HMI menu structure and
transition definitions

The above steps cover the majority of cases encountered
up until now (true 3D environments excluded).

As an example, let's assume we are targeting a simple
Flash framework (Flex based) with the following
properties:

• One Frame per screen
• The widget toolkit consists of Text and Button

elements (so Lists must be built using Buttons)
• Business interaction is achieved via Action Script

classes
• Screen navigation is performed by setting the

current child of a ViewStack (Flex specific main
panel)

The following conversion steps are defined:

• Create a Canvas element for each Frame defined
• Add the relevant element for each widget

encountered (including a recursive generator to
create multiple Buttons for List widgets)

• Convert the widget properties to the
corresponding XML attributes

• Add a function for every event defined per frame
which will include the calls to the business logic

• Add the function actions defined for the event
handler (including transitions and screen
updates)

• Associate a click attribute to the widget defined
as triggering the event (name matching)

• Define a function to trigger the screens transitions

With the above defined it is a simple case of adding the
necessary 'plumbing' to call the various templates at the
correct point in the processing of the XML files. An
example sequence is:

 Page 3/4

• Create the header section of the Flex file
• Read in the transitions definitions and call the

template to inject the transition functions
• For each frame:

o Read in the event definitions and call the
template to inject the event handler
functions (and add the business calls)

• Create the ViewStack element
• Read in the list of frames and for each frame: add

a Canvas element
o Read the list of widgets for each frame

and call the template to inject the
element (and set the attributes) for each
widget

o Close the Canvas
• Close the ViewStack
• Append the footer section of the Flex file

The resultant file can then be passed on to the Flex
compiler to produce a Flash file which can be loaded and
tested in a web page.

4. Testing

The code generation, based on the common XML
schema, has so far been tested on the following
graphical environments and platforms:

• SDL (C++) on Linux and Windows XP
• Win32 (C++) on Windows XP and Windows

CE
• .Net (C#) on Windows XP and Windows CE
• Java on Windows XP (AWT and SWT) and

VxWorks
• Flash (Flex+ActionScript) on Windows XP

and Linux
• Yahoo Widgets on Windows XP
• Silverlight (XAML) on Windows XP

For each of the above the target widget toolkit had to
be developed or an external toolkit used, although a
prototype of widget definition using XML is currently
being developed.

5. Conclusion

Using a simple XML specification to define the HMI,
we can easily use existing technology to generate
HMI for varying platforms and frameworks. With the
addition of a WYSIWYG tool this moves the
development of the HMI back to the HMI designer
and frees up the application developers to do what
they are best at – coding, not HMI.

6. Acknowledgement

I would like to thank Ken Merrick who works within
our group for his expert help in analysing the market
trends and sanity-checking my work and our various
team members who contributed to the development

of the HMI frameworks and tooling used throughout
our systems.

7. References

8. Glossary

HMI: Human Machine Interface
XML: eXtensible Markup Language
WYSIWYG: What You See Is What You Get
WPF: Windows Presentation Foundation
SDL: Simple Media Layer is a set of portable libraries
originally designed for game development that provide
graphics/audio capabilities.
Android: Android is a software stack for mobile devices
that includes an operating system, middleware and key
applications.
Flex: Adobe® Flex™ is a cross-platform development
framework for creating rich Internet applications (RIAs).
.Net: .NET is the Microsoft Web services strategy to
connect information, people, systems, and devices
through software. Integrated across the Microsoft platform,
.NET technology provides the ability to quickly build,
deploy, manage, and use connected, security-enhanced
solutions with Web services.

 Page 4/4

