
HAL Id: hal-02270332
https://hal.science/hal-02270332v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application area for multiple software product lines in
automotive development

Uwe Beher, Guenter Boenisch, Mike Heidrich

To cite this version:
Uwe Beher, Guenter Boenisch, Mike Heidrich. Application area for multiple software product lines
in automotive development. Embedded Real Time Software and Systems (ERTS2008), Jan 2008,
Toulouse, France. �hal-02270332�

https://hal.science/hal-02270332v1
https://hal.archives-ouvertes.fr

Application area for multiple software product lines
in automotive development

Uwe Beher1, Guenter Boenisch2, Mike Heidrich3

1: ESG Elektroniksystem- und Logistik-GmbH, uwe.beher@esg.de
2: Continental AG, Guenter.Boenisch@continental-corporation.com

3: Fraunhofer Einrichtung Systeme der Kommunikationstechnik (ESK), mike.heidrich@esk.fraunhofer.de

Abstract:
Since today’s well known software product lines
(SPL) approaches [1] [2] [4] [5] [6] [7] [8] [9] [12]
focus on one single SPL, a methodology for
connection and adjustment of multiple product lines
is needed. The paper will shortly survey existing
processes and methods e.g. FODA [4] for product
lines and show adaptations to automotive industry.
The focus of the paper will be an adapted process
for automotive functional development, which is
based on multiple software product lines (MSPL) and
particularly regards customer-supplier relationship. It
will propose a general SPL interface to manage
using MSPL. The interface consists of a SPL
Interface Methodology which defines steps for the
adjustment of two or more different SPLs as well as
a data interface (SPL Interface Data) which defines a
data format for the exchange between different SPL
tools. The SPL adjustment is demonstrated with a
case study of an imaginary advanced driver
assistance system called mobilSoft Adaptive Cruise
Control (MCC), which consists of three product lines,
one for the whole MCC and two for the subsystems
linear tracking and traverse control.

Keywords: software product lines, multiple software
product lines, SPL Interface Methodology, SPL
Interface Data

1. Introduction

In automotive functional development aspects like
software reliability and productivity draw more and
more attention. As a consequence automotive
manufacturers and suppliers address improved
software engineering processes; introducing
software product lines (SPL) increases reuse of
software elements and supports accomplishing
higher quality at less effort. Implementing improved
SPL adaptations for automotive industry was the aim
of the research program mobilSoft [14]. With the help
of latest scientific methods and the experiences of
the partners in industry, which were automotive
manufacturers and suppliers, purposive solutions for
manifold requirements to existing development
processes especially for automotive application were
found. Among these requirements were short
development timelines, less development effort and
high quality for each single software element. At the

same time development processes are facing
increasing variability and complexity of the final
products.
Four steps were stated as necessary for Automotive
OEMs or suppliers to obtain optimized SPLs and to
get to a functional demonstrator, which verifies the
feasibility of the planned adaptations for the SPL.
The first step was an analysis at automotive
manufactures and suppliers which lead to global
requirements and characteristics for automotive
SPLs and supporting processes. The second step
was the evaluation of existing methods and tools,
which define the technical state of the art, with the
requirements found. The third step was evolving a
specification of an automotive specific SPL, because
existing approaches for SPLs were not particularly
made for automotive application. The last step was
the setup of a demonstrator, where the appropriate
processes and methods were verified. Aim of this
last step is not only proofing the concept of an
adapted process, but also testing acceptance of
comprehensive tool landscapes which are often
combined with the introduction of integrated
approaches.
Among these four steps the analysis of existing
methods in the academic environment and available
tools on the market turned out to be an appropriate
basis for introducing SPLs improvements. In order to
adapt existing tools to fit into existing processes,
systematic and purposive investigations and
determination of efforts are necessary. Especially
introducing new methods in existing complex
development structures is a critical task and needs
well substantiated decision points.
Additionally, existing methods and processes were
investigated for coverage of the interface between
automotive OEMs and suppliers. Because of missing
approaches for this important task in automotive
development, additional methods were evolved
which fit into to existing SPL as an extension of the
process framework. The paper will have a main
focus on this aspect and will propose an SPL
Interface Methodology for adjustment of two or more
different SPLs and SPL Interface Data as data
interface during parallel development in different
organizations. The result of applying these interfaces
is a connection of single SPLs to a Multiple Software
Product Line (MSPL).

 Page 1/8

2. State of the art software product lines

2.1 Existing SPL approaches

The arrangement of software development as a
software product line is an effective method for
increasing reuse in software development and well
known in branches with high software share.

Short Name Short description

FODA Feature
Oriented
Domain
Analysis

Domain analysis method
based on feature trees [4]

FORM Feature
Oriented
Reuse Method

Extension of FODA for
domain design [5]

COPA Component
Oriented
Platform
Architecting
Method

Approach for setup of
SPLs based on
architecture and
component assets [8]

FAST Family-
Oriented
Abstraction
Specification
Translation

Total SPL framework [12]

QADA Quality Driven
Architecture
Design

Quality oriented software
design [7]

PuLSE Product Line
Software
Engineering

Generic and
comprehensive
framework for SPL [2]

KobrA Komponen-
tenbasierte
Anwendungs-
entwicklung

Component based
software development,
application of PuLSE [1]

EAST-
ADL

EAST -
Architecture
Description
Language

Usage of variants in
automotive software
design [6]

pure::
variants

pure::
variants

SPL modeling tool [9]

[pure::systems]

Table 1: Overview of SPL approaches

It was initially applied e.g. in telecommunication,
medical equipment or consumer products, but

recently automotive industry shows increasing
interest as well. In table 1, a short overview of
existing SPL approaches is given. The listed SPL
approaches mainly differ in the focus on software
engineering tasks. The approaches can be classified
in terms of two dominating characteristics.
• The phases of software engineering including

scoping, analysis, design or implementation of
software components

• Main process areas of a SPL, which are domain
engineering and application engineering and
which have their focus on designing and
applying the SPL.

Figure 1 shows the coverage of the different
approaches in terms of the different software
engineering phases and SPL process areas. The
range of the coverage extends from very specialized
tasks for SPLs up to integrated and comprehensive
process models.

Figure 1: Coverage of SPL approaches

The application of one of these approaches as whole
or partial as individual interpretation of the SPL
methodology is, in some instances, realized at
automotive manufacturers or suppliers. However, the
adaptation of the given approaches to the needs of
automotive product development remains being a
very complex task and only few parts of the listed
approaches fit in the special automotive
environment. Thus the following chapter proposes
characteristics needed for a SPL to be suitable as an
(automotive) MSPL.

2.2 Characteristics of an automotive SPL

Regarding [13] the SPL is divided into the process
areas domain engineering and application
engineering. Domain engineering leads to the setup
of the software product family and the design of the
assets, application engineering deploys the assets of
the software product family in order to generate a
final product. As preface for a generative
approach [3] the automotive SPL is divided into

 Page 2/8

requirements space and solution space. This results
in the following alignments of the SPL:
• Domain analysis is the requirements space of

the domain engineering
• Domain design is the solution space for the

domain engineering
• Application analysis is the requirements space of

the application engineering
• Application design is the solution space for the

application engineering
A common method for organizing and illustrating in
the requirements space is the usage of feature
models for variant requirements, which include
features and the relations between features.
Generally a feature model e.g. FODA represents all
possible requirements which can be met by the
product family.
• A Feature describes the requested product

properties from the point of view of a
stakeholder, which in the context of a SPL is a
customer, developer, manager, investor or
supplier.

• A feature reflects single requirements or a set of
aggregated requirements.

• The feature relation describes the relationship
between one or more features, which is
mandatory, optional or excluding.

The selections of features in the feature model
during application engineering builds up single
products of solution space.
The solution space contains a solution model for the
domain and the resulting solutions by specific
selections in the solution model. The solution
selection itself is the result of decisions made along
the solution path. The solution model consists of
selected assets and their relationship. An asset is
the smallest unit of a solution model and can’t be
divided into smaller units. Assets can be categorized
into three types.
• A basic asset is a solution, which can be used in

many products without any change.
• A customized asset is a basic asset, which can

be used in many products and which includes
complete calibration possibilities.

• A specific asset is a solution for only one
product, which is initially introduced into the
product family and which aims at utilization for
further products.

For example an innovation is a specific asset that is
implemented in a product for the first time and which,
in the case of a successful introduction in the
market, is planned to be extended to other products
as customized or basic asset. Aligning the design of
an asset with an existing product family eases the

implementation of the project specific solution into
the SPL.
The feature-asset relation expresses the relationship
between an asset and a feature. Because of a
feature being a set of one or more requirements, an
assignment between requirements and solution is
achieved. The FA Linker (feature asset linker)
includes the relationship between chosen features
and related assets and thus regards only the
relevant subset from the total set of all feature asset
relations. For the interface between SPLs, which is
described in the following chapter, the FA linker
plays a crucial role.
With the characteristics and main tasks proposed for
SPL software engineering, an appropriate fundament
is formed for the specification of an automotive SPL.
This leads to connecting different SPLs to a Multiple
Software Product Line (MSPL), which is also an
automotive requirement.

3. Connection of software product lines

3.1 Fundamentals of connecting product lines

The automotive final product “vehicle” of the OEM is
not the result of only one integrated product line. It
rather consists of different subsystems with their own
product lines and additional single solutions e.g.
innovations, which are initially implemented only in
few car models. Additionally, each subsystem may
be delivered from its own organization, which may
be internal or an external supplier. As a result the
structure of each product line and the stakeholders
mapped to it may differ.

Figure 2: Example: Structure of an OEM SPL

Figure 3: Example: Structure of a supplier SPL

Examples for possible product structures with assets
at OEM and supplier are depicted in figure 2 and
figure 3. Figure 2 shows an OEM with its three
platforms “Upper”, “Middle” and “Compact”. The
“Upper” platform itself consists of four assets.
“U/M/C” is used in “Upper”, “Middle” and “Compact”

 Page 3/8

platform, “U/M” in “Upper” and “Middle” platform,
“U/C” in “Upper” and “Compact” platform and finally
“U” only in “Upper”, which is a single solution. The
structure of the supplier in figure 3 is similar in
methodology but different for the solution. Its
platform “OEM1” consists of “A/B”, a common asset
for its platform “OEM1” and “OEM2”, and a single
solution “A”. It is used in the “Upper” platform of the
OEM in figure 2, but not restricted to it. The supplier
has actually no influence on the OEM decision, to
put it into “U/M/C”, “U/M”, “U/C” or “U”. And finally,
supplier may sell a similar product to another OEM,
which will not be regarded in the SPL of the first
OEM. As a consequence, even if products from the
supplier are used in the platform of the OEM, the
configuration of assets which build up the solution
space is independent.
Furthermore a simple one-to-one match in the
solution space where a product “A/B”+”A” may fit into
“upper class” vehicles is hardly applicable for
automotive industry. In general, separate SPLs exist
at different levels of functional hierarchy and depend
on their own field of activity. In this case, all
individual SPLs need to be synchronized in order to
deliver the correct product at the right time.

Figure 4: Connected SPLs

After synchronization, the setup being composed of
connected SPLs is stated as a Multiple Software
Product Line (MSPL). Figure 4 shows an example
for the structure of connected SPLs. The interfaces
in this example occur between SPLs internally in one
company or externally in many companies. For a
functional connection of SPL it is crucial, to align
each single SPL in a correct hierarchical order.
A layered architecture e.g. EAST-ADL [6] is able to
structure SPLs hierarchically. In the given example,
“SPL A” at supplier may be at the highest level “user”
as interface to the customer. But also internal
product lines “SPL C” at “cluster” level or “SPL D” at
“platform” level need correct alignment to facilitate
“SPL A” providing the requested product.

3.2 Interfaces of multiple software product lines

As stated in the last chapter an important
prerequisite for a MSPL is the synchronization of
each SPL to each other in order to align
development of the SPLs assets. This paper
proposes two main tasks for synchronization:
• Exchange of requirements and design data via a

standardized data model “SPL Interface Data”
• Adjustment of SPL specific tasks via a general

methodology “SPL Interface Methodology”
Figure 5 shows the extension of existing data
models for general automotive SPLs to implement
interface data (“SPL Interface Data”) for adaptation
to other SPLs.

Figure 5: Extension of existing SPL data models

The SPL Interface Data generally contains design
data like
• Product requirements
• Features of the product as set of requirements
• Architecture patterns as reference solutions
The data exchange for synchronization mainly takes
part at an early stage of the development process in
a SPL. An appropriate phase is after domain
analysis, where each single SPL defines its own
reuse concept and asset structure for the product
development. Before reaching domain design phase,
inputs from all other SPLs complete own basic
product requirements by aligning own product
application to the requirements of the total product.
The SPL interface based on the data models and
synchronization tasks needs to cope with a
contradiction. On the one hand it shall be as flexible
as needed to react on changed constraints after
domain design, which at this point typically come
from functional implementation. On the other hand
the SPL interface shall serve as a consistent
backbone for development data. Figure 6 illustrates
the role of SPL Interface Data and SPL Interface
Methodology in the context of single SPLs
implemented into the total product development.

 Page 4/8

Figure 6: Concept of connecting SPLs

The part SPL development represents the individual
SPL process of an organization like a company or a
profit centre in a company. The product development
covers the development of the final product as the
result of the combination of the individual SPL
processes. The SPL interface in between consist of
two main elements, the central data container SPL
Interface Data and the SPL Interface Methodology in
order to synchronize the individual SPL processes.
The SPL Interface Data serve as exchange
mechanism for design data. It consists of
• an architecture mapping
• an SPL IF Allocation List
• the data container itself
The reason for an architecture mapping is founded in
the different SPL approaches, where the connection
into the total product architecture is not provided.
The architecture mapping verifies the architecture
patterns of the single SPLs and assigns each
component to its correct place in the product, thus a
common understanding of the product is established
throughout all SPLs.
The allocation list synchronizes the product features
and assets and supports the compliance of the
requirements to a consistent product design. It deals
as configuration support and is a main document for
the total product development.
The data container is the physical container for
design data for combined SPL development which
are mainly requirements and assets. It is
recommended to structure the container in terms of
connected SPLs, this eases each SPL updating their
own content during change management.
The SPL Interface Methodology describes the
process for connecting, adapting and aligning two or
more SPLs. It provides initialization and
synchronization, which realize a strong connection of
the individual development processes to the final
product. The SPL Interface Data and the SPL
Interface Methodology will be explained in more
detail in the following chapters.

3.3 Architecture mapping and initialization

A key element of a SPL is a reference architecture,
where single products are derived from. In order to
connect software product lines, the elements of the
reference architectures have to match together to
generate a functional total architecture. Reference
architectures may be EAST-ADL [6] or Car-DL [11].
The common base of most reference architectures is
a layered system model, where abstract system
elements at a higher level are divided into smaller
elements at a lower lever which provide more details
of the internal structure.
The architecture mapping coordinates the different
reference architectures at initialization of SPL
alignment. It contains methods for the combination of
requirements and solution spaces in the correct level
of abstraction. Provided, that each individual SPL
has a reference architecture, which fits into the
general architecture frame for the architecture
mapping, the architecture mapping merges all SPLs
into one central architecture of the MSPL. As a
consequence of all reference architectures being
abstract and generic, no SPL has to open its internal
detailed architecture to the central architecture of the
MSPL for the final product. That is e.g. strategic
product plans and customer structures, which are
often modeled in internal architectures, stay closed
to other competing SPLs.

Figure 7: Alignment of different reference

architectures at initialization

Figure 7 shows the result of architecture mapping of
individual SPLs. In this figure, three possible SPLs
are drawn as bordered shapes. The main objective
of the architecture mapping in the SPL Interface
Data is to assign each element of the single SPLs to
the correct layer of the reference architecture and to
requirements or solution space. By overlaying all
SPLs valid intersections of all SPLs can be
determined. The dark grey area in the middle of all

 Page 5/8

shapes is the common part of all SPLs, which needs
a common problem and solution descriptions.
Otherwise areas without any interaction have no
significance for the SPL Interface Methodology.

3.4 Synchronization and allocation

In a MSPL individual SPLs exchange data mainly
during synchronization phase. The data base for the
data exchanged is the SPL IF container. Content of
the container are requirements, features as sets of
requirements, assets, relations of container elements
and additional documents, which support version
control and asset history. Synchronization is
separated into two steps, filling and data adjustment.
During filling phase, all interface data of the other
product lines are collected and structured. Basis of
the structure is the architecture mapping described
previously, which is elaborated during initialization.
After all intersections of the product line are
identified, all features and assets are put together in
the data adjustment phase. As a result, a
comprehensive configuration for all features, assets
and relations is found, which is valid for realizing the
total product. This configuration is a global SPL IF
allocation list which contains the relationship
between all features and assets involved in the
product development.

Figure 8: Allocation list

Figure 8 shows the structure of the allocation list, if
two SPLs “SPL A” and “SPL B” are connected. Only
if the allocation list as a combination of both SPLs
contains only viable product solutions, data
adjustment phase is finished. Product application
design and domain design follow after the
adjustment phase. In case of changes in single SPLs
are required due to the result of a review, the overall
SPL adjustment is triggered again.
Figure 9 shows the resulting package model for a
MSPL which contains all data elaborated for
connected SPLs. These data are SPL specific data
like own reuse, SPL model or Scope or data

especially defined for connection like layered
architecture or SPL interface.

Figure 9: Package model of a MSPL

4. Demonstrator for Multiple
Software Product Lines

4.1 Main task of the demonstrator

The demonstrator supports the verification of an
adapted SPL regarding implementation into a MSPL.
A second effect, which development organizations
should not neglect, is the acceptance test for
introducing integrated software tool landscapes
which comes along with the SPL adaptation.
An option for a MSPL demonstration is building up
the individual SPLs as hardware independent
function, which eases realization of the
demonstration. The software platform to be used
may be a standardized platform like AUTOSAR, but
AUTOSAR is not a prerequisite for the demonstrator.
The concept of the stakeholder need for performing
the interface for the SPLs does not reflect existing
personnel but describes abstract roles and tasks that
need to be performed. The mapping of the requested
roles to an organizational chart has to be found for
each organization individually. The process shown in
figure 10 can serve as a template for all automotive
organizations in order to perform their own SPL
adaptation for a MSPL.

 Page 6/8

Figure 10: Steps for realizing a MSPL

During analysis phase of SPL the own standard SPL
process or individual interpretation of SPL has to be
investigated for adaptations for the MSPL. The result
is a general reference model, which supports
connection to other SPLs and is able to accomplish
own requirements. The verification is achieved by
setting up a case study, which combines several
methods and SPLs together. The demonstration
helps out for analyzing the results of the total
process.

4.2 Results of connection of software product lines

Figure 11 shows the setup of the function mobilSoft
Cruise Control (MCC), which is composed of three
product lines
• The overall MCC function
• Linear tracking for MCC function
• Traverse control for MCC function
In this case study tracking and traverse control are
SPLs of two automotive suppliers and the total MCC
function a SPL at one OEM. The modeling of all
feature models for the problem and solution space
was realized with pure::variants [9]. Architecture
mapping was evolved within the research project
mobilSoft [14] by the use of Car-DL[11] as a
reference architecture. However the shown
approach can be used with other architectures, e.g.
EAST-EEA-ADL [6] as well. The appropriate files for
the SPL IF container and the SPL IF allocation list
were realized as *.xml-documents according to XMS
scheme definitions (XMD) as output of UML based
data models. Finally an iterative refinement of the
MSPL approach was accomplished.

Figure 11: mobilSoft Cruise Control as a MSPL

5. Conclusion

This paper has provided the structure of SPL
Interface Methodology and SPL Interface Data in
order to adjust many individual SPLs into one
Multiple Software Product Line. The result is a global
adjustment list for requirements and solution space
of all involved SPLs. The adjustment list is the base
of product application in each SPL and is an
additional specification at the early stage of a
product development process. In automotive
applications, after implementing additional
requirements emerging from the adjustment list,
existing SPL process for product application shall be
able to perform SPL product development. The
extension of the MSPL has no necessity for special
SPL tools and shall be ready to be integrated in most
tool supported SPLs.

6. Acknowledgement

The authors acknowledge the contribution all
partners of mobilSoft TP6 to this work which are - in
alphabetical order - Audi AG, ESG Elektroniksystem-
und Logistik GmbH, Siemens VDO Automotive AG
and Fraunhofer Einrichtung Systeme der
Kommunikationstechnik.

 Page 7/8

7. References

[1] C. Atkinson, J. Bayer, O. Laitenberger, and J.
Zettel, "Component-Based Software Engineering:
The KobrA Approach," 2001

[2] PuLSE™: A Methodology to Develop Software
Product Lines, Authors: J. Bayer, O. Flege, P.
Knauber, R. Laqua, D. Muthig, K. Schmid, T.
Widen, and J.-M. DeBaud. Proceedings of the Fifth
ACM SIGSOFT Symposium on Software
Reusability (SSR'99), (Los Angeles, CA, USA),
May 1999, pp. 122-131.

[3] K. Czarnecki, U. W. Eisenecker, Generative
Programming, Addison-Wesley, Reading, MA,
2000.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and P. A. Spencer, "Feature-Oriented Domain
Analysis (FODA) Feasibility Study," 1990.

[5] K. C. Kang, S. Kim, K. Kim, G. J. Kim, and E. Shin,
"FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures," 1998.

[6] H. Lönn (ed.), “Definition of language for
automotive embedded electronic architecture”,
EAST-EEA Deliverable D3.6, public report, Version
1.02, 2004.

[7] M. Matinlassi, E. Niemelä, and L. Dobrica, "Quality
driven architecture design and quality analysis
method," 2002.

[8] H. Obbink, J. Müller, P. America, and R. v.
Ommering, "COPA - A Component-Oriented
Platform Architecting Method for Families of
Software-Intensive Electronic Products," 2000.

[9] Pure-Systems GmbH, Tool pure::variants,
http://www.pure-systems.com.

[10] S. Voget (ed.), “Embedded Electronic Architecture -
Glossary”, EAST-EEA public report, Version 7.3,
2004.

[11] D. Wild, A. Fleischmann, J. Hartmann, C. Pfaller,
M. Rappl, and S. Rittmann, “An architecture-centric
approach towards the construction of dependable
automotive software”, In S. of Automotive
Engineers, editor, Proceedings of of the SAE 2006
World Congress, Detroit, 2006.

[12] D. Weiss, C. Lai, and R. Tau, Software product-line
engineering: a family-based software development
process. Addison-Wesley, Reading, MA, 1999.

[13] G. Böckle, P. Knauber, K. Pohl, and K. Schmid,
"Software-Produktlinien," 2004.

[14] Softwaretechnik für das Automobil der Zukunft,
http://www.itm.tum.de/mobilsoft/Startseite.htm.

8. Glossary

Artifact: A physical piece of information that is used or
produced by a software development process. Examples
of Artifacts include models, source files, scripts, and binary
executable files.
Asset: Artifacts in the solution space of a SPL. Examples
of assets includes models, code, documentation or test
cases.
Domain Engineering: Software engineering part of a
SPL which covers the commonalties and variants of all
solutions of a SPL.
Feature: A feature describes a product property from the
point of view of a stakeholder. A feature is a set of
requirements or a single requirement. The relationship
between features may be optional or mandatory and which
may have constraints. The relationship is graphically
described in a feature model.
Layered Architecture: Base structure of a software
product line architecture e.g. Car-DL or EAST-ADL. In a
layered architecture a system is structured into different
levels of details.
MCC: Mobilsoft Cruise Control, the realized demonstrator
for a multiple software product line evolved by the project
“Teilprojekt 6” of the research program “mobilSoft” under
the auspices of the German state of Bavaria.
MSPL: Multiple Software product line, connection of many
individual and independent software product lines
Requirements space: Focus of all requirements in a
software development process. Artifacts of the problem
space in a SPL are features.
Scoping: Software engineering part of the domain
engineering, which consists of product line scoping
(identification and description of products), domain
scoping (determination of common and different
application domains) and asset scoping (planning of the
assets for the SPL).
SPL: Software product line, a mechanism for software
development with focus on reusability, productivity and
quality.
Solution space: Solving of all requirements in a software
development process. Artifacts of the solution space in a
SPL are assets

 Page 8/8

http://www.itm.tum.de/mobilsoft/Startseite.htm

