
HAL Id: hal-02270330
https://hal.science/hal-02270330

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying Java to the Domain of Hard Real-Time
Systems

Kelvin Nilsen

To cite this version:
Kelvin Nilsen. Applying Java to the Domain of Hard Real-Time Systems. Embedded Real Time
Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270330�

https://hal.science/hal-02270330
https://hal.archives-ouvertes.fr

Applying Java to the Domain of Hard Real-Time Systems
Kelvin Nilsen, Ph.D.

Aonix North America
125 E. Main St., #501

American Fork, UT 84003
(+1) 801-756-4821

kelvin@aonix.com
Abstract: Organizations are attracted to Java
because the language has proven more economical
than C and C++. Companies that have made the
switch to Java typically find that they are twice as pro-
ductive during development of new functionality and
five to ten times as productive during reuse of existing
code. Organizations that develop in Java also observe
decreased software error rates, increased software
reuse and longevity, and improved recruitment of
competent developers.

Special hard real-time Java development practices
enable proofs of resource needs and determinism.
Early analysis demonstrates that the hard real-time
Java platform runs in less than a tenth the memory
footprint and up to three times faster than traditional
Java for typical hard real-time tasks. Determinism is
on par with typical C code, offering more than a 20-
fold improvement over the timing predictability of tradi-
tional Java.

Keywords: hard real time, safety certification, Java,
real-time specification for Java

1. Introduction
In the traditional information processing domain,
Java’s high-level support for scalable composition of
software modules is among its most highly valued
benefits in comparison with C and C++ [2, 3].

As an object-oriented programming language, the nat-
ural style of programming in Java requires dynamic
allocation of various temporary objects. In traditional
Java, these objects are allocated in the heap, and
their memory is reclaimed automatically by a garbage
collection system after the objects are no longer in
use. Real-time garbage collectors offering sub-ms
preemption latencies are available now from multiple
vendors. But real-time garbage collection adds com-
plexity, jitter, and performance overhead that are usu-
ally considered inappropriate for hard real-time
software. In 2000, the Java Community Process intro-
duced the Real-Time Specification for Java (RTSJ)
[1]. The RTSJ introduced the notion of stacked mem-
ory scopes to serve the temporary allocation needs of
hard real-time software. By allocating temporary
objects within stacked scopes, the allocation and
deallocation becomes deterministic. But using mem-
ory scopes is very difficult and error prone.

This paper presents an approach that layers addi-
tional abstraction and static analysis on top of the
RTSJ scope stacks in order to simplify development,
ease integration of independently developed compo-
nents, and enable proofs that code components will
not fail because they violate scoped-memory proto-
cols. The approaches are similar to the use of SPARK
abstractions with the Ada programming language [4].
Several important factors combine to motivate the
design of this technology:

1. The safety-critical development community desires
to leverage commercially popular technologies
such as Java rather than specialized niche tech-
nologies such as Ada because free-market compe-
tition among a broader supplier base delivers
higher quality technologies for lower prices.

2. Safety-critical systems need to pass stringent certi-
fication requirements. Certification authorities
expect proofs that programs function correctly.
Certification guidelines also recommend elimina-
tion of all dead code, and require independent
proofs that any deployed dead code is “deacti-
vated”, meaning the code will never be executed.
Run-time assignment checks are very problematic,
because they add significantly to the burden of
proof associated with certification of safety-critical
software.

3. The size and complexity of safety-critical software
continues to grow. Because the costs of develop-
ing and certifying safety-critical software modules
are so high, there is increasing pressure to reuse
safety-critical modules and their certification arti-
facts. This demands a strong separation of con-
cerns between independently developed software
modules. Traditional whole-program analysis tech-

niques are problematic because a small change to
a single module may invalidate all of the certifica-
tion artifacts in the system. For many development
organizations, this is cost prohibitive.

4. The desire to reuse safety-critical software mod-
ules also scales to the domain of mission-critical
systems that do not require safety certification.
Whenever there are common functional require-
ments between safety- and mission-critical sys-
tems, the industry generally prefers solutions that
allow them to maintain a single implementation of
the common functionality. Thus, there is a general
desire to allow code written to the stringent safety-
critical requirements to be deployed in mission-crit-
ical systems which may be larger, more complex,
and more dynamic than typical safety-critical
deployments. For this reason, there is a need to
support dynamic loading of safety-certified real-
time modules.

2. Related Work
Others have examined the challenge of using type
systems to make the use of scope- or stack-based
memory allocation safe. The Cyclone system seeks to
establish a safe alternative to C [5]. Cyclone intro-
duces a type system to support safe stack allocation
and deallocation of memory, and combines this with
explicit safe deallocation of heap objects, along with
automatic conservative garbage collection. A project
at MIT has also developed a type system for safe
region-based memory management of RTSJ pro-
grams [6]. Though the MIT system has many similari-
ties with the approach described in this paper, a key
difference deals with identification of scope levels in
argument lists. The MIT approach requires that every
scoped argument be associated with a particular
named scope, whereas the approach described in this
paper, for the most part, simply identifies that certain
referenced objects may reside in scoped memory,
without requiring programmers to differentiate one
scope from another. For certain special circum-
stances, the type system described in this paper
allows programmers to require that certain incoming
scoped arguments reside in more outer-nested
scopes, or at the same scope level, as certain other
scopes that are relevant to execution of a particular
method or constructor. While the MIT approach is
capable of describing more complicated algorithms
and data structures, the MIT type system imposes far
greater restrictions on the generality of individual soft-
ware modules. This specialization of code interfaces
hinders software reuse and increases the volume of
code that must be written and certified. A third
approach to type-safe scoped memory has been
described in reference [7]. This approach makes use
of existing aspect-oriented programming tools to ana-
lyze and transform stylized Java source code.

3. Thread Stack Memory Model
This paper’s approach to hard real-time Java builds
on the notion of scoped memory, but hides the RTSJ
APIs that manipulate memory scopes. Instead, hard
real-time Java programmers describe their intentions
with respect to use of scoped memory by using anno-
tations which can be statically analyzed and enforced
at compile time. The hard real-time Java profile also
supports the notion of immortal memory, which repre-
sents the outer-most memory scope. Objects allo-
cated within the immortal memory region will not be
reclaimed.

The need to support temporary memory allocation
within real-time programs has been well motivated. At
the same time, there is general agreement that devel-
opers of hard real-time modules do not require the full
generality and flexibility offered by automatic garbage
collection.

Within the RTSJ, hard real-time programmers are
encouraged to use the LTMemory abstraction. This ser-
vice makes it possible to allocate new memory within
a dynamic scope in time that is proportional to the size
of the allocation request. A developer of hard real-
time software must face several significant difficulties
with the use of this abstraction:

1. Knowing how big to make an LTMemory region in
order to reliably support execution of a particular
real-time module is quite difficult and error prone.
Furthermore, it is non-portable between different
compliant RTSJ implementations.

1. Instantiation of an LTMemory region is not a hard
real-time operation. There is no bound on how
much time this will take, and there is, in fact, no
guarantee that a request to instantiate an LTMemory
region will succeed even if there is sufficient avail-
able memory in the system at the time of the
request. This is because memory may become
fragmented during the course of a program’s exe-
cution.

Many RTSJ programmers overlook these difficulties
with use of the LTMemory abstraction. They regularly
allocate and discard LTMemory objects, and successful
execution of test programs instills confidence that the
code will work reliably in the field. This is a dangerous
practice, because it is not generally possible to test all
of the different ways that the allocation pool might
become fragmented. Further, the program may not
behave the same way if it is moved to a different ven-
dor’s compliant RTSJ implementation, or even if the

same vendor provides a new maintenance release of
the same RTSJ implementation.

RTSJ programmers who understand and appreciate
the risks of memory fragmentation find that the only
way to reliably and safely use LTMemory abstractions in
their hard real-time code is to allocate all of the LTMem-
ory objects that their application might need during ini-
tialization of the application. This adds significantly to
the difficulty of implementing and maintaining the soft-
ware, and adds considerably to the amount of mem-
ory required for reliable execution of the application
since many of the LTMemory instances allocated during
startup sit idle throughout most of the program’s exe-
cution.

This paper’s hard-real-time Java profile addresses
these issues by providing static analysis tools to
determine the amount of memory required to execute
particular program modules and by requiring all cre-
ation and destruction of scopes to follow a strict LIFO
(stack) ordering.

At startup, all of the workspace memory available to
support execution of the program is set aside as the
run-time stack for the main hard real-time Java
thread. If the application needs to support more than a
single thread, the main program carves memory from
its run-time stack to represent the run-time stacks for
each of the threads it spawns. Figure 1 illustrates the
organization of the main thread’s run-time stack
immediately after it has spawned three new threads.
This illustration assumes that all three threads were
spawned from the same context within the main
thread. Note that space has been reserved within the
main thread’s stack to allow the main thread to con-
tinue to populate its run-time stack. Note also that it is
essential at this point in the program’s execution to
know the amount of memory that must be reserved to
represent each of the spawned thread’s run-time
stacks. These stacks need not be the same size. In a
typical application, the size of each stack is custom-
tailored to the needs of the given thread.

As execution proceeds, each of the three spawned
threads and the main thread will continue to populate
their respective stacks. Assume the stack memory is
organized as shown in Figure 2 at a subsequent exe-
cution point.

The scoped memory usage guidelines, as defined in
the RTSJ, allow inner-nested objects to refer to
objects residing in more outer-nested scopes, but for-
bids references that go in the opposite direction.
These scope-nesting restrictions guarantee that there
will never exist a dangling pointer from an outer-
nested object to an inner-nested memory location that
no longer exists because its inner-nested scope has
been reclaimed.

Figure 1. Main Thread Stack After Spawning Three Threads

Figure 2. Stack Organization After Each Thread Has
Populated Its Stack

The main thread’s operand stack grows

At the point of spawning three threads,

Reserved stack memory for third spawned

Reserved stack memory for first spawned

Reserved stack memory for second spawned

the main thread’s operand stack has
populated to this point

Scope stack for main thread

thread

downward from top of workspace memory

thread

thread

Additional growth of main operand stack

Additional growth of main scope stack

Operand stacks for spawned

Scope stacks for spawned threads

threads

Given these conventions, any data structures that
must be shared between multiple threads need to
reside either in immortal memory (the outer-most
scope, which is never reclaimed) or must exist within
the parent or some other ancestor thread’s stack
below the point at which the descendent thread was
spawned. Shared objects do not necessarily need to
exist at the time the subthreads are spawned, but the
memory allocation contexts within which the shared
objects will eventually be allocated must be set aside
and entered within the parent thread’s stack before
the point at which the child thread is spawned.

A special protocol must be enforced to support these
conventions. In particular, whenever an ancestor
thread desires to unwind its thread stack beyond the
point at which it had spawned descendent threads, it
must wait for all of the threads that were spawned
from this context to terminate execution before it
returns from this context. Otherwise, we might create
a situation in which a spawned child thread refers to
non-existent objects that once resided within the par-
ent’s scope.

This special protocol is enforced by the hard real-time
Java compiler. Whenever a method spawns the exe-
cution of another thread, the code generator inserts
into the finalization code for this method a request to
unconditionally wait for termination of the spawned
thread. This assures that any scope-resident objects
shared between this method and its spawned sub-
thread persists as long as the subthread is running.

4. Type Attributes
Every reference variable within a scope-safe program
is classified as having one or more of the following
five attributes.

The scoped attribute marks variables that may, but
need not, hold references to objects residing in
scoped memory. A variable that does not have the
scoped attribute is not allowed to hold references to
objects residing in scoped memory.

The immortal attribute marks variables that are known
to hold references to immortal memory, or null. The
immortal attribute is mutually exclusive with the
scoped attribute.

The array attribute is used in combination with the
scoped attribute to identify variables that may hold ref-
erences to arrays residing in scoped memory, the ele-
ments of which are considered to be scoped
variables. In the case that an element of a scoped-
array object is itself a reference to another array, the
referenced array is considered to have the scoped-
array attribute. Note that some reference arrays may
have the scoped attribute without having the array
attribute. Such an array may reside in scoped mem-
ory, but its array elements must reside in immortal
memory.

The captive attribute is used in combination with the
scoped attribute to identify variables whose contents
cannot be copied into static or instance fields. Captive
values are only allowed in local variables and argu-
ments.

The result attribute identifies local reference variables
whose value might be returned from the currently exe-
cuting method.

5. Meta-Data Annotations
The hard real-time Java system uses Java Standard
Edition 5.0 style meta-data annotations to character-
ize the type attributes associated with method and
constructor arguments, method return values,
instance variables, and static variables. Marking static
variables as @Scoped anticipates that certain classes
may be dynamically loaded and unloaded within
inner-nested scopes. In these circumstances, a
dynamically loaded class might have static variables
that refer to objects allocated in more outer-nested
scoped memory regions. The annotations described
in this section are a small subset of the full set of
annotations designed for the scope-safe type system.
Space does not allow presentation of the full system.
See reference [9] for more detail.

The @Scoped annotation applies to instance and static
fields, methods, and method and constructor argu-
ment declarations to indicate that the corresponding
variable has the scoped attribute. When applied to a
method, this annotation denotes that the method may
return a reference to an object that resides in scoped
memory.

The @ScopedThis annotation applies to instance meth-
ods and constructors to indicate that within the corre-
sponding method or constructor body, the this variable
has the scoped attribute. In order to construct an
object within scoped memory, the constructor’s this
variable must have the scoped attribute.

The following implementation of a complex number
abstraction demonstrates the use of both annotations:

public class Complex {
float real, imaginary;

@ScopedThis public Complex(float r, float i) {
real = r;
imaginary = i;

}

public static boolean lengthGT(@Scoped Complex c1,
@Scoped Complex c2) {

return (Math.sqrt(c1.real * c1.real +
c1.imaginary * c1.imaginary) >

Math.sqrt(c2.real * c2.real +
c2.imaginary * c2.imaginary));

}
}

The @CallerAllocatedResult annotation applies to meth-
ods to denote that the caller specifies the context
within which the method’s return object will be allo-
cated. Consider introduction of a multiply() method into
the Complex class as an example of this annotation:

@CallerAllocatedResult @ScopedPure
public Complex multiply(Complex arg) {

float r, i;
r = this.real * arg.real - this.imaginary * arg.imaginary;
i = this.real * arg.imaginary + arg.real * this.imaginary;
return new Complex(r, i);

}

This example introduces the @ScopedPure annotation,
which is shorthand to denote @ScopedThis and @Scoped
for all reference arguments.

There are certain situations under which a constructor
may desire to return an object which contains refer-
ences to other more outer-nested objects. Consider,
for example, the following code:

public class String {
@Scoped StringBuilder data;
int offset, length;

@ScopedThis
public String(@Scoped StringBuilder sb, int off, int len) {

data = sb1;
offset = off;
length = len;

}
}

The type system requires that any @Scoped arguments
to a @ScopedThis constructor reside in scopes that are
at equal or more outer-nested scope level than the
object to be constructed2. In most constructor invoca-
tions, demonstrating compliance with this requirement
is trivial, because the typical object is instantiated in
the inner-most scope. However, invocation of con-
structors from within caller-allocated result methods,
for example, may introduce violations of this rule.

In general, the type checker enforces that any
@Scoped arguments passed to inner-nested caller-allo-

1. The hard real-time Java API introduces a variant of
StringBuilder that lacks methods to perform mutation
on the contents of the character string array. Thus,
this implementation is valid.
cated result methods, or to a constructor that initial-
izes an object to be returned from a caller-allocated
result method originate outside the current method’s
scope. Through inductive reasoning, the hard real-
time Java verifier proves that the @Scoped arguments
passed to any @CallerAllocatedResult method and to any
constructor reside in scopes that enclose the object to
be constructed.

In certain situations, the code that invokes a caller-
allocated result method may choose to request that
the caller-allocated result be placed in immortal mem-
ory. In this circumstance, the hard real-time Java veri-
fier requires that all @Scoped arguments passed to the
caller-allocated-result method refer to objects residing
in immortal memory.

Programmers have an alternative annotation to mark
the scoped arguments of constructors and caller-allo-
cated-result methods which might refer to objects
residing in scopes that are nested internal to the
scope of result object. These arguments are marked
with the @CaptiveScoped or @CaptiveScopedThis annota-
tions. The type system forbids constructors from copy-
ing captive-scoped arguments to the fields of the
newly constructed object.

Another special annotation, @NestedReentrantScope,
marks classes for which certain private @Scoped
instance variables and all @Scoped arguments sent to,
and @Scoped values returned from the instance
methods are known by the type system to reside at
the same scope that holds this object instance. The
type checker enforces these invariants by restricting
allocation of the object itself, restricting allocations
performed by the object’s instance methods, and
restricting assignments to the object’s private instance
fields. This annotation is useful when building data
structures to represent, for example, balanced binary
trees, arbitrary precision numbers, or variants of the
java.util.collections libraries. Space constraints do not
allow for a complete description of the type checking
associated with use of the @NestedReentrantScope or
@ReentrantScope annotations. See reference [9] for a
more thorough explanation.

2. The complete type system described in reference
[9] suports an @AllowCheckedScopedLinks annotation,
which marks methods and constructors that are
allowed to perform assignments that require run-
time checks. For methods and constructors that
carry this annotation, the type system does not
enforce that incoming scoped arguments reside in
scopes that are assignment compatible with the
constructed object.

6. Inference of Local Attributes
Though Java 5.0 meta-data annotations may be asso-
ciated with the declarations of local (auto) variables,
these annotations are not preserved in the class file
representation. Since a design goal is to enforce the
scope-safe type system through byte-code verifica-
tion, the scope-safe type attributes for local variables
must be inferred from context. The type inference sys-
tem implements the algorithm described below.

In discussing this algorithm, the term “variable” repre-
sents temporary locations on the operand stack and
dedicated slots within the method’s activation frame.
In both cases, a particular variable’s lifetime begins
when the value of that memory location is first
defined, and ends immediately following the last use
of that memory location’s value. By this definition, a
given memory location may represent different vari-
ables at different times.

1. All local reference array variables are assumed to
be captive-scoped-array unless demonstrated oth-
erwise.

2. All other local reference variables are assumed to
be captive-scoped unless demonstrated otherwise.

3. If this method returns a reference result, mark
each of the variables passed as an operand to the
areturn byte-code instruction as having the result
attribute.

4. By analysis of a method’s data flow, analyze the
usage of every captive-scoped-array variable. If
there exists a path by which its value might be cop-
ied to a variable that is:
a. scoped-array (but not captive-scoped-array),

change the first variable’s attribute to scoped-
array.

b. captive-scoped (but not captive-scoped-array),
change the first variable’s attribute to scoped-
local.

c. scoped (but not captive-scoped-array or
scoped-array), change the first variable’s
attribute to scoped.

d. not scoped in any form, change the first vari-
able’s attribute to immortal.

5. By analysis of a method’s data flow, analyze the
usage of every scoped-array variable. If there
exists a path by which its value might be copied to
a variable that is:
a. scoped (but not scoped-array), change the first

variable’s attribute to scoped.
b. not scoped in any form, change the first vari-

able’s attribute to immortal.
6. By analysis of a method’s data flow, analyze the
usage of every captive-scoped variable. If there
exists a path by which its value might be copied to
a variable that is:
a. scoped (but not captive-scoped-array or

scoped-array), change the first variable’s
attribute to scoped.

b. not scoped in any form, change the first vari-
able’s attribute to immortal.

7. By analysis of a method’s data flow, analyze the
usage of every scoped variable.
a. If there exists a path by which its value might be

copied to a variable that is not scoped in any
form, change the first variable’s attribute to
immortal.

8. By analysis of a method’s data flow, analyze the
usage of every reference variable that does not
have the result attribute.
a. If there exists a path by which its value might be

copied to a variable that has the result attribute,
add the result attribute to the first variable’s type
description.

In order to assure a consistent interpretation of pro-
gram semantics, the above analysis is performed on
the raw byte-code program before all code optimiza-
tion.

Note that the algorithm described above may result in
changes to the attributes of each local variable. When
a local variable’s attribute changes, the type inference
engine must reconsider the type inference impact of
all assignments to that variable. The type inference
engine iterates in search of a fixed point. The upper
bound on running time is n3 in the number of local
variables and assignments contained within a method.
Since most methods contain a relatively small number
of local variables and assignments, the execution time
is generally tolerable.

7. Byte-Code Verification
Space constraints limit the discussion of byte-code
verification to a high-level overview. A more complete
description is available in reference [9]. Key concepts
are discussed in this section.

Localizing references to scope-allocated objects: To
enable compile-time assurance of scope safety, the
verifier enforces that the content of a scoped variable
is never assigned to another variable that is not
scoped. Likewise, it enforces that captive-scoped val-
ues are never copied to variables that are not identi-
fied as captive-scoped variables.

Assuring scalable composition of modules: An impor-
tant benefit that has made Java more popular than C
and C++ for traditional information processing appli-
cations is the ease with which independently devel-
oped modules are assembled into large and complex
software systems. An important goal of the hard real-
time Java design is to assure that the scope seman-
tics of individual modules are clearly identified in the
annotated API definitions of the modules. These
annotations make it possible for software developers
and maintainers to easily determine whether particular
modules compose simply by examining the interface
declarations for those modules.

To enable scalable software development, the verifier
enforces consistency between overriding method dec-
larations in subclasses and superclasses. If, for exam-
ple, the superclass definition of a method declares its
first argument to have the @Scoped attribute, all sub-
class implementations of the same method must also
declare the first argument to be @Scoped or @Captive-
Scoped. And if a method is declared with @ImmortalAllo-
cation, all overridden superclass methods must also
carry the @ImmortalAllocation annotation. Also, @Immorta-
lAllocation methods and constructors may only be
invoked from contexts that are themselves declared
with the same annotation. This assures that program-
mers do not inadvertantly invoke a method that per-
forms allocation in immortal memory.

Work is under way to integrate the byte-code verifier
within the Eclipse development environment, as illus-
trated in Figure 3. When programmers save their files,
the Eclipse build system automatically invokes the
PERC Pico verifier and any errors detected by the
enhanced byte-code verifier are immediately dis-
played within the Eclipse edit window.

Enabling code patterns that elide scope checks: In
safety-critical systems, developers are required to
offer certification artifacts that prove to the satisfaction
of peer reviewers and certifying authorities that code
runs correctly, without abnormal termination because
a run-time assignment check detects an illegal assign-
ment. In the vanilla RTSJ environment, a run-time
check accompanies every reference assignment and
an exception is thrown if the assignment would create
a reference from an outer-nested object to an inner-
nested object.

The byte-code verifier is required to perform certain
analyses in order to justify that particular assignments
are scope safe. For example, when assigning to a
@Scoped field of an object, the verifier recognizes the
following conditions as not requiring a run-time
assignment check:
1. If the object that contains the field to be assigned
was just allocated within this thread’s inner-most
local scope context, the verifier recognizes that
any values assigned to this field reside in the same
or outer-nested contexts.

2. If the value to be assigned was copied from
another reference field (or array element) of the
same object, the verifier recognizes that the
assigned reference value refers to an object resid-
ing in the same or outer-nested context.

3. If the value to be assigned was copied from
another reference field (or array element) of an
object that was reachable from the object that is
being assigned to, the verifier recognizes that the
assigned reference value refers to an object resid-
ing in the same or outer-nested context.

4. If a reference value being returned from a method
was passed in as an argument to the method, or
was reachable from one of the objects passed in
as arguments to the method, the verifier recog-
nizes that the returned value is visible in the scope
of the caller’s method.

All of the above-described analyses are based on
data-flow analysis of reaching definitions within the

Figure 3. Hard Real-Time Java Development Environment

Vanilla Java
Source Files with

Augmented
.class Files

Portable
C Source Files

Java .class
Files

Eclipse

Eclipse
jdtc

PERC Pico
builder

Eclipse
ANT

C tools
compile/link

Native Runtime
Object Files

Executable PERC
Pico Program

PERC Pico
verifier

PERC Pico
translator

PERC Pico
debugger

Real-Time Annotations

unoptimized byte-code representation of each soft-
ware module.

More sophisticated byte-code analysis rules deal with
more complex software constructs. For example, the
verifier enforces at the point of invocation that all of
the @Scoped (but not necessarily the @CaptiveScoped)
arguments of a method declared with the @CallerAllo-
catedResult annotation reside in scopes that enclose
the scope that holds the caller-allocated result. By
inductive reasoning, the byte-code verifier allows the
values of incoming @Scoped arguments to be assigned
to the fields of the caller-allocated result object without
requiring a run-time assignment check. Similar analy-
sis enables certain check-free assignments within the
instance methods of @NestedReentrantScope classes.

8. Layers of Real-Time Abstraction
In systems that require combinations of hard real-
time, soft real-time, and non-real-time functionality, it
is possible to combine hard real-time Java application
components with components deployed on traditional
Java or soft real-time Java virtual machines. The
mechanism described here allows a hard real-time
Java application to be paired with a traditional Java
virtual machine, enabling efficient and robust imple-
mentation of layered architectures comprised of a
combination of soft real-time Java components that
use standard edition Java libraries and real-time gar-
bage collection and hard real-time Java components
that perform all temporary object allocations with a
stack of allocation scopes.

Unlike the wait-free queue mechanism that is pro-
vided by the RTSJ, this alternative offers the following
benefits:

1. All hard real-time Java components reside in a dif-
ferent virtual name space than all soft real-time (or
traditional) Java components. This means there is
never any confusion between which class libraries
are designed to support the hard real-time execu-
tion model (without heap) and which libraries are
intended to make use of garbage collection.

2. The protocol prohibits direct sharing of objects
between the hard real-time and soft real-time
domains. Thus, there is no way for an errant or
malicious traditional Java component to synchro-
nize at the wrong time or in the wrong way on a
shared hard real-time Java object, thereby intro-
ducing priority inversion that could possibly com-
promise the timeliness constraints of all hard real-
time components.

3. Traditional Java components can block, waiting for
notification from hard real-time components. The
mechanism uses a disciplined form of Java’s famil-
iar wait/notify services. In order to acquire a lock on
a hard real-time Java object, a traditional Java
thread must transform itself into a hard real-time
thread. As such, the thread is under the full control
of the hard real-time Java environment’s priority
ceiling and priority inheritance implementations.
While a traditional Java thread holds a lock on a
hard real-time Java object, it is only allowed to exe-
cute code that was written by the hard real-time
Java developer.

4. Entirely under the control of the hard real-time pro-
grammer, selected hard real-time Java threads can
block, waiting for notification from traditional Java
components. The mechanism also uses a disci-
plined form of Java’s familiar wait/notify services.

5. Besides offering improved encapsulation and sep-
aration of concerns, this mechanism avoids wast-
ing high-priority CPU cycles in busy-wait loops and
avoids the scheduling latency introduced by wait-
ing for a timer tick in an I/O polling loop.

In comparison with the alternative of writing low-level
code in C and combining this with Java by way of the
JNI protocol, this alternative mechanism offers:

1. Improved robustness and scalability, because
object-oriented protocols are used on both sides of
the interface, and byte-code verification ensures
that proper protocols are followed on each side of
the interface.

2. Improved performance, because the byte-code
verification performed on both the soft real-time
and hard real-time Java components enables opti-
mizations, including in-lining, that are not possible
with JNI.

A hard real-time Java method that can be invoked
from a traditional Java virtual machine is known as a
traditional-Java method. The hard real-time Java
byte-code verifier imposes certain restrictions on tra-
ditional-Java methods. These restrictions include

• A traditional-Java method cannot be declared to
return its result in the caller’s scope.

• A traditional-Java method is not allowed to perform
object allocations in immortal memory.

• A traditional-Java method must treat all of its
incoming arguments as potentially residing in
scoped memory.

9. Experience
The byte-code verifier for this paper’s hard real-time
Java system was released commercially in the spring
of 2007 as part of the PERC Pico product. The PERC
Ultra product, which first shipped in 1997, uses real-

time garbage collection to support soft real-time appli-
cations. An integration of these two products supports
hybrid applications.

The hard real-time library subset of standard edition
Java comprises approximately 20,000 lines of reus-
able real-time Java software. To demonstrate the use
of this technology, the author has implemented a pro-
prietary RegionMatch Java benchmark based on algo-
rithms provided by one of our aerospace customers
(about 2,500 lines) and a single-board computer simu-
lation involving an interrupt-handling device driver
(approximately 4,000 lines). We have also ported sev-
eral benchmarks to the scope-safe type system,
including the FFT benchmark of the Java Grande
Forum and and the CaffeineMark benchmark. These
experiments have demonstrated that the type system
is sufficiently expressive to support scope-safe solu-
tions to a broad variety of real-time programming chal-
lenges. Evaluation of several synthetic benchmarks
demonstrates that hard real-time Java programs run
significantly faster than traditional Java. This is
because they incur neither the run-time overheads of
real-time garbage collection, nor the run-time over-
heads of scope enforcement.

The effort required to convert vanilla RTSJ and vanilla
Java code to the scope-safe type system is facilitated
by enforcement of the scope-safe type system. The
porting process typically consists of:

1. Copying the standard-edition or RTSJ Java source
code into a directory appropriate for use of the
Eclipse development environment with the special
byte-code verification tools;

2. Setting up a Makefile or Eclipse to build the desired
program using the safety-critical Java tool chain;
and

3. Repeatedly:
a. compiling the code,
b. examining the error messages produced by the

byte-code verifier, and
c. adding appropriate annotations and/or refactor-

ing the code to address the problems identified
in the error messages.

This is a very different process than the typical effort
required to port traditional Java to vanilla RTSJ. In
order to port traditional Java code, programmers gen-
erally need to understand the program’s memory allo-
cation behavior (a non-trivial task for programs that
might consist of tens if not hundreds of thousands of
lines of code), and need to map all memory allocation
operations to appropriate RTSJ scopes (or to the
immortal region). With traditional RTSJ porting, pro-
grammers are rarely confident that they’ve done the
port correctly, and generally depend on extensive test-
ing to make sure the ported code does not result in
illegal assignments, illegal fetches, or scope cycles.
Even then, there often remains a lingering uncertainty
that testing has not fully exercised all of the paths and
data values that might possibly lead to violation of
scoped-memory protocol rules.

For many applications, the process of porting to the
scope-safe type system is straightforward. For exam-
ple, the effort required to properly annotate the vanilla
Java Grande FFT benchmark was roughly half a day
for one software engineer.

In various experiments conducted on this hard real-
time Java solution, we have found that Java code
structured according to the hard real-time Java con-
ventions executes within 15% of the speed, memory
footprint, and determinism of optimized C code. Table
1 compares the efficiency of optimized C with com-
mercial products supporting both soft real-time (PERC
Ultra) and hard real-time (PERC Pico) execution of
Java. The measured workload was patterned after a
real-world defense-system application which a cus-
tomer used to evaluate the comparative performance
of C and Java. Though the Sun HotSpot VM is not
designed to support real-time operation, we evaluated
the benchmark on Sun HotSpot as well. Interestingly,
the average time on Sun Hotspot is even better than
optimized C, 294 ns. However, the maximum time for
the HotSpot implementation was 8,089 ns and the
standard deviation was 228.8 ns. After profiling the
code in real time, the Sun HotSpot virtual machine
transformed the code, in-lining various method calls in
order to optimize the efficiency of the typical path
through the code. This optimization approach serves
the traditional non-real community very well, but it vio-
lates fundamental requirements, such as predictable
timing behavior and traceability of code, of most real-
time systems.

Also noteworthy was HotSpot’s virtual memory con-
sumption of over 250 Mbytes. HotSpot improves upon
C speed by profiling the code as it runs and in-lining
the implementation of certain key methods in order to
optimize their execution on the fly. The reason for the
very high standard deviation is because HotSpot’s
non-real-time garbage collector and dynamic adaptive
JIT compiler introduce unpredictable delays into the
execution of application code.

In some cases, we have measured that hard real-time
Java code runs even faster than comparable hand-
written C code. Usually, this occurs when applications
allocate large numbers of small temporary objects.
The hard real-time Java’s scoped-based allocation is
much more efficient and deterministic than typical C

implementations of malloc and free. Contrast this with
compliant full implementations of the RTSJ, which
generally run slower and larger than traditional Java,
and introduce the complexity of run-time enforcement
of scoped memory protocols. This complexity adds
significantly to the costs of development, mainte-
nance, and validation of real-time software.

With the ability of hard real-time Java to match C per-
formance, the motivation to use C for the implementa-
tion of low-level, performance critical code decreases
significantly. Today, the majority of successfully
deployed real-time Java applications incorporate a
combination of Java, C, and JNI. The C code has
been required to implement portions of the system
that demand higher throughput, more determinism, or
smaller (more economical) memory footprint than is
feasible with traditional Java. In some cases, the use
of C for low-level software is motivated by a need to
directly interface to hardware devices.

Based on many years of experience building embed-
ded systems using the Java language, developers
have come to view JNI as the Achilles’ heel of their
system architectures. All of the security that is such an
intrinsic part of the Java platform is compromised at
the JNI boundary. Multiple customers have identified
this interface as the single most common source of
errors in their developed systems. This has motivated
embedded Java developers to seek the ability to
replace their low-level C code with high-performance
Java code.

Besides offering improved abstraction and modularity,
the mechanisms described in section 8 also offer sig-
nificant performance benefits. We experimented with
a Java Mandelbrot fractal image application, using
“low-level” code to calculate the color of each pixel.
Our experiment compared the efficiency of using hard
real-time Java vs. optimized C for the low-level code.
We found that the differences in performance
depends on the size and zoom factor for the image
rendered. Certain pixels require more computation
than others. Pixels that require a lot of computation
favor C over Pico, because the code generated cur-
rently by the Pico compiler is not quite as efficient as
hand-written C code. The dominant performance fac-

Table 1. Determinism and Footprint Tradeoffs

Gnu C
(gcc -O2) PERC Ultra PERC Pico

Min (ns) 280 519 314
Max (ns) 571 1,060 633

Average (ns) 360 639 392
Std Dev (ns) 25.52465 48.66415 29.8434

Memory (MB) 2.32 24 2.5
tor, however, is the cost of making a JNI invocation vs.
the cost of invoking PERC Pico code from within the
PERC Ultra environment. This interface is much more
efficient than JNI. Consistently, the integrated full-
Java solution outperformed the HotSpot/C implemen-
tation. For certain rendered images, the total render-
ing time was over 2.3 times faster with the full-Java
solution.

10. References
[1] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S.

Furr, M. Turnbull, “The Real-Time Specification for
Java”, Addison Wesley Longman, 195 pages, Jan.
15, 2000.

[2] K. Nilsen. “Applying COTS Java Benefits to Mis-
sion-Critical Real-Time Software”, Crosstalk The
Journal of Defense Software Engineering, pp. 19-
24. June 2007.

[3] K. Nilsen. “Using Java for Reusable Embedded
Real-Time Component Libraries”, Crosstalk The
Journal of Defense Software Engineering, pp. 13-
18. December 2004.

[4] J. Barnes, “High Integrity Software: The SPARK
Approach to Safety and Security”, Addison-Wes-
ley, Apr. 25, 2003.

[5] M. Hicks, G. Morrisett, D. Grossman, T. Jim, “Expe-
rience With Safe Manual Memory-Management in
Cyclone”, Proceedings of the 4th International
Symposium on Memory Management, pp. 73-84,
2004.

[6] A. Salcianu, C. Boyapati, W. Beebee, Jr., M.
Rinard, “A Type System for Safe Region-Based
Memory Management in Real-Time Java”, Pro-
ceedings of the ACM Conference on Programming
Language Design and Implementation, San Diego,
June 2003.

[7] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek,
T. Zhao, “Scoped Types and Aspects for Real-Time
Java”, ECOOP, pp. 124-147, Springer-Verlag,
2006.

[8] K. Arnold, J. Gosling, D. Holmes. The Java™ Pro-
gramming Language, 4th edition. 928 pages. Pren-
tice Hall PTR. Aug, 2005.

[9] K. Nilsen. “Guidelines for Scalable Java Develop-
ment of Real-Time Systems”, March 2006, avail-
able at http://research.aonix.com/jsc.

	Aonix North America 125 E. Main St., #501 American Fork, UT 84003 (+1) 801-756-4821
	kelvin@aonix.com
	1. Introduction
	2. Related Work
	3. Thread Stack Memory Model
	Figure 1. Main Thread Stack After Spawning Three Threads
	Figure 2. Stack Organization After Each Thread Has Populated Its Stack

	4. Type Attributes
	5. Meta-Data Annotations
	6. Inference of Local Attributes
	7. Byte-Code Verification
	Figure 3. Hard Real-Time Java Development Environment

	8. Layers of Real-Time Abstraction
	9. Experience
	10. References

