
HAL Id: hal-02270329
https://hal.science/hal-02270329v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Software V&V using Virtual Platforms for
Powertrain applications
P Cuenot, B Tavernier, J. Talbot

To cite this version:
P Cuenot, B Tavernier, J. Talbot. Embedded Software V&V using Virtual Platforms for Powertrain
applications. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France.
�hal-02270329�

https://hal.science/hal-02270329v1
https://hal.archives-ouvertes.fr

Page 1/8

Embedded Software V&V using Virtual Platforms for Powertrain
applications

P. Cuenot1, B. Tavernier2, J.M. Talbot2

1: Siemens VDO Automotive SAS, a Continental Corporation company, 1av. Paul Ourliac, BP 1149, 31036
Toulouse, France

2: VaST Systems Technology, 18 rue de La Tuilerie, 38170 Seyssinet-Pariset, France

Abstract:
Current development trends for automotive products
are driven by time to market reduction, cost
optimization, and quality improvement. Dual to these
business constraints are demands for innovation and
safety conformance which impose increasing
complexity on embedded systems. To address these
challenges impacting software and hardware to
improve system dependability, new methodology
and tools need to be set-up. The use of
representative virtual platforms combining speed and
accuracy allows earlier software development,
improved system testing, and fault injection analysis,
with a high potential for reuse of system IPs
(including both hardware and software). In this
paper, we will present investigation on new methods
and associated results using a simplified virtual
platform to test a powertrain application.

Keywords: TLM, Verification, virtual platform

1. Introduction

Current development trends in embedded
automotive software for Powertrain systems are
towards increased complexity due to the very high
level of optimization in the control/command.
Systems control complexity ranges from low end
applications such as gasoline port injection, to more
sophisticated applications such as high pressure
diesel engine, to very high end applications such as
hybrid and power management control. As a
consequence, the algorithms applied increase in
complexity and require more resources to execute
with the level of confidence required by a safety-
critical system.

In parallel, the introduction of new features for
passenger comfort, the addition of new sensors and
actuators to comply with pollution regulation, and
interconnection with in-vehicle network
communication drives increasing software and
hardware complexity which makes the system more
difficult to test on a classical test bench. To face the
challenge of the greater complexity of both software
and hardware, new methodology and tools need to

be set-up. In particular, the use of representative
virtual platforms which combine speed and accuracy
facilitates earlier software development and better
testing of the systems. Another industrial issue is
hardware design, followed by software development
often places the software development in the critical
project planning path. Virtual platforms allow early
software development in general and hardware
dependant software (e.g. device drivers) in
particular. Virtual platforms also simplify the
distribution of reference hardware architectures
throughout geographically distributed development
groups within a company. Virtual platforms also
benefit the entire supply chain.

Virtual platforms are providing the automotive
industry with additional means to face its economical
challenges in facilitating Design to Cost optimisation.
HW/SW trade-offs, effect of hardware configuration
can be assessed by early and fast platform
prototyping. New hardware architectures embedding
ASICs can be explored to optimize performance.

The key issue for such technology is the availability
of hardware models and their conformance to their
silicon implementation. Simulation performance and
standardization of hardware modelling style are
mandatory for industrial usage in automotive
embedded systems. We believe that Transaction
Level Modelling is adequate to reach these goals as
supported by the systemC OSCI initiative [1].

In this paper, we will present a virtual platform based
on a simplified version of the Copperhead micro-
controller (MPC5554 from Freescale), including an
external ASIC model developed in SystemC by
Continental. This platform was developed using the
CoMET tool from VaST Systems Technology. We
focused our study on demonstrating on how this
platform can facilitate early software development
and non-regression testing of the system without the
need for physical hardware.

In the first section, the methodology used for
hardware modelling with a TLM style is presented,
while section two describes the use case study and
a platform overview. Section three details the
technical results obtained and compare them to the
initial objectives. Finally, the conclusion outlines the

Page 2/8

benefits of such approach and possible extensions
for industrial application.

2. Modeling Technology

A virtual platform enabling software development for
powertrain application (and more generally safety
critical application) must be fast and accurate. With a
TLM approach, VaST core models like the e200z6
are able to run classical benchmarks like Viterbi at
more than 80 MIPS (with more than 99% cycle
accuracy) on a 2 GHz Pentium 4 machine with 1 Go
of RAM. Keeping that range of speed at the platform
level can be achieved by abstracting the signals and
the behaviour to a higher level than RTL without
compromising the timing accuracy at the system
level.

In this chapter, we will present some modelling
principles to maximize the simulation speed in the
platform. First we will describe how clock signals are
modelled and how communication channels like a
serial link, an internal bus, or a CAN bus can be
abstracted at a transaction level for modelling (TLM).
Then we will propose generic principles for reducing
the number of events in a SystemC peripheral model
like a timer. We will see that this model can be used
for acquisition of frequency inputs (like event capture
in powertrain applications) with both speed and
accuracy.

Clock Modelling

Clocks are one of the most critical signals we need
to abstract for having a fast and accurate virtual
platform. Since simulation kernels for modelling
virtual platforms are event driven, a pulsing clock will
generate an event on every edge, even if most of
these events are useless.

For example, if a peripheral is in an inactive state but
has a pulsing clock as an input triggering a callback
function (for example a SC_METHOD sensitive to
positive edges), some code will be executed by the
simulation kernel even if it will have no effect on the
platform behaviour.

To improve the simulation speed, clock signals can
be abstracted by their period, implying the following
advantages:
• An event is generated only when the period of

the clock signal changes. The occurrence of that
kind of event is far less frequent than the clock
pulse.

• We can keep full cycle accuracy by replacing
clock driven behaviour by clock computation and
timing annotation and generate only observable
events.

• With that kind of abstraction, dynamic clocking in
peripheral models comes for free.

With its modelling API, VaST simulation tools
provides a set of useful functions for reconstructing
clock signals from a period-based clock
representation, which helps in raising the level of
modelling abstraction to TLM. This API also
facilitates standard operations for peripheral
modelling like programming a callback in a specific
number of clock ticks.

In SystemC modelling, sc_clock primitive objects are
pulsing clock models. They should be avoided and
replaced by an integer signal modelling the clock
period. This kind of abstraction will require more
computation than using the VaST API, but this can
be easily managed by a helper class in charge of all
the conversions between number of clock ticks and
absolute time (as required in SystemC).

Communication Channels
The way to abstract communications over a specific
channel follow the same principles:
• Data frames are passed from the producer to the

consumer in one step.
• Only observable parts of the protocol are

modelled and (if required) associated with
events. If the producer (or consumer) does not
require these internal events (like partial phases
of a burst transaction), the events are
suppressed and this makes the protocol even
faster.

• Channels with arbitration are modelled by a
specific “protocol engine” in charge of
scheduling each transaction and granting the
bus access to each master.

Serial Protocol

A serial transfer is abstracted to convey only the
information relevant from the system point of view.
Typically, on the simplest cases, only the following
information is relevant at the system level:
• Baud rate of the transfer.
• Timestamp of the end of the transfer.
• Data transferred.

So instead of modelling each bit transfer at each
clock tick, we can abstract all of these events by a
single transaction transferring the data in a single
event with the timing calculated by taking the baud
rate period multiplied by the number of bits
transferred.

Bus Abstraction

Bus transactions are abstracted by observable
events from a master or a slave point of view. For
example, in an internal bus transaction, only the
following events are observable from a master
requesting a bus transaction:
• Getting access to the bus (grant event)

Page 3/8

• If required, completion of intermediate phases of
the transaction such as in the case of a burst
access (partial completion event)

• Completing the transaction (complete event)

Independent of these events associated with the bus
protocol, the data can be transferred in a single step.

The same kind of abstraction are used in the CAN
bus model where a specific “Protocol Engine” model
is in charge of resolving priority questions build from
message configuration. Only observable events are
modelled such as when a frame is accepted, or
when a frame has been successfully received.

Efficient SystemC Modelling

Since SystemC modelling style is event driven,
efficiency in implementing a peripheral is obtained by
limiting the number of events generated by the
model. This is mainly done by combining modelling
techniques like:
• Event prediction. This means using the current

context to predict an event which will happen in
the future. Of course, a change in the peripheral
context (for example a change in the registers of
the peripheral, or a modification of the reference
clock period) must be taken into account and
future events must be programmed again.

• Context storing and computation. This means
storing into the peripheral model any information
necessary to update the peripheral state when
required (e.g. when the user needs it). In our
timer example above, we will see that storing a
timestamp can save hundreds of events without
losing accuracy.

Another important issue, more related to SystemC
implementation than an abstraction principle, is:
since a SC_THREAD is implemented as a thread in
the OSCI kernel, this kind of construct implies an
overhead due to task switching. In most cases, this
can be avoided using a “callback” modelling
approach by combining a SC_METHOD and an
internal event which is used to trigger the callback.

A simple timer model for counting events

In this paragraph, we will see how the above general
principles can be implemented in a simple timer and
how this methodology offers dynamic clocking
capabilities “for free”. Then, we will see that this
capability can be used to count and measure events,
where the input could be a clock signal with a
variable frequency (common case in automotive
applications).

Timer external interface

The simple timer interface will contain:
• A bus interface composed of a Bus port and a

Bus Clock port. The bus interface will be

connected to the peripheral bus accessible from
the Bus ports of the e200z6 core.

• A “Reset” input.
• A “TimerClock” input used to provide the clock

reference used by the timer.
• A “TimerInt” output. This port is a logical output

used to request an interrupt. This output is
typically connected to the Interrupt controller.

Timer registers

Remark: In this paper, we will not talk about the
particular TLM protocol used to access internal
registers. Simulation Tools such as VaST’s support
several bus protocols and automatically add a Cycle-
Accurate Bus transactor to support PV (Programmer
View) untimed models. Here we will just suppose
that the TLM protocol enables a bus access for
reading or writing internal registers. More details can
be found in [4].

Our simple timer will use 5 registers:
• GTR (Global Time Register) contains the current

number of clock ticks elapsed.
• OS_PERIOD contains the clock ticks target

value for generating an interrupt.
• INT_ENABLE is used to enable interrupts when

GTR = OS_PERIOD.
• INT_FLAG reflects the TimerInt output status.

This register is used to clear the interrupt.
• TIMER_ENABLE is used to enable/disable the

timer.

Timer behaviour modelling

The specification of this very simple timer is the
following:
1 – When a reset occurs, all register values are set
to zero and the TimerInt output is set to zero.
2 – When the timer is enabled, the GTR register can
be read from the bus interface to get the current
number of edges since the latest interrupt.
3 – An interrupt is raised when GTR = OS_PERIOD
and INT_ENABLE = 1. Raising an interrupt means
writing 1 on the TimerInt logical output and in the
INT_FLAG register.
4 – TimerInt output can be cleared by writing zero in
the INT_FLAG register.
5 – Dynamic clocking must be taken into account.

Even with such a simple specification, an inefficient
modelling style could lead to poor simulation
performance. For example, modelling this timer
using a pulsing clock used to increment the GTR
register could imply the simulation speed to be in the
KIPS (Kilo Instruction Per Second) range instead of
the MIPS range, even if the e200z6 core model can
run at more than 60 MIPS. Furthermore, it is useless
trying to keep a continuously updated value in the
GTR register, especially if the user (ie the software)
does not read it.

Page 4/8

We will model the behaviour using the three
principles described above:
• No SC_THREAD. Our behaviour will use the

following SC_METHOD:
o The Reset method, executed when the reset

input port changes
o The ClockChanged method, executed when

the clock port value changes. Since the
clock will be abstracted by its period, this
method will be triggered only when the
period of the clock changes.

o A MatchEvent method. This one will be
triggered using an internal event used for
event prediction.

• Context storing and computation: As explained
above, we don’t have to update the current
timer value (GTR register). We can just store a
timestamp associated with the value in the GTR
register. When the user reads the register, we
can calculate the proper GTR value by adding
the number of clock ticks corresponding to the
time elapsed from the stored GTR timestamp
and the current time.

void cTimer::UpdateCurrentTime(void) {
 if (mTIMER_ENABLE) {
 sc_time NowTime = sc_time_stamp();
 mGTR += (int)((NowTime - mTimeStamp)

/mClockPeriod);
 mTimeStamp = NowTime;

 }
}

• Event Prediction: when the GTR value is
consistent, we can easily predict when the
interrupt need to be raised. If the timer is
enabled, it will occur in OS_PERIOD – GTR
ticks; so using the clock period, we can easily
schedule the interrupt event in the future. Of
course, if the context changes (clock period
change, register configuration changes…), this
event needs to be unscheduled and
rescheduled.

void cTimer::SetupNextMatch(void) {
 mTimerEvent.cancel();
 if (TIMER_ENABLE) {
 int matchTick = mOS_PERIOD-mGTR;
 if (matchTick>=0)

 mTimerEvent.notify(
(double)(matchTick*mClockPeriod.value()),
SC_PS

);
 }

}

If nothing changes in the context, the
mTimerEvent will occur at the scheduled time.
This one will trigger the TimerEvent
SC_METHOD where we write 1 on the TimerInt
output port and in the TIMER_INT register.

Dynamic clocking behaviour

For dynamic clocking, we must take into account that
the frequency of the input clock may change. When
this occurs, we need to:

• Update the current GTR value: since the
ClockPeriod is used to compute the GTR
value, the ClockPeriod must be constant
since the GTR value and timestamp were
last stored.

• Reschedule the match event: the prediction
has been done with the previous period
value.

void cTimer::ClockChanged(void) {
 UpdateCurrentTime();
 mClockPeriod=mTimerClockPort.read() *

sc_get_time_resolution();
 SetupNextMatch();

}

Event counting

The timer described above can now be used to
generate interrupts at a frequency multiple of the
frequency of the input. This control is typical from
powertrain applications to build internal system clock
from sensor information.

The missing part is the “testbench” generation,
providing the clock period evolution scenario. This
can typically done using a system level modelling
tool like Matlab / Simulink or Saber connected to the
virtual platform. This test bench will be sampled at a
rate defined by the synchronisation period between
the system simulation environment and the virtual
platform simulation kernel. The input event
frequency will be converted to a clock period in
picoseconds (VaST kernel resolution) and passed to
the timer defined above.

3. Platform Presentation

The previous chapter has presented a modelling
methodology for reaching the TLM level of
abstraction by reducing the number of events to the
minimum required from an external point of view.
This methodology has been illustrated on a very
simple example but can be applied to complex
peripheral modelling. This chapter will describe a
platform made for evaluating the usage of virtual
platforms for powertrain application development.

Digital core description

The goal of this platform is to enable early software
development on a system based on a Freescale
MPC5554 microcontroller (Copperhead) and a
customized ASIC design by CONTINENTAL,

Page 5/8

connected through a serial link to the copperhead,
with the DSPI peripheral.

The need to have a SPI link fully functional implies
some other peripherals to be added to the platform:
• The MPC5554 DSPI itself [2]. Only the SPI

behaviour will be modelled. The interface of the
DSPI will define 3 32 bit signals to abstract the
communication :

o SDI signal will contain all the input bits
of a reception

o SDO signal will contain all the output
bits of a transmission

o SCI_CONTROL will be used by the
master to manage the transaction,
provide the cycle accurate timing of the
complete transaction, and encode
configuration information of the DSPI [2]
(chip select, control bit status…).

No buffering mechanism will be modelled since
the eDMA will be used to automatically transfer
input and output frames from the memory to the
DSPI registers.

• The MPC5554 eDMA. The model will be
restricted to only 2 channels (32 and 33) which
are used to automatically transfer data to and
from the DSPI [2].

• The simple timer presented in the previous
chapter. Our software is reactive and interrupt
driven. This simple timer will be used to generate
interrupts at a fixed or dynamic rate. In a full
copperhead model, this should be managed by
the eTPU.

• The MPC5554 INTC [2]. This model will
implement software interrupts and will be
connected to the DSPI, eDMA, and timer.

Figure 1: MPC5554 simplified platform

The platform will be based on the VaST e200z6 core
model and the interconnection will be simplified as a
single bus. This is a source of inaccuracy at the
platform level since the MPC5554 uses a crossbar

which can support simultaneous DMA transfers and
e200z6 core memory accesses.

ASIC description

Connected to the simplified model of the MPC5554,
a power stage output driver is modelled in
SystemC/TLM style. As depicted by the hardware
schematic in Figure 2, it is a simple component
controlled in slave mode through a SPI interface of
the microcontroller. The commands transmitted from
the master as serial data are converted to parallel
digital outputs. The peripheral sends back the
diagnosis status of the outputs. Detection of open
circuit or short circuit is performed by the peripheral
from internal current analysis.

Figure 2: Description of Power stage driver

As explained in digital core description, the SPI
interface is abstracted with three signals: sc_in SDO
(for output transmission), sc_out SDI (for input
transmission) and sc_inout SCI_CONTROL.
SC_METHOD of the peripheral model is sensitive to
SCI_CONTROL, and manages the transaction by
decoding configuration of the cycle accuracy
transmission (chip select, first bit transferred, last bit
transferred). The diagnosis part is abstracted by a
text file. Data from the text file tagged with a
transmission date, are copied in the SDO signal and
transmitted at the correct time using engine
simulation services.

This ASIC model has been validated out of the
context of virtual platform with a software bench
implemented in systemC.

Software description

An industrial software of engine management
system is used and adapted to perform the
evaluation. The code size of the original software is
8 MB executed on a MPC5554 cadenced at 80MHz.
For peripherals, all eTPU channels are configured,
software controls communication interfaces
(FlexCAN, DPSI, eSCI) and simple or complex

Hardware
Peripheral

Master
MPC5554 PCS

SDI

SDO

SCK

RESET

Page 6/8

input/output interfaces (EMIOS, eQADC, Port of
SIU).

Two software versions are adapted to cover the
different objectives of the study: one for capability to
debug software and another one for performance
and accuracy measurement.

For the first one, the software is depopulated to
remove all access to the MPC5554 peripherals not
implemented in the virtual platform (see digital core
description above).

The second software is build by removing the code
for all the peripherals control and the eTPU code.
Performance and accuracy are measured on core
and internal memory accesses (flash and RAM).
Software is executed from flash into the e200z6 core
using a standard cache configuration of 64KB.

Debug capabilities of the MPC5554 platform

One of the main advantages of the virtual platform is
the capability to offer to the end-user much more
debug features than the real hardware. This includes
complete visibility inside the virtual hardware for
purposes such as analysing the cache behaviour
(hits / misses, cache evictions) of a specific software
routine. It allows optimizing aspects of software like
interrupt handlers or high performance routines (to
reduce interrupt latency or minimize pipeline bubbles
in assembler). All the examples above can be
performed by mixing a “user friendly” software debug
environment and an extended observability of the
hardware, especially the core micro-architecture.

VaST cores are interfaced to industry software
debuggers like T32 from Lauterbach and a tool
called Metrix enables getting and correlating all the
events happening in the simulation kernel. VCD
traces (Value Change Dump) can also be easily
generated to facilitate analysis of behaviour such as
latencies inside the hardware.

Figure 3: Example of hardware analysis with
Metrix tool (Cache, VCD, Bus monitor)

Using Lauterbach T32 or VaST MFA (Metrix
Function Analyser) tools, profiling trees can be

obtained in a couple of minutes to identify software
bottlenecks.

4. Results

The results of the study are based on experiment
performed inside Continental Powertrain Division.
With detailed criteria functionality, accuracy and
performance presented below, we aim to identify if
virtual platform could be adequate to powertrain
software context.

Functionality

Functional accuracy has been demonstrated using
Lauterbach T32 debugger on the virtual platform.
Debugging environment was possible with the same
user interface and behaviour as the one used with
real target. In respect to limitation of the DLL and
service introduced in the e200z6 core model,
standard features as break point, trace, patch of
code, display of microcontroller and peripheral
registers were possible. SPI data interface was also
captured using text file with time stamp value in
accordance with real peripheral behaviour using
observation precision programmed as 1 ms of
precision (enough for functional observation of
communication speed).

Performance

Simulation performance was calculated from an
execution loop of the software performance
measured to 1 second on the target. On a Laptop
equipped with Dual Core T2400 running at 1.83GHz
and 1 GB memory, simulation time for loop
execution was measured around 3.5 seconds. A
15% overhead has been measured when the
simulator is driven by Lauterbach T32. The table
bellow also gives the results of peripheral integration
test software intensively reading and writing to the
SPI device using the eDMA.

Configuration Virtual HW /
Real HW ratio

MIPS (s)

Peripherals test software on
T2400 with 1Go of Memory

1.7 60 MIPS

Continental SW on T2400 with
1Go of Memory

3.5 29 MIPS

Continental SW on T2400 with
1Go of Memory under

Lauterbach T32

4.0 25 MIPS

Figure 4: Measurement for speed

Note: A recommended configuration is at least 1GB
of memory. As an example, the Continental SW
running on an Intel Pentium M at 1.6GHz with 512

Page 7/8

MB leads to a Virtual HW / Real HW ratio of 15 (e.g.
7 MIPS).

Accuracy

Measurement of accuracy was calculated by
comparison of number of cycles between real target
and simulation target. Since the memory model in
this platform was a very simple one, we needed to
introduce an adjustment factor that was estimated to
a worst case value of 1.34. It was calculated from
real wait state figures in regard of the flash memory
configuration, and using cache hit / miss ratio for the
number of memory read and write operations of the
software. The accuracy was finally estimated to
92.3% as shown below in Figure 5.

Frequency Cycle
number

Target 80 MHz 10502131
Simulator (Simple
Memory model)

80 MHz 7232456

Simulator corrected
with ratio (1,34)

80 MHz 9691491

Accuracy Error -7.7 %

Figure 5: Measurement for accuracy

As the crossbar switch configuration and memory
models were not accurate in the virtual model, the
correlation with measurement value is sufficient.
Indeed in parallel to this experiment, complete model
of MPC5554 was developed and is depicted below in
Figure 6.

Figure 6: Complete MPC5554 VaST Model

5. Conclusion

The objective of the study has been achieved by
demonstrating the use of TLM modelling style with
the VaST environment to build a virtual platform with
acceptable performance and accuracy.

Such virtual platform including ASIC modelling
facilitates debugging software of an engine control
application. It allows to integrate ASIC models and to
close the HW/SW development loop for device
drivers. It also provides a solution for designing
ASICs by starting with an abstract model
implemented in SystemC/TLM. This abstract model
could be considered as the golden reference model
and specification requirement for hardware
development in a RTL modelling style.

In order to face the complexity of industrial
application such as engine control software, a
scaling demonstration has to be conducted to prove
that acceptable overall simulation performance can
be obtained. This will be achieved using a complete
model of a MPC5554 connected with several ASICs
and stimulation bench to activate all software
functionality.

Such methods and tools could also be used for
architecture exploration of new product family.
Anyway, fundamental condition is the availability of
the hardware models in advance of silicon delivery.
A typical use case, facing potential performance
issue, is the foreseen introduction of dual core
processor into next generation of automotive
embedded systems.

6. Acknowledgement

This work was supported by active contribution of
Continental colleagues Christophe Marigo and
Norbert Mignot. We wish to acknowledge them for
their work and positive exchange during this study.

7. References

[1] OSCI http:\\www.osci.org
[2] Freescale: "MPC5553/MPC5554 Microcontroller

Reference Manual", MPC5553/4RM, Rev.3.1,
10/2005

[3] M. Schnieringer, K. Brand: " SystemC: Key
modeling concepts besides TLM to boost your
simulation performance", IP SOC, Grenoble -
France, 11/2007.

[4] F. Ghenassia (Ed.): “Transaction-Level Modeling
with SystemC: TLM Concepts and Applications for
Embedded Systems”, Springer, 11/2005.

Page 8/8

8. Glossary
eDMA: Enhanced Direct Memory Access.
eTPU: Enhanced Time Processing Unit.
INTC: Interrupt Controller.
SPI: Serial Peripheral Interface
TLM: Transaction Layer Modelling.
VCD: Value Change Dump.

