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Abstract: 
Current development trends for automotive products 
are driven by time to market reduction, cost 
optimization, and quality improvement. Dual to these 
business constraints are demands for innovation and 
safety conformance which impose increasing 
complexity on embedded systems. To address these 
challenges impacting software and hardware to 
improve system dependability, new methodology 
and tools need to be set-up. The use of 
representative virtual platforms combining speed and 
accuracy allows earlier software development, 
improved system testing, and fault injection analysis, 
with a high potential for reuse of system IPs 
(including both hardware and software). In this 
paper, we will present investigation on new methods 
and associated results using a simplified virtual 
platform to test a powertrain application.
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1. Introduction

Current development trends in embedded 
automotive software for Powertrain systems are 
towards increased complexity due to the very high 
level of optimization in the control/command. 
Systems control complexity ranges from low end 
applications such as gasoline port injection, to more 
sophisticated applications such as high pressure 
diesel engine, to very high end applications such as 
hybrid and power management control. As a 
consequence, the algorithms applied increase in 
complexity and require more resources to execute 
with the level of confidence required by a safety-
critical system.

In parallel, the introduction of new features for 
passenger comfort, the addition of new sensors and 
actuators to comply with pollution regulation, and 
interconnection with in-vehicle network 
communication drives increasing software and 
hardware complexity which makes the system more 
difficult to test on a classical test bench. To face the 
challenge of the greater complexity of both software 
and hardware, new methodology and tools need to 

be set-up. In particular, the use of representative 
virtual platforms which combine speed and accuracy 
facilitates earlier software development and better 
testing of the systems. Another industrial issue is 
hardware design, followed by software development 
often places the software development in the critical 
project planning path. Virtual platforms allow early 
software development in general and hardware 
dependant software (e.g. device drivers) in 
particular. Virtual platforms also simplify the 
distribution of reference hardware architectures 
throughout geographically distributed development 
groups within a company. Virtual platforms also 
benefit the entire supply chain.

Virtual platforms are providing the automotive 
industry with additional means to face its economical 
challenges in facilitating Design to Cost optimisation. 
HW/SW trade-offs, effect of hardware configuration 
can be assessed by early and fast platform 
prototyping. New hardware architectures embedding 
ASICs can be explored to optimize performance.

The key issue for such technology is the availability 
of hardware models and their conformance to their 
silicon implementation. Simulation performance and 
standardization of hardware modelling style are 
mandatory for industrial usage in automotive 
embedded systems. We believe that Transaction 
Level Modelling is adequate to reach these goals as 
supported by the systemC OSCI initiative [1].

In this paper, we will present a virtual platform based 
on a simplified version of the Copperhead micro-
controller (MPC5554 from Freescale), including an 
external ASIC model developed in SystemC by 
Continental. This platform was developed using the 
CoMET tool from VaST Systems Technology. We 
focused our study on demonstrating on how this 
platform can facilitate early software development 
and non-regression testing of the system without the 
need for physical hardware. 

In the first section, the methodology used for 
hardware modelling with a TLM style is presented, 
while section two describes the use case study and 
a platform overview. Section three details the 
technical results obtained and compare them to the 
initial objectives. Finally, the conclusion outlines the 
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benefits of such approach and possible extensions 
for industrial application.

2. Modeling Technology

A virtual platform enabling software development for 
powertrain application (and more generally safety 
critical application) must be fast and accurate. With a 
TLM approach, VaST core models like the e200z6 
are able to run classical benchmarks like Viterbi at 
more than 80 MIPS (with more than 99% cycle 
accuracy) on a 2 GHz Pentium 4 machine with 1 Go 
of RAM. Keeping that range of speed at the platform 
level can be achieved by abstracting the signals and 
the behaviour to a higher level than RTL without 
compromising the timing accuracy at the system 
level.

In this chapter, we will present some modelling 
principles to maximize the simulation speed in the 
platform. First we will describe how clock signals are 
modelled and how communication channels like a 
serial link, an internal bus, or a CAN bus can be
abstracted at a transaction level for modelling (TLM). 
Then we will propose generic principles for reducing 
the number of events in a SystemC peripheral model 
like a timer. We will see that this model can be used 
for acquisition of frequency inputs (like event capture 
in powertrain applications) with both speed and 
accuracy.  

Clock Modelling

Clocks are one of the most critical signals we need 
to abstract for having a fast and accurate virtual 
platform. Since simulation kernels for modelling 
virtual platforms are event driven, a pulsing clock will 
generate an event on every edge, even if most of 
these events are useless.

For example, if a peripheral is in an inactive state but 
has a pulsing clock as an input triggering a callback 
function (for example a SC_METHOD sensitive to 
positive edges), some code will be executed by the 
simulation kernel even if it will have no effect on the 
platform behaviour.

To improve the simulation speed, clock signals can 
be abstracted by their period, implying the following 
advantages:
• An event is generated only when the period of 

the clock signal changes. The occurrence of that 
kind of event is far less frequent than the clock 
pulse.

• We can keep full cycle accuracy by replacing 
clock driven behaviour by clock computation and 
timing annotation and generate only observable 
events.

• With that kind of abstraction, dynamic clocking in 
peripheral models comes for free.

With its modelling API, VaST simulation tools 
provides a set of useful functions for reconstructing 
clock signals from a period-based clock 
representation, which helps in raising the level of 
modelling abstraction to TLM. This API also 
facilitates standard operations for peripheral 
modelling like programming a callback in a specific 
number of clock ticks.

In SystemC modelling, sc_clock primitive objects are 
pulsing clock models. They should be avoided and 
replaced by an integer signal modelling the clock 
period. This kind of abstraction will require more 
computation than using the VaST API, but this can 
be easily managed by a helper class in charge of all 
the conversions between number of clock ticks and 
absolute time (as required in SystemC).

Communication Channels
The way to abstract communications over a specific 
channel follow the same principles:
• Data frames are passed from the producer to the 

consumer in one step.
• Only observable parts of the protocol are 

modelled and (if required) associated with 
events. If the producer (or consumer) does not 
require these internal events (like partial phases 
of a burst transaction), the events are 
suppressed and this makes the protocol even 
faster.

• Channels with arbitration are modelled by a 
specific “protocol engine” in charge of 
scheduling each transaction and granting the 
bus access to each master.

Serial Protocol

A serial transfer is abstracted to convey only the
information relevant from the system point of view. 
Typically, on the simplest cases, only the following 
information is relevant at the system level:
• Baud rate of the transfer.
• Timestamp of the end of the transfer.
• Data transferred.

So instead of modelling each bit transfer at each 
clock tick, we can abstract all of these events by a 
single transaction transferring the data in a single 
event with the timing calculated by taking the baud 
rate period multiplied by the number of bits 
transferred.

Bus Abstraction

Bus transactions are abstracted by observable 
events from a master or a slave point of view. For 
example, in an internal bus transaction, only the 
following events are observable from a master 
requesting a bus transaction:
• Getting access to the bus (grant event)
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• If required, completion of intermediate phases of 
the transaction such as in the case of a burst 
access (partial completion event)

• Completing the transaction (complete event)

Independent of these events associated with the bus
protocol, the data can be transferred in a single step.

The same kind of abstraction are used in the CAN 
bus model where a specific “Protocol Engine” model 
is in charge of resolving priority questions build from 
message configuration. Only observable events are 
modelled such as when a frame is accepted, or 
when a frame has been successfully received.

Efficient SystemC Modelling

Since SystemC modelling style is event driven, 
efficiency in implementing a peripheral is obtained by 
limiting the number of events generated by the 
model. This is mainly done by combining modelling 
techniques like:
• Event prediction. This means using the current 

context to predict an event which will happen in 
the future. Of course, a change in the peripheral 
context (for example a change in the registers of 
the peripheral, or a modification of the reference 
clock period) must be taken into account and 
future events must be programmed again.

• Context storing and computation. This means 
storing into the peripheral model any information 
necessary to update the peripheral state when 
required (e.g. when the user needs it). In our 
timer example above, we will see that storing a 
timestamp can save hundreds of events without 
losing accuracy.

Another important issue, more related to SystemC 
implementation than an abstraction principle, is: 
since a SC_THREAD is implemented as a thread in 
the OSCI kernel, this kind of construct implies an 
overhead due to task switching. In most cases, this 
can be avoided using a “callback” modelling 
approach by combining a SC_METHOD and an 
internal event which is used to trigger the callback.

A simple timer model for counting events

In this paragraph, we will see how the above general 
principles can be implemented in a simple timer and 
how this methodology offers dynamic clocking 
capabilities “for free”. Then, we will see that this 
capability can be used to count and measure events, 
where the input could be a clock signal with a 
variable frequency (common case in automotive 
applications).

Timer external interface

The simple timer interface will contain:
• A bus interface composed of a Bus port and a 

Bus Clock port. The bus interface will be 

connected to the peripheral bus accessible from 
the Bus ports of the e200z6 core.

• A “Reset” input.
• A “TimerClock” input used to provide the clock 

reference used by the timer. 
• A “TimerInt” output. This port is a logical output 

used to request an interrupt. This output is 
typically connected to the Interrupt controller. 

Timer registers

Remark: In this paper, we will not talk about the 
particular TLM protocol used to access internal 
registers. Simulation Tools such as VaST’s support 
several bus protocols and automatically add a Cycle-
Accurate Bus transactor to support PV (Programmer 
View) untimed models. Here we will just suppose 
that the TLM protocol enables a bus access for 
reading or writing internal registers. More details can 
be found in [4]. 

Our simple timer will use 5 registers:
• GTR (Global Time Register) contains the current 

number of clock ticks elapsed.
• OS_PERIOD contains the clock ticks target 

value for generating an interrupt.
• INT_ENABLE is used to enable interrupts when 

GTR = OS_PERIOD.
• INT_FLAG reflects the TimerInt output status. 

This register is used to clear the interrupt.
• TIMER_ENABLE is used to enable/disable the 

timer.

Timer behaviour modelling

The specification of this very simple timer is the 
following: 
1 – When a reset occurs, all register values are set 
to zero and the TimerInt output is set to zero.
2 – When the timer is enabled, the GTR register can 
be read from the bus interface to get the current 
number of edges since the latest interrupt.
3 – An interrupt is raised when GTR = OS_PERIOD 
and INT_ENABLE = 1. Raising an interrupt means 
writing 1 on the TimerInt logical output and in the 
INT_FLAG register.
4 – TimerInt output can be cleared by writing zero in 
the INT_FLAG register.
5 – Dynamic clocking must be taken into account. 

Even with such a simple specification, an inefficient 
modelling style could lead to poor simulation 
performance. For example, modelling this timer 
using a pulsing clock used to increment the GTR 
register could imply the simulation speed to be in the 
KIPS (Kilo Instruction Per Second) range instead of 
the MIPS range, even if the e200z6 core model can 
run at more than 60 MIPS. Furthermore, it is useless 
trying to keep a continuously updated value in the 
GTR register, especially if the user (ie the software) 
does not read it.
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We will model the behaviour using the three
principles described above:
• No SC_THREAD. Our behaviour will use the 

following SC_METHOD:
o The Reset method, executed when the reset 

input port changes
o The ClockChanged method, executed when 

the clock port value changes. Since the 
clock will be abstracted by its period, this 
method will be triggered only when the 
period of the clock changes.

o A MatchEvent method. This one will be 
triggered using an internal event used for
event prediction.

• Context storing and computation: As explained 
above, we don’t have to update the current 
timer value (GTR register). We can just store a 
timestamp associated with the value in the GTR
register. When the user reads the register, we 
can calculate the proper GTR value by adding 
the number of clock ticks corresponding to the 
time elapsed from the stored GTR timestamp 
and the current time.

void cTimer::UpdateCurrentTime(void) {
 if (mTIMER_ENABLE) {    
 sc_time NowTime = sc_time_stamp();
 mGTR += (int)((NowTime - mTimeStamp)

/mClockPeriod);
 mTimeStamp = NowTime;

 }
}

• Event Prediction: when the GTR value is 
consistent, we can easily predict when the 
interrupt need to be raised. If the timer is 
enabled, it will occur in OS_PERIOD – GTR 
ticks; so using the clock period, we can easily 
schedule the interrupt event in the future. Of 
course, if the context changes (clock period 
change, register configuration changes…), this 
event needs to be unscheduled and 
rescheduled.

void cTimer::SetupNextMatch(void) {
 mTimerEvent.cancel();
 if (TIMER_ENABLE) {
 int matchTick = mOS_PERIOD-mGTR;
 if (matchTick>=0)

 mTimerEvent.notify(
(double)(matchTick*mClockPeriod.value()), 
SC_PS

 );
 }

}

If nothing changes in the context, the 
mTimerEvent will occur at the scheduled time. 
This one will trigger the TimerEvent 
SC_METHOD where we write 1 on the TimerInt 
output port and in the TIMER_INT register.

Dynamic clocking behaviour

For dynamic clocking, we must take into account that 
the frequency of the input clock may change. When 
this occurs, we need to:

• Update the current GTR value: since the 
ClockPeriod is used to compute the GTR 
value, the ClockPeriod must be constant 
since the GTR value and timestamp were 
last stored.

• Reschedule the match event: the prediction 
has been done with the previous period 
value.

void cTimer::ClockChanged(void) {
 UpdateCurrentTime();
 mClockPeriod=mTimerClockPort.read() * 

sc_get_time_resolution();
 SetupNextMatch();

}

Event counting

The timer described above can now be used to 
generate interrupts at a frequency multiple of the 
frequency of the input. This control is typical from 
powertrain applications to build internal system clock 
from sensor information.

The missing part is the “testbench” generation, 
providing the clock period evolution scenario. This 
can typically done using a system level modelling 
tool like Matlab / Simulink or Saber connected to the 
virtual platform. This test bench will be sampled at a 
rate defined by the synchronisation period between 
the system simulation environment and the virtual 
platform simulation kernel. The input event 
frequency will be converted to a clock period in 
picoseconds (VaST kernel resolution) and passed to 
the timer defined above.

3. Platform Presentation

The previous chapter has presented a modelling 
methodology for reaching the TLM level of 
abstraction by reducing the number of events to the 
minimum required from an external point of view. 
This methodology has been illustrated on a very 
simple example but can be applied to complex 
peripheral modelling. This chapter will describe a 
platform made for evaluating the usage of virtual 
platforms for powertrain application development.

Digital core description

The goal of this platform is to enable early software 
development on a system based on a Freescale 
MPC5554 microcontroller (Copperhead) and a 
customized ASIC design by CONTINENTAL,
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connected through a serial link to the copperhead,
with the DSPI peripheral.

The need to have a SPI link fully functional implies 
some other peripherals to be added to the platform:
• The MPC5554 DSPI itself [2]. Only the SPI 

behaviour will be modelled. The interface of the 
DSPI will define 3 32 bit signals to abstract the 
communication :

o SDI signal will contain all the input bits 
of a reception

o SDO signal will contain all the output 
bits of a transmission

o SCI_CONTROL will be used by the 
master to manage the transaction, 
provide the cycle accurate timing of the 
complete transaction, and encode 
configuration information of the DSPI [2] 
(chip select, control bit status…).

No buffering mechanism will be modelled since 
the eDMA will be used to automatically transfer 
input and output frames from the memory to the 
DSPI registers.

• The MPC5554 eDMA. The model will be 
restricted to only 2 channels (32 and 33) which 
are used to automatically transfer data to and 
from the DSPI [2].

• The simple timer presented in the previous 
chapter. Our software is reactive and interrupt 
driven. This simple timer will be used to generate 
interrupts at a fixed or dynamic rate. In a full 
copperhead model, this should be managed by 
the eTPU.

• The MPC5554 INTC [2]. This model will 
implement software interrupts and will be 
connected to the DSPI, eDMA, and timer.

Figure 1: MPC5554 simplified platform

The platform will be based on the VaST e200z6 core 
model and the interconnection will be simplified as a 
single bus. This is a source of inaccuracy at the 
platform level since the MPC5554 uses a crossbar 

which can support simultaneous DMA transfers and 
e200z6 core memory accesses.

ASIC description

Connected to the simplified model of the MPC5554, 
a power stage output driver is modelled in 
SystemC/TLM style. As depicted by the hardware 
schematic in Figure 2, it is a simple component 
controlled in slave mode through a SPI interface of 
the microcontroller. The commands transmitted from 
the master as serial data are converted to parallel 
digital outputs.  The peripheral sends back the 
diagnosis status of the outputs. Detection of open 
circuit or short circuit is performed by the peripheral 
from internal current analysis.

Figure 2: Description of Power stage driver

As explained in digital core description, the SPI 
interface is abstracted with three signals: sc_in SDO 
(for output transmission), sc_out SDI (for input 
transmission) and sc_inout SCI_CONTROL. 
SC_METHOD of the peripheral model is sensitive to 
SCI_CONTROL, and manages the transaction by 
decoding configuration of the cycle accuracy 
transmission (chip select, first bit transferred, last bit 
transferred). The diagnosis part is abstracted by a 
text file. Data from the text file tagged with a 
transmission date, are copied in the SDO signal and 
transmitted at the correct time using engine 
simulation services.

This ASIC model has been validated out of the 
context of virtual platform with a software bench 
implemented in systemC.

Software description

An industrial software of engine management 
system is used and adapted to perform the 
evaluation. The code size of the original software is 
8 MB executed on a MPC5554 cadenced at 80MHz. 
For peripherals, all eTPU channels are configured, 
software controls communication interfaces 
(FlexCAN, DPSI, eSCI) and simple or complex 

Hardware 
Peripheral

Master
MPC5554 PCS

SDI

SDO

SCK

RESET
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input/output interfaces (EMIOS, eQADC, Port of 
SIU).

Two software versions are adapted to cover the 
different objectives of the study: one for capability to 
debug software and another one for performance 
and accuracy measurement. 

For the first one, the software is depopulated to 
remove all access to the MPC5554 peripherals not 
implemented in the virtual platform (see digital core 
description above).

The second software is build by removing the code 
for all the peripherals control and the eTPU code. 
Performance and accuracy are measured on core 
and internal memory accesses (flash and RAM). 
Software is executed from flash into the e200z6 core 
using a standard cache configuration of 64KB.

Debug capabilities of the MPC5554 platform

One of the main advantages of the virtual platform is 
the capability to offer to the end-user much more 
debug features than the real hardware. This includes 
complete visibility inside the virtual hardware for 
purposes such as analysing the cache behaviour 
(hits / misses, cache evictions) of a specific software 
routine. It allows optimizing aspects of software like 
interrupt handlers or high performance routines (to 
reduce interrupt latency or minimize pipeline bubbles 
in assembler). All the examples above can be 
performed by mixing a “user friendly” software debug 
environment and an extended observability of the 
hardware, especially the core micro-architecture.

VaST cores are interfaced to industry software 
debuggers like T32 from Lauterbach and a tool 
called Metrix enables getting and correlating all the 
events happening in the simulation kernel. VCD 
traces (Value Change Dump) can also be easily 
generated to facilitate analysis of behaviour such as 
latencies inside the hardware.

Figure 3: Example of hardware analysis with 
Metrix tool (Cache, VCD, Bus monitor)

Using Lauterbach T32 or VaST MFA (Metrix 
Function Analyser) tools, profiling trees can be 

obtained in a couple of minutes to identify software 
bottlenecks.

4. Results

The results of the study are based on experiment 
performed inside Continental Powertrain Division. 
With detailed criteria functionality, accuracy and 
performance presented below, we aim to identify if 
virtual platform could be adequate to powertrain 
software context.

Functionality

Functional accuracy has been demonstrated using 
Lauterbach T32 debugger on the virtual platform. 
Debugging environment was possible with the same 
user interface and behaviour as the one used with 
real target.  In respect to limitation of the DLL and 
service introduced in the e200z6 core model, 
standard features as break point, trace, patch of 
code, display of microcontroller and peripheral 
registers were possible. SPI data interface was also 
captured using text file with time stamp value in 
accordance with real peripheral behaviour using 
observation precision programmed as 1 ms of 
precision (enough for functional observation of 
communication speed).

Performance

Simulation performance was calculated from an 
execution loop of the software performance 
measured to 1 second on the target. On a Laptop 
equipped with Dual Core T2400 running at 1.83GHz 
and 1 GB memory, simulation time for loop 
execution was measured around 3.5 seconds. A 
15% overhead has been measured when the 
simulator is driven by Lauterbach T32. The table 
bellow also gives the results of peripheral integration 
test software intensively reading and writing to the 
SPI device using the eDMA.

Configuration Virtual HW / 
Real HW ratio

MIPS (s)

Peripherals test software on 
T2400 with 1Go of Memory

1.7 60 MIPS

Continental SW on T2400 with 
1Go of Memory

3.5 29 MIPS

Continental SW on T2400 with 
1Go of Memory under 

Lauterbach T32

4.0 25 MIPS

Figure 4: Measurement for speed

Note: A recommended configuration is at least 1GB 
of memory. As an example, the Continental SW 
running on an Intel Pentium M at 1.6GHz with 512 
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MB leads to a Virtual HW / Real HW ratio of 15 (e.g. 
7 MIPS).

Accuracy 

Measurement of accuracy was calculated by 
comparison of number of cycles between real target 
and simulation target. Since the memory model in 
this platform was a very simple one, we needed to 
introduce an adjustment factor that was estimated to 
a worst case value of 1.34. It was calculated from 
real wait state figures in regard of the flash memory 
configuration, and using cache hit / miss ratio for the 
number of memory read and write operations of the 
software. The accuracy was finally estimated to 
92.3% as shown below in Figure 5. 

Frequency Cycle 
number

Target 80 MHz 10502131
Simulator (Simple 
Memory model)

80 MHz 7232456

Simulator corrected 
with ratio (1,34)

80  MHz 9691491

Accuracy Error -7.7 %

Figure 5: Measurement for accuracy

As the crossbar switch configuration and memory 
models were not accurate in the virtual model, the 
correlation with measurement value is sufficient. 
Indeed in parallel to this experiment, complete model 
of MPC5554 was developed and is depicted below in 
Figure 6.

Figure 6: Complete MPC5554 VaST Model

5. Conclusion

The objective of the study has been achieved by 
demonstrating the use of TLM modelling style with 
the VaST environment to build a virtual platform with 
acceptable performance and accuracy.  

Such virtual platform including ASIC modelling 
facilitates debugging software of an engine control 
application. It allows to integrate ASIC models and to 
close the HW/SW development loop for device 
drivers. It also provides a solution for designing 
ASICs by starting with an abstract model 
implemented in SystemC/TLM. This abstract model 
could be considered as the golden reference model 
and specification requirement for hardware 
development in a RTL modelling style.

In order to face the complexity of industrial
application such as engine control software, a 
scaling demonstration has to be conducted to prove 
that acceptable overall simulation performance can 
be obtained. This will be achieved using a complete 
model of a MPC5554 connected with several ASICs 
and stimulation bench to activate all software 
functionality.

Such methods and tools could also be used for 
architecture exploration of new product family. 
Anyway, fundamental condition is the availability of 
the hardware models in advance of silicon delivery. 
A typical use case, facing potential performance 
issue, is the foreseen introduction of dual core 
processor into next generation of automotive 
embedded systems.
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8. Glossary
eDMA: Enhanced Direct Memory Access.
eTPU: Enhanced Time Processing Unit.
INTC: Interrupt Controller.
SPI: Serial Peripheral Interface
TLM: Transaction Layer Modelling.
VCD: Value Change Dump.


