
HAL Id: hal-02270319
https://hal.science/hal-02270319

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-model process for managing project complexity
A. Boulle, Marie-Line Valentin, Anthony Inard

To cite this version:
A. Boulle, Marie-Line Valentin, Anthony Inard. A multi-model process for managing project com-
plexity. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-
02270319�

https://hal.science/hal-02270319
https://hal.archives-ouvertes.fr

A multi-model process for managing project complexity

A. Patrice BOULLE1, B. Marie-Line Valentin2, C. Anthony Inard3

1: SYSALYS, 7 rue du grenier à neige 91370 Verrières le Buisson
2: AIRBUS France, 316 route de Bayonne 31060 Toulouse Cedex 9

3: EUROCONTROL, Centre des Bois des Bordes - BP15 - 91222 Brétigny-sur-Orge Cedex

Abstract: Developments of large software systems
have to face an exponential increase in volume and
complexity of the requisite knowledge, tighter time
constraints and a continual growing number of
stakeholders. Current solutions are based on
breaking down the system or software components
and equipments in smaller pieces in order to be able
to handle them, but the side effect of this approach is
to dilute the synthetic vision. This paper presents a
model centric process supported by tools. This
process is based on a multi-model approach for
managing synthetic views and making project
information available to all stakeholders, with an
appropriate view and presentation.

Keywords: meta-model, multi-models, model
transformation, UML

1. Introduction

Today, companies developing large software or
system engineering projects (aeronautics, space,
defense, automotive…) have to deal with an
exponential increase in volume and complexity of the
requisite knowledge, tighter time constraints, and a
continuously growing number of participants.
Companies answer by a methodological
reinforcement based on analytic breakdown, which
strongly separates system components but dilutes
the synthetic vision. This synthetic vision relies most
often on synthesis capabilities and personal
performance of Systems Engineers.
Tools often propose a centralized data management
based on document structure. This approach
encounters several difficulties:
• Data centralization does not suppress source

multiplicity but increases duplication and then,
inconsistency risks.

• Data synchronization between database and
sources are difficult and often impossible to

achieve. Information is often incomplete or
insufficiently verified.

• Impacts of changes are difficult to estimate when
the analyst needs to compile multiple sources of
information.

This paper presents a model centric process
supported by tools, which is implemented in different
application domains such as Air Traffic Control
(EUROCONTROL), Aeronautics (Airbus) or
Automatic Railway System. This process is based on
a multi-model approach for managing synthetic
views and making project information available to all
stakeholders, with an appropriate view and
presentation.
The objectives of the process are the following:
• Urge project members to structure and formalize

their knowledge and their system view by the
means of connected models (Requirements,
Architecture, Component, Deployment, Interface
/ Communication and Equipment / Execution
Platform),

• Support teamwork by sharing and synchronizing
relevant information,

• Produce adapted models that contain linked
information necessary for a specific task,

• Manage dependencies and consistency between
the different models, especially when their
development lifecycles are different,

• Establish and evaluate impacts and costs linked
to changes,

• Produce an up-to-date status of the project
developments.

The process is supported by a prototype tool named
MME for Multi-model Editor developed by SYSALYS.
The concepts used by each type of stakeholder are
defined through meta-models. MME provides import,
export and filtering capabilities, which support
merging, linking and “gluing” information coming
from various documents or models produced by
different tools.

 Page 1/7

In this article, for each issue identified in a multi-
model approach, we describe the process to handle
the issue and illustrate it with the support of the MME
tool.

2. Multi sources of information and Meta-
model definition

A model driven process aims at representing in
models all the project information and links which
exist between them [1].
This information is contained in documents, which
most often have different formats. For example, a
use case and its actors can be defined in a UML
model but conditions, steps, alternatives and
traceability links towards the requirements can
remain outside the model, in an external document
although they constitute also essential data for the
project.

Figure 1: Exchange Model Context

If the reference is a UML model or a database, the
structure and, to a certain extent, the semantics of
information is defined with precision; that is not
always the case if the reference is a text or a
proprietary tool file.
The first thing to do is to draw up the list of the
documents which contain the project data, to
describe for each one the information it contains and
to clarify the links between information defined in the
different documents. Information, which is repeated
in several documents, must be highlighted, in order
to determine where it is defined (origin of the
definition) and where it is referred to or made more
precise. This activity results in the elaboration of the
meta-model.

The data and their relationships modelling in a meta-
model is an essential activity for the mastering of the
models. At this stage, it is not necessary to clarify all

the data and the internal links but it is essential to
focus on the data shared by several documents and
the links between the data located in different
documents.
For example, the functional requirements have to be
traced in the other models and thus have to be
extracted and referred to in the other models of the
project. On the other hand, the additional data which
is necessary to be added in order to be able to
simulate and to validate the model at a given phase
of the development (for example, during system
design) should not be exported to the next
development phase (in the same example, to the
software specification).
The border between “private” data to a given activity
or a given user profile is not easy to determine, and
that’s why the meta-model has to be updated
throughout the project life cycle, each time new
documents, new links… have to be taken into
account. The review of the meta-model allows to
highlight implicit data, links which are not obvious or
redundancies / ambiguities in the definitions.

Requirement
Model

Architectur
e

Models

Data
Dictionary

Concept
Documents

Exchange
Model

Componen
t

Models

The analysis of the documents allows the detection
of lacks, ambiguities and redundancies. It also
makes it possible to propose modifications of the
textual documents contents and format, in order to
improve the presentation and to facilitate information
extraction.
The MME tool provides a meta-model editor, which
allows in a simple way the definition of the project
meta-model. Each data is defined with its properties
and its links. The compilation of the meta-model
generates the body of a MME editor associated with
the meta-model and also the related documentation.

Figure 2: Meta Model

 Page 2/7

The Meta Model Editor creates an instance of a
model editor with which it is possible to edit a model
corresponding to the meta-model.

Figure 3: Model editor corresponding to the

“MetaSystem” meta-model

3. Importing and Exporting data

The model provides a picture of the essential data of
the project and the links between these data. The
data have to be extracted from the documents or the
files in which they are defined or referred to, in order
to present them in a view, which complies to the
meta-model.
To build and update the model, it is necessary to
implement mechanisms of extraction and filtering
from the various documents or files. These
documents or files have various formats: the files
produced by tools such as UML editors follow an
XMI representation which allows a quite easy
extraction and a simple filtering; other tools with a
proprietary format provide an API which makes it
possible to export relevant information, with more or
less significant development.
The importation of essential data contained in the
documents is a critical phase of a model driven
process. The implementation of the import function
may require complex developments and generally
requires the development of a corresponding export
function in order to be able to re-synchronize the
documents with updated information.
The resulting model can be considered as a high
level model or an exchange model, which contains
the essential data with their links.
MME provides tools which allow to import data
starting from the documents developed with

standard text editors (word, excel…) and editors
providing an XML output (UML/XMI). It is also
possible with MME to create extraction scripts, which
use the tools API.

Figure 4:Importation and exportation of a model

using a spreadsheet (figure provided by courtesy of
EUROCONTROL)

The exchange model can be modified directly in
MME (by adding, removing or modifying items of
model if the corresponding meta-model permits it).
Then the export functions provided by MME allow
the propagation of modifications into the source
documents. The UML/XMI export function makes it
possible to create a model UML starting from the
exchange model. For example, starting from the
extraction of the relevant data from the system
design model contained in the exchange model, it is
possible to initiate a validation model by inserting the
necessary data in it [2].

Figure 5: Creation and Synchronisation of models

through the Exchange Model

 Page 3/7

The use of import/export functions makes it possible

odel

4. Manage model complexity

radually during the project development and

del in which all information

llows the edition of several models in the

to create and update the model of the project, and
thus to be able to use alternative editors for the
model information. A graphic modelling language
such as UML is complex and requires a good level of
training. It can be preferable to provide the
participants who are not familiar with UML, a view of
the model, which is appropriate to them, using for
example a text editor or a calculation sheet. In the
same way, to create or update a model UML, it can
be interesting for the participants to publish their
contributions in pre-formatted documents (table or
sheet). The creation and the update of the model
and the UML diagrams are performed by specific
importation tools starting from the meta-model.
The import/export functions really make the m
polymorph and able to be presented, at least
partially, in various formats adapted to the skill and
the activity of each participant.

G
whatever the selected development cycle is
(incremental, iterative, etc), a growing number of
data coming from different sources are integrated in
the exchange model. The model must take into
account information from new stakeholders
(integration, quality, certification, validation, user
support…) On the basis of a reference model, it
should be possible to extract the most adapted views
for a given type of user, for a development phase, for
a delivery or for an activity. The objective is to show
only relevant information, by reorganising them if
necessary but while guaranteeing the total
consistency of the model.
A monolithic exchange mo
of the project is centralised is useful to provide a
global view of the project, but it is not adapted to
perform a specific activity (validation, verification of
the traceability…) It is necessary to separate the
model in consistent sub-models easiest to manage,
and ensure that the modifications performed in the
sub-models are propagated towards the reference
model.
MME a
same session. MME provides mechanisms, which
make it possible to separate a model in a set of
models. The links and the shared data are defined in
the meta-model, so that the data can be defined in a
model but referred in other models.

Figure 6: Links between models (figure provided by

courtesy of EUROCONTROL)

For example, a system requirement is defined in the
system design model and can be referred to in test
cases, in change requests or in the software
component which implements it. Each model can
bring precision on a shared data.
MME provides filtering functions, which make it
possible to create a subset starting from a reference
model according to various criteria (direct selection
or advanced search). It is for example possible to
extract from the system design model, the use
cases, the requirements and the interfaces
associated with a software function, in order to
create an autonomous and self-sufficient software
specification model.

Figure 7: Filtering model (figure provided by courtesy

of EUROCONTROL)

 Page 4/7

Thus the software team responsible for this function
development gets a sub-model initialised with the
only necessary information. In the same way,
starting from the exchange model, it is possible to
extract the use cases and the system requirements
in order to initialise the validation model.
A UML/XMI export tool in MME allows the creation of
a UML 2 model with the adequate profiles. Vice
versa, a UML/XMI import tool allows the importation
in the exchange model of the modifications done in a
sub-model.
The separation of the reference model in an
assembly of sub-models adapted to a specific
activity makes it possible to control complexity, to
specify in the meta-model the useful information for
each activity and to reveal the shared data.

5. Traceability management

The traceability management is an essential activity
of a model driven process. The definition of the links,
which exist between the major data of the project, is
performed in the meta-model. The traceability can be
initialised automatically by the import tools but has to
be completed explicitly by the various teams. For
example, the traceability between a functional
requirement and a more specific software
requirement, a software use case or a software
architecture component has to be established
explicitly.
It is important to control the traceability links by
specifying them in the meta-model, in order to avoid
an anarchistic proliferation of the links. But it should
be also possible to create “free” links between data,
which are not linked in a meta-model, for the
purpose of annotation as an example.
The users should be able to establish and extract
easily the traceability links, for example:
• To retrieve the system requirements which are

not covered by a software element or a
validation test,

• To assess the impact analysis of a modification
(impacted use case, interfaces, components or
test cases)

• To obtain relevant metrics on a modification
cost.

It should be noted that during the iterative cycle, it is
necessary to synchronise the traceability links and to
indicate the obsolete links. A component of the
architecture model can refer to a requirement of the
software model. In this case, the user can create the
link by a simple drag&drop.

MME allows to link data which are not linked in their
meta-model by means of undifferentiated links.
These links are very useful to manage annotation
models associated with a model.
MME provides various tools in order to display or to
follow the links. It also provides queries to generate
traceability matrixes and manage duplicated data.
The traceability management helps to clarify the
links existing between documents of different
formats, to be able to analyse the impact of a
modification by going all over the chain of links.
Since the traceability information is defined at the
level of the exchange model, it does not pollute the
documents themselves.

6. Collaborative modelling

Project model elements are shared by different
participants and in different activities. Each
participant may have his/her own view on shared
data. Shared data may be duplicated in different
models or documents. Each activity may have its
own lifecycle.
It is mandatory to manage and to synchronize the
shared data modifications. A change control process
needs to be implemented in order to master
modifications of shared data avoiding concurrent
access.
For example, the system design model defines the
software components architecture, the
responsibilities of each software component, the
interfaces and the interaction between components.
Software components may be realised by different
teams. The validation model is built from the
requirements and the use cases of the system
design model.
The system design model is connected to its sub-
models (software components models and validation
model) but the sub-models are not connected. If a
software team needs to modify a shared data or a
responsibility, the modification has to be propagated
to the system design model and, possibly, to the
validation model. To avoid anarchic modifications,
each model should be defined with an “exchange
area”. When a shared data needs to be modified or
to be added, it is moved in the “exchange area”, so
the modification is traced and is local to the sub-
model.

 Page 5/7

Block
A

Block
B

Exchang
e

Model

Block
Test

Shared Data

Exchange Area

Figure 8: Sub-models structure

When the system model and the sub-models need to
be synchronized, the tool analyses the exchange
area of the sub-models and proposes a set of
correction. Note that the system team may take into
account new requirements. The modifications are
propagated to the sub-models. The synchronisation
process may be iterative, each team can analyse the
impact of the corrections using traceability links and
estimate modification cost.

Figure 9: Extraction and Analysis of the sub-model
exchange areas.

When the corrections are approved, the sub-models
are updated in two phases:
• The modifications are propagated to the sub-

models, new data are added, modified data are
updated and marked as modified and removed
data are marked but are not deleted. Data that
depend from updated or deleted data are also
marked using traceability in order to make easier
the impact analysis. This process is realised by
MME

• The model is updated by the responsible team
using the update marks. Obsolete data and
marks are manually deleted.

Shared Data

Updated

Exchange
Model

A

Modified Shared Data
Impacted Block Data

B

Test Component Data
Component Data

Figure 10: Propagation of the modifications to the
sub-models

Note that the process may be recursive; a software
component may be split in sub-components defined
with their own model.
The Synchronisation process is supported by MME
and is realized by comparing the initial model with
the updated model and by generating
synchronization instructions.

A B Test

Shared Data

Exchange Area
(Change Requests)

Exchange
Model

Component Data

7. Evolutions of the model

During the first iterations, the exchange model
contains the data that concerns the analysis, the
architecture and the realisation of the project. Data
associated to the integration, the validation, the
deployment or the maintenance are gradually added
to the exchange model, because the project focus
moves. It is not appropriate to anticipate exchange
model evolutions while the actual needs are clearly
defined, because the meta-model might contain
inappropriate data. Moreover, during the project
lifecycle, the exchange model has to take into
account new concepts, new stakeholders and new
documents with specific interfaces. The size of the
exchange model increases and it is necessary to
restructure it in order to control model complexity.
It is necessary to update frequently the meta-model
in order to remove obsolete data, to adapt existing
data or to add new data and links.
Each time the project meta-model evolves, it is
necessary to adapt the associated models using
model transformations. In particular, a model
transformation is realised when it is necessary to:
• Modify the structure of a model,
• Extend an existing model with new data and new

internal links or new links with other model
• Filter a model because it is necessary to remove

obsolete data

 Page 6/7

• Merge models, for example two software
components are merged because they share
common responsibilities

• Split a model in several models in order to
master its complexity, for example if a software
component is split in two components, the
interfaces of the new components need to be
defined and have to be propagated to the clients
of the split components.

MME provides simple and easy to use mechanisms
for model transformation.
• an export function allows to save the data

contained in structured tables or spreadsheets,
using the current version of the meta-model,

• an import function creates a model from the
tables or the spreadsheets using the new
version of the meta-model.

Complementary scripts may be necessary to modify
the tables. Model transformation provided by MME
should be improved in future versions [2].
Model evolution and adaption are critical issues,
because, in a model centric approach, the exchange
model has to evolve in order to take into account
new data and new project participants. Model
transformation is necessary when developments of a
project are reused in a different context.

8. Conclusion

A first feedback of operational implementations
shows that the multi-model process allows a better
communication between teams: each participant
works with his/her own tools or languages but can
share a subset of the information he/she manages
with other teams by the means of integration models.
The tool provides an efficient support to
modifications propagation among the different views.
Above all, this approach allows to build multiple and
consistent views of the system and thus to recover
the control of the overall system.
MME is the result of a long experience in modelling
and is currently used to develop large models.
The next step will be to industrialize the prototype
tool MME in order to provide a robust and durable
support to the elaborated process. The envisioned
way is to develop MME in the frame of the open
source engineering framework TopCased [5].

9. References

[1] Erwan Breton Jean Bézivin: “Model-Driven

Process Engineering" Int. Computer Software and
Applications Conf. (COMPSAC'2001)", Chicago,
Illinois

[2] Jean-Marc Jezequel: "A MDA approach to model
and implement transformations", Language
Engineering for Model-Driven Software
Development, number 04101 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005.

[3] Jackson, A.; Geissel, M.; Dorbes: "Supporting the
collective process of controller working position
development for ATM" Digital Avionics Systems,
2001. DASC. The 20th Conference Volume 2,
Issue , Oct 2001 Page(s):7E3/1 - 7E3/12 vol.2

[4] Ubayashi, Naoyasu; Sano, Shinji; Otsubo, Genya:
"A Reflective Aspect-Oriented Model Editor Based
on Metamodel Extension", Modeling in Software
Engineering, 2007. MISE apos;07: ICSE Workshop
2007. International Workshop on Volume 20-26
May 2007

[5] Marc Pantel, ACADIE team, OLC team, and
TOPCASED team " The TOPCASED project - a
Toolkit in OPen source for Critical Applications and
SystEms DesignDocument Actions “

10. Glossary

API: Application Programming Interface
ATM: Air Traffic Management
MME: Multi-Model Editor
UML: Unified Modeling Language
XMI: XML Metadata Interchange
XML: eXtensible Markup Language

 Page 7/7

	1. Introduction
	2. Multi sources of information and Meta-model definition
	3. Importing and Exporting data
	4. Manage model complexity
	5. Traceability management
	6. Collaborative modelling
	7. Evolutions of the model
	8. Conclusion
	9. References
	10. Glossary

