Pascal Gula

B Eliane Fourgeau

AUTOSAR methodology and tools applied on two OEM use-cases

Keywords: AUTOSAR Methodology, OEM Use-Case, Verification & Validation, AUTOSAR Builder tool, ECLIPSE Framework

This paper presents an implementation of the AUTOSAR methodology based on two usecases, each of them are derived from an OEM need, as follows: 1) Set up of a collaborative exchange process between OEM and suppliers for the development of AUTOSAR applications.

2) Integration of AUTOSAR software components in a conventional EE architecture The role and contribution of authoring and configuration tools used in the AUTOSAR methodology will be presented and illustrated for both use cases; in particular, the paper will highlight the added value of these tools according to the process by showing their strengths and weaknesses. Mechanisms which have been used to connect proper links and to improve consistency between the various description files which are generated at each step of the AUTOSAR methodology, but also between these description files themselves and the vehicle data; the paper will describe the intrinsic merits of the technology which has been used to develop the tool suite, based on the upcoming Eclipse Framework.

Introduction

The industrial selection of a new standard in a company, and the likelihood of a wide deployment, is often preceded by an overwhelming work performed on several dedicated pilot projects. Indeed, processes have to be set up, and then refined. Furthermore new migration paths have to be found and new use-cases may even arise. To support these important and complex steps and meet operational requirements, new tools must be introduced. The choice of such tools is fundamental, since they have to smoothly introduce and to handle new concepts and to be open enough to cope with all other legacy tools and/or data entries. Such a choice happens when OEMs introduce AUTOSAR in their pilot and/or series projects.

The AUTOSAR standard architecture offers the ability to set up new business models between OEMs and providers. Following the first use-case, OEMs have the opportunity to design their ECU from a set of functions chosen among the offer from different providers. This way, the OEM concerns will be software components verification and validation. For the second use-case, OEMs issues are dedicated to ECU integration steps and the migration from legacy processes to match the AUTOSAR methodology. This is the case for example, when a system is composed of legacy vehicle communication matrix which should be used as input to AUTOSAR system configuration.

In this paper, we will strive to analyse the dedicated contribution and value proposition of an open and integrated AUTOSAR tool suite to both use-case implementations. Furthermore, built on the experience gained with a major French OEM, PSA, we will show how specifically the Geensys' AUTOSAR Builder suite implements the above development paradigms. In the first use-case, we will emphasize the need to validate multi-vendor software component deliveries by checking their individual & combined conformity to specifications (from both an xml description and an AUTOSAR implementation viewpoint). In the second use-case, we will highlight the need for the toolset to cope with the integration of legacy descriptions, ease the port/migration of a complete set of ECU functions; eventually we will stress the need for the tools to scale to the level of complexity required by automotive embedded applications.

The AUTOSAR concepts and methodology

AUTOSAR is an international organization whose aim is to provide an open standard to enhance the development of E/E embedded systems. It is composed of all the actors of the automotive industry, mostly OEMs & Tier1s (which are driving the development), tool provider, engineering companies, semiconductor and compiler manufacturer. The goals of AUTOSAR are to control the complexity and increase the quality of E/E systems. To fulfil these goals, AUTOSAR bases its development method on three pillars:

-standardized interfaces -a standardized software architecture -a standardized description and configuration process AUTOSAR also defines a methodology which provides all the major steps that compose the development of an embedded system. This methodology is summarized on Figure 1. What is important to point out is the complete independence of the software application with regards to hardware definition and constraints (thanks to the Virtual Function Bus concept). This means that a complete application could be developed without knowing the final mapping to the ECUs composing the vehicle topology. This also implies that Software Components will now be able to be relocated and composed seamlessly at mapping phase. It also alleviates the exchange of software component implementations and variant handling when it comes to design distributed crossplatform functions.

Collaborative exchange between OEM/Provider of AUTOSAR SWC

This first use-case focuses on a new business model enabled by the AUTOSAR standard software architecture, which consists of the development and delivery to an OEM of unitary software components coming from (potentially different) providers.

Traditionally, for a given ECU project, the car manufacturer used to collaborate with a given Tier1 supplier on the complete ECU implementation. With AUTOSAR, software components can now be viewed as COTS that can be integrated by another player, potentially a third party integrator. However, this new approach, which is truly flexible, implies the set up of a stringent verification and validation phase. The exchange between the OEM and his suppliers will be based upon specifications, in the form of AUTOSAR standardized descriptions, and the resulting deliveries will be composed of a complete AUTOSAR software component (SWC) description and its implementation (in C language most of the time).

To validate the AUTOSAR conformity of the resulting SWC composition, AUTOSAR Builder is providing static verification functionalities and conformity checks; this is performed by the AUTOSAR Builder SCVT (Software Component Verification Tool) plugin. This verification is done in a two steps:

-AUTOSAR xml conformance check -AUTOSAR code conformance check

The first conformance is dealing with pure AUTOSAR description. A first xml description strictly focusing on the VFB description of the SWC is provided by the OEM, it describes the application component type with its ports (required/provided) , and its related interfaces. The supplier(s) will then refine this SWC description adding behavioural details including runnables definition, data access for those runnables, events that trigger runnables, etc… These additional descriptions must comply with certain constraints, intrinsic to the AUTOSAR metamodel, specific to the project or the OEM needs. The AUTOSAR Builder SCVT plug-in comes with a standard set of rules that meet AUTOSAR constraints and is easily extensible to additional user-specific rules.

The tool reports all errors/warnings found and helps the user to check and correct them easily by pointing directly to the error in the corresponding file. The second step deals with the implementation of the SWC itself. Indeed, the code implementation of a SWC is written after its behaviour has been described (definition of runnables, data accesses, events,…) but before its actual allocation on an ECU has been done. This powerful mechanism provided by the VFB concept is actually enabled by the RTE (Run-Time Environment) which is the implementation part of the VFB. This first RTE code generation, so called "contract phase", is a step where all required headers to compile the application SWCs are produced. SCVT enables the user to validate this code implementation by comparing it to its corresponding AUTOSAR xml description. This way, the overall coherence can be verified, e.g. to check if runnables have proper names, if data accesses have corresponding and valid RTE macro defined, etc… The second use-case is embracing a wider scope. It relates to the development of a complete ECU application compliant with the AUTOSAR methodology. The summary of the major steps is the following:

1. description of all SWCs at VFB level 2. description of topology and communication matrix 3. mapping and ECU extract 4. configuration of BSW To implement all these steps, it is essential that the AUTOSAR toolset supports legacy descriptions produced by other tools or other means. For such a project, many of the data already exist (K-Matrix data for instance), or are produced externally to the AUTOSAR ECU project itself (i.e. functional descriptions, …). The issue is really for the tool to be capable of importing, with all the required transformations if necessary, data required to properly configure the ECU.

1 -For the description of SWCs, formal documents or model-based design tools can be used to describe the higher level specification and/or functional part of the modules. An AUTOSAR tool chain should provide the user with two development alternatives at least: 1 -ability to design SWCs directly, 2 -import legacy data and provide ad hoc transformation algorithms. In our precise case, the migration was done by creating an external script that generated an AUTOSAR xml description of a subset of the SWCs. This xml description is then imported normally in the tool and later refined.

2 -Concerning the description of the topology and the communication matrix, we find exactly the same concerns. However there is a discrepancy when we look at the maturity of formal design of both parts. On the one hand, the descriptions of topologies are often not standardized; but on the other hand, vehicle system messages are formally described (in proprietary or standard formats). Again, it seems compulsory to give users the ability to import and populate the communication matrix description, with all legacy data from all interacting networks. Figure 4: AUTOSAR Builder AAT This is a mechanism provided by AUTOSAR Builder through its "scripting" functionality. Using a formal description of the signal as input, it was possible to write a transformation algorithm that maps data on AUTOSAR signals, then to the corresponding PDU and frames and to set relevant properties. That way, the migration gets fully automated. In our precise case, more than 2000 signals were imported automatically. Considering a manual description of those parameters, it would have taken several days or even weeks to reach the same result (it is moreover an error-prone activity).

3 -The mapping and ECU extract focus on the extraction of all data of an AUTOSAR description which are mapped to a particular ECU. Obviously, when a whole system is described, only a subset of its SWCs is mapped on an ECU. The same holds true for the signals exchanged from or to this ECU.

Results from this step are used as the basis for the last step, which is the ECU configuration phase.

4 -This configuration is done by the integrator of the ECU which, in the case reported herein, is actually performed by the OEM. However, this responsibility only concerns a subset of the modules, i.e. the upper part of the basic software (BSW) architecture; the other part is left to the BSW and hardware platform provider.

Figure 5: AUTOSAR Builder GCE Looking more precisely at the AUTOSAR configuration, one can find out that some module parameter descriptions contain elements that are already provided by the ECU extract description (as inputs). This means that some parts of configuration can be automatically generated. AUTOSAR Builder comes with a generic configuration editor (GCE) which has been designed to provide some of the above facilities and offers the same "scripting" functionality as the authoring tool. For example, a complete COM stack can be pre-configured thanks to the description that can be found on the ECU extract, so that only significant configuration is performed. Moreover, the users could easily develop or use additional automation required by their process flow and deal with vendor specific parameters.

An open, Eclipse-based AUTOSAR tool technology

To enable its integration within a legacy process, AUTOSAR Builder is providing extensibility mechanisms such as "scripting".

Conclusion

Through this analysis of two exemplary use-cases, we have been stressing out the importance for an AUTOSAR platform foundation to have built-in extensibility mechanisms, to meet the needs of customer for replacing dedicated parts of their processes by a corresponding implementation that matches the AUTOSAR methodology. Main criteria to choose the tools that support the above-mentioned use cases are as follows:

-conformant to the AUTOSAR standard metamodel and concepts -open to external tools -customizable through the extension of existing functionalities -extensible, including the creation of custom automation features

The above criteria are key factors that influenced and drove the definition of the AUTOSAR Builder architecture, in such a way that it becomes eligible for supporting various commercial off-the-shelf or dedicated tools to build a complete and consistent tool chain.

The AUTOSAR Builder platform components are continuously enhanced to provide new automation features, with focus on the creation of a constantly growing library (pluglets, generation templates, predefined AUTOSAR application descriptions...) that will ease customer adoption of the AUTOSAR process and facilitate operational implementation on industrial projects. The AUTOSAR Builder Suite will include new features like graphical configuration and VFB simulation to increase its overall usability and performance, but also the depth of possible usecases implemented between the different stakeholders of AUTOSAR projects.

Acknowledgement

The authors would like to thank the contribution of Bertrand Delord from PSA for his useful and constructive comments.

Glossary

Figure

 Figure 1: AUTOSAR Methodology

Figure

 Figure 2: Xml Conformance

Figure

 Figure 3: Xml and C Conformance

 They are realized through an open underlying architecture called AUTOSAR Tool Development Kit, alias ATDK. This enabling technology is the common basis for all Eclipse-based AUTOSAR Builder tools. It encompasses EMF-based implementations of AUTOSAR metamodel releases 2.0, 2.1, and soon 3.0, and a number of related services including AUTOSAR XSD conform serialization, rule-based validation, tree-based viewers, form-based and graphical editing, and template-based target code and documentation generation. An easy to understand Java-based scripting/plug-let environment enables users to add domain-specific tool behaviours ranging from of custom file formats import & export to guided and automated BSW configuration.

Figure 6 :

 6 Figure 6: AUTOSAR TDK Architecture