Philippe Baufreton

Marc Segelken

Equivalence checking between embedded C code and corresponding Stateflow TM diagram specification

Keywords: model-checking, verification, safety critical applications

This paper focuses on a cost-effective application of model-checking in Verification & Validation of safety critical airborne systems, for proving the correspondence between automatic C source code and its specification expressed with Stateflow TM diagram specification. The process requires a minimum of user intervention in most cases, gives very high confidence and has the potential to shift the traditional technical checks when qualification is effective.

Introduction

Formal techniques can be used for proof of correspondence between specification and requirements [START_REF] Segelken | Advanced Systems Development Environment: A methodology and a tool-set designed to develop aeronautics, automotive and space safety-critical systems[END_REF] to make sure that the system, as described by the specification, establishes and preserves the properties in the requirements policy. They may also be used for proof of correspondence between source code and its specifications [START_REF] Kuhn | Cost Effective Use of Formal Methods in Verification and Validation[END_REF] -Although many formal techniques were initially created to provide proof of correctness of code, this is rarely done because of the time and expense involved, but may be done for particularly critical portions of the system.

This paper focuses on Stateflow

TM specification diagrams using the previously described use case [START_REF] Kuhn | Cost Effective Use of Formal Methods in Verification and Validation[END_REF]. In the development process, such diagrams are firstly converted by hand in SSM diagrams before the SCADE TM automatic C code generator is applied (the SCADE TM gateway does not support the Stateflow TM diagrams). Therefore, errors could be easily introduced during such manual transformations and early detection of errors between the embedded code and its original Stateflow TM specification is a key issue.

Formal process

The overall principle to achieve such proof of correspondence (also called an equivalence check) is basically to be able to compare the specification and the C production code whatever the transformations between the two. Since the model checker analyses C code and not the specification language itself, a preliminary translation of the specification into a code for verification (Specification C code) is first necessary. This translation requires an independent (in term of provider) code generator from the embedded chain to produce a code for verification reflecting the specification. In that process, the reader should note that there is no longer manual transcription of the Stateflow TM diagram as illustrated in Fig. 2. A code for verification was derived from the Stateflow TM diagram specification in several ways according to the projects. One used the Sildex tool (TNI-Software) to transfer the Stateflow TM diagram into the Signal [START_REF] Leguernic | Signal , a data flow oriented language for signal processing[END_REF] code, then the compiler was activated to first produce the internal data flow graph representation and then generate the C code for verification. Other possibility was to produce the A code with the Simulink TM coder which is more widely used in practice. The other case would be to use Sildex for verification since a project used another code generator for the embedded code.

One of the three combinations could be selected through an interface according to the user's preferences.

Fig. 4 User interface for Harness Selection

The variations are (SCADE TM qualified coder for production, Sildex for verification), (SCADE TM qualified coder for production, Simulink TM coder RTW for verification), (RTW for production, Sildex for verification). Technically speaking, every Scadelike code could be used for verification. In all three cases, scripts were created to automate as much as possible the creation of the dummy structure, the interfaces and calls of A and B while supplying them with both codes.

There is no common mode in the verification process and the development process If so, such an error should not be detected by the proof of correspondence but could be detected by the functional tests in force (correspondence between the specification and the requirements) on the embedded code since the error would be present in both process in such case.

To prove the equivalence, we can either provide a huge AND-gate which ensures that all equalcomparisons are true, or less complex for the model-checker, check only equality of one outputpair with one proof each. This is the way, we used in practice. On the editor level the tool provides for pattern instances definition, editing, and copying; proofs definition as a list of patterns to be satisfied, and a list of patterns that should be considered as assumptions. On the verification level, the tool provides for running the model checking algorithm against the given model, representation of the verification results, and representation of a counterexample in case of proof refutation.

Formal verification tool

The underlying symbolic discrete state modelchecker [START_REF] Brayton | VIS: a system for verification and synthesis[END_REF] follows a mathematical algorithm to prove (un-) reachability of states violating the property. After mapping the C-model to a symbolically encoded labeled transition system by a suitable C compiler inside Hybrid, the modelchecker engine algorithm performs a backward computation and optionally in case of simple reachability properties a forward computation of state sets, that either lead to the violation of the property or which are reachable from the initial state, respectively [START_REF] Clarke | Model Checking[END_REF]. Due to the compact symbolic encoding of these state sets by using BDDs for the logical encoding, the algorithm is able to deal with discrete state spaces with up to thousands of statebits. Once the existence of a path is proven, a distance-gradient based search algorithm is used to determine a concrete representative path being the diagnosis information result.

For complexity reduction the tool allows to adjust domains for integer variables, apply propositional abstraction and the use of an automatic iterative abstraction refinement extension [START_REF] Segelken | Abstraction and Counterexampleguided Construction of Omega-Automata for Model Checking of Step-discrete linear Hybrid Models[END_REF] to cope with linear computations on continuous items (i.e. variables of type real), that has proven to be quite effective for models with loose interaction of continuous and discrete parts of the model. Symbolic Model-Checking on its own cannot be performed with values of type real. On a purely discrete system, Hybrid works exactly as a symbolic model-checker. If the system controls continuous items, it can find a concise representation of those by using an automaton that prevents classes of spurious counterexamples to ever occur again in subsequent iterations during the iterative abstraction refinement process. If this process terminates, the result is either the affirmation of the property or a valid counterexample, also called trace, being a complete sequence of variable valuations for all variables of the model, including floating point values for variables of type real. Although as a semidecision procedure not always terminating in theory, in practice the approach works for many controller designs.

Fig. 5 Hybrid basic principles

Figure 5 shows the three main sub-procedures which are to be applied in sequence.

First, the C-code and the property is translated to an internal simple representation, an imperative language called SMI.

Second, abstractions are applied if required before translating the model to a logical representation required by the model-checker engine being called thereafter. The model-checker engine applies the previously described algorithm and thus decides the validity of the specified property. In case an error has been found, in a third step an error trace is produced for animation in the original design. In the presence of continuous items in the model, the second and third step are possibly iterated many times until either the validity of the property has been proven, or a valid error trace has been found. In the latter case the error path of the abstracted model being a sequence of input stimuli and internal variable valuations is concretized such that valuations of continuous variables are included as well.

The Hybrid

TM Man Machine Interface is depicted in Figure 6. Properties could be checked one by one according to the user selection or even all checked sequentially in some batch mode (by Execute All key).

Description of the work

Our aim is to certify the equality property for each signal pair so as to check that the outputs of the production code and the specification behave identically for all possible executions.

The property is expressed in pattern mode: inv_P_immediate with the expression "A_CDEPC = B_CDEPC" since the property says: "Both signals always (i.e. invariant) have to have exactly the same (i.e. =) value". The expected result is "true" with no trace being generated in both cases, of course.

The Hybrid TM performance largely depends on the size of the model, the number of inputs and their ranges and the complexity of the property to be verified.

By default, the integer ranges are set to [-1000, +1000], so to cover the whole model, the user needs to supply the maximum ranges that might be relevant for the model behaviour. This information has to be extracted from the specification itself and might increase the verification time much depending on the model complexity.

The verification is always covering the complete behavior provided there is no potential overflow in the model. Therefore domains had to be specified not being to small to avoid overflow behavior and not too big to keep complexity low. An optimal way to perform that was done and proposed to the users as depicted in Fig. 7.

Fig. 7 Variables ranges definition

In the case of ranges being too restricted compared to the specification, Hybrid TM does a partial but correct comparison check of both models (in contrast to normal verification where potential overflows lead to approximated verification).

If there is an important behaviour for higher numbers, for instance, there are specific reactions of the system that are only activated by higher numbers (like threshold checks) outside the specified range, the model-checker would not cover it since it would be be outside the reachable behavior. Thus the model might not be fully explored, but only partially.

In case of real (float) variable, the specific Ilabs algorithm should be applied in its normal mode (conservative over-approximation of the behavior) so as to preserve confidence in the results.

Results

The proof of correspondence was successfully exercised for all Stateflow

TM diagrams of a thrust reverse controller and partly applied to an engine control system of a military air fighter. The verification process has been automated to a large extent to minimise the user intervention and was able to check industrial size Stateflow TM diagrams implementation.

During about two months, about 60 proofs of equivalence were fully achieved for the two above projects which represent more than 100 properties. Sometimes errors were detected during formal verification process (wrong priority match between Stateflow TM diagram and SSM) with less effort compared to the current process based on manual Technical Checks (TC). Such checking improves the confidence in the C code for production since it faithfully represents the Stateflow TM diagram specification, in other words, the C code preserves the properties of the specification. In absence of errors, equivalence is fully proven.

In case of inconsistency, the generated trace (fig 8 .) is very useful to debug the model since it focuses on the source of the inconsistency with relevant details. To our experience, since there is an integer variable for the active state, checking the equivalence of these integers gave a first level of confidence. In case of error for that property, it is not necessary to check the other properties since the model should be first modified. Then the new formal process is applied again to make sure that the intended modification is done without side-effects (regression matter) and that all the equivalences of outputs are correct.

Implementation Specification

Fig. 8 Generated trace showing inconsistency

This process has been considered easy to use by the practitioners and much cheaper than the actual Technical Checks in force for a better level of quality, compared to the traditional technical checks relying on mental activity and subject to discrepancies.

Below is a time consuming comparison between both verification processes:

Fig. 9. Time comparison

The statistical speedup is about 4 ~ 6 in terms of time spent by the engineer to achieve the verification (the elapsed machine time in couple of minutes for each property is not excluded here) by comparison with the technical checks. The formal verification process is cheaper for a better level of quality (due to a complete verification with model checking) and avoid to a large extent the human factor.

Qualification

The purpose of the verification tool qualification is to demonstrate that the tool works as expected in order to further be able to take credit on its usage as an alternative mean of verification. The further use of a qualified verification tool authorise to give up the Technical Checks in force.

Hybrid

TM qualification as a verification tool could be feasible since pre-qualification was initiated in the frame of the Safeair 2 project. Data should be collected based on the actual usage of the tool (up to now, more than 100 properties were checked with always the same type of property). Also, the options of the model-checker are always the same and the Ilabs algorithm is selected only for cases where real type variables occur in the models, which is normally not the case for Stateflow TM diagrams. Inputs ranges are also to be considered to make sure that the verification is complete (not partial).

Properties should be checked with independence for level A software according to DO-178B/ED-12B [4] (very simple since the property type is strictly always the same) thus the C code structure since generated with scripts should also be checked (or also qualified).

To gain confidence in the model-checker itself, a qualification plan was initiated [START_REF] Baufreton | Software aspects of qualification in the SafeAir II Project[END_REF] within normal and abnormal conditions. Errors should be manually introduced in the embedded code reflecting an error in the stateflow2ssm manual convert. The results of the equivalence checking are then compared with the expected results obtained by the classical methodology. To complete the qualification of the new process, verification of the opposite property (signals should be at least different once) could be considered as well to give more confidence in the model-checker daily usage.

A common mode in both code generations could exist but is highly improbable (a double source for verification could be subsumed). Therefore, such an error as present in the production code as well, should be detected by the functional tests in force. A proof of correspondence between the Stateflow TM diagram specification and their requirements using the previously described use case [START_REF] Segelken | Advanced Systems Development Environment: A methodology and a tool-set designed to develop aeronautics, automotive and space safety-critical systems[END_REF] could be done with formal verification by Hybrid TM as well thus out of the scope of this paper. Dead code would not be any problem for the equivalence checking approach, but would indeed not be detected this way. However, the modelchecker could be used to detect dead code e.g. by assigning after each C-statement under examination a certain value to a dedicated analysis variable so that the task for the model-checker later is simply to find out whether the dedicated variable can get its certain value. However, SCADE TM qualified coder generates such code only for a robustness matter.

Conclusion

In the absence of errors, this new verification process based on light-weight formal methods gives improved confidence of the Stateflow TM diagrams implementation (mathematical equivalence of the possible behaviors of both C-codes within the specified ranges). It has been automated to a large extent to minimize the user intervention and was able to check industrial size Stateflow TM implementation. It has been found quite easy to use and cheaper for a better level of quality while avoiding to a large extent the human factor. When qualification is achieved, such proof of equivalence could be used as an alternate mean of verification.

Figure 1 :

 1 Figure 1: Equivalence checking principle The development process is on one hand, based on the SCADE TM qualified code generator. Since the actual release of the SCADE TM gateway does not support the Stateflow TM diagrams translation into SCADE TM diagrams, the use of the SSM editor interfaced with SCADE TM is firstly used to design the Stateflow TM diagrams into SSM diagrams to further generate lustre files compatible with the code generator as described in Fig. 1.

Figure 2 :

 2 Figure 2: Development / Verification chains A new model in C code is then created comprising the C code for verification from the Stateflow TM specification (A) and the Embedded C code from the SSM design (B) to be checked by the Hybrid TM (OFFIS) model-checker. by supplying the same inputs to both of them and comparing pair wise the outputs for equality.

Fig. 3

 3 Fig. 3 Equivalence checking principle

 . The specifications given to the code generators (Stateflow TM diagram, SSM diagram) are different (Signal and Lustre languages modules). Moreover, the code generators (Sildex, SCADE TM , RTW) are developed by separate teams, so having exactly the same error in these conditions is very unlikely to occur.

Hybrid TM is a

 formal verification tool that uses a BDD-based symbolic CTL model-checking engine. The program models are presented in a restricted subset of C, called C4Ver especially defined to represent synchronous programs generated with Sildex or C code produced by the SCADE TM qualified code. The properties specification language is based on a mixture of state expressions including simple temporal operators and predefined patterns representing most commonly used LTL-formulas. Patterns are generic in the sense that their arguments could be instantiated by user stateexpressions.

Fig

 Fig 6. Hybrid TM Man Machine Interface

 verification, harness, proof-reading, compilation and properties definition 15 min Formal checking by property (batch mode) > 15 min for large / complex stateflow 1 ~ 2 min in 95 % of the cases In case of overflow, range of local variables to