
HAL Id: hal-02270310
https://hal.science/hal-02270310

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the Porting of Linux to the VirtualLogix
Hypervisor using Semantic Patches

François Armand, Jean Berniolles, Julia L. Lawall, Gilles Muller

To cite this version:
François Armand, Jean Berniolles, Julia L. Lawall, Gilles Muller. Automating the Porting of Linux
to the VirtualLogix Hypervisor using Semantic Patches. Embedded Real Time Software and Systems
(ERTS2008), Jan 2008, Toulouse, France. �hal-02270310�

https://hal.science/hal-02270310
https://hal.archives-ouvertes.fr

Automating the Porting of Linux to the VirtualLogix Hypervisor
using Semantic Patches

François Armand,
1 Jean Berniolles, Julia L. Lawall,2 Gilles Muller3

1VirtualLogix, Paris, France
2DIKU, University of Copenhagen, Copenhagen, Denmark

3Ecole des Mines de Nantes, Nantes, France

Abstract: Virtualization is a promising technology for
running multiple operating systems (OS’s) on a single
processor. Preparing an OS for use with virtualization,
however, involves making some changes to the OS code,
which must be repeated for each version, whether a new
release or a client customization. Typically such changes
are expressed as patches, but patches are often not
portable from one version to another, and thus manual
adjustments are needed as well. In this paper, we con-
sider the use of the automated transformation system
Coccinelle to perform the changes required to port sev-
eral versions of Linux to the VLX hypervisor. Coccinelle
provides a notion of semantic patches, which are more
abstract than standard patches, and thus are potentially
applicable to a wider range of OS versions. We have ap-
plied this approach in the context of Linux versions 2.6.13,
2.6.14, and 2.6.15, for the ARM architecture.

Keywords: Linux, virtualization, VLX, automated pro-
gram transformation

1. Introduction

Virtualization is becoming a key technology in embedded
systems such as mobile phones and set-top boxes. In
this context, virtualization enables hosting several oper-
ating systems (OSes) on a single uni-core or multi-core
processor via a hypervisor that provides each OS with its
own execution environment or virtual machine by parti-
tioning and/or virtualizing hardware resources. The main
benefit of this technology is a simpler and less expen-
sive hardware architecture, not requiring multiple dedi-
cated processors, that also reduces energy consumption.
However, since most processors for embedded systems
do not provide any support for hardware assisted virtual-
ization, one must rely on paravirtualization: guest OSes
have to be modified to be run efficiently on top of the hy-
pervisor.

The process of adapting an OS for virtualization is quite
similar to that of porting an OS to a new target platform.
In particular, virtualizing Linux amounts to changing the
interface between the hardware and the lowest part of the
OS, known as the Hardware Abstraction Layer (HAL). Not

only is such a port time-consuming and error-prone, re-
quiring many changes to the OS source code, but it has
to be undertaken each time there is a need to upgrade the
OS to a more recent version. In the case of Linux, there
is currently a new minor release every three months. Fur-
thermore, in the context of a company like VirtualLogix
that develops hypervisors, each client that maintains a
Linux version with its own proprietary extensions must it-
self do the virtualization porting task. Therefore, there is a
need for documenting and automating the task of porting
Linux.

In recent work, in the context of a French ANR project,
we have developed the program transformation tool Coc-
cinelle [5] for documenting and automating evolutions in-
duced by the changes of Linux internal APIs. We refer to
such changes as collateral evolutions. Coccinelle offers
a language for creating semantic patches that describe
modifications to be applied to all the clients of a library, in
a generic manner [5]. To this end, a semantic patch is in-
sensitive to variations in spacing and control-flow, and to
other code equivalences. Coccinelle has been success-
fully used to perform evolutions in over 5000 driver files,
drawn from Linux 2.5 and 2.6.

In this paper, we report on our experience in using Coc-
cinelle for automating the port of Linux to VLX, the Virtual-
Logix hypervisor. Because semantic patches have been
designed for expressing interface changes, we conjec-
tured that the HAL induced evolutions could be captured
as a set of semantic patches. The result would enable
a nearly complete automation of the ports of subsequent
Linux subversions. With respect to the code written in C,
the Linux 2.6.13 HAL modifications for ARM processors
affect 16 files that involve 1800 code sites. Documenting
these modifications using semantic patches and apply-
ing the transformations automatically using the Coccinelle
tool was done in 5 weeks (including the time to learn Coc-
cinelle) by the second author as part of his Masters de-
gree. The semantic patches in total are 2000 lines long
and contain 79 rules. To validate the approach, we ap-
plied the same set of rules to Linux 2.6.14, and were able
to get a running version of Linux within a few days.

The rest of the paper is structured as follows. Section 2
gives an overview of Coccinelle and Section 3 presents
the Coccinelle transformation language by example. Sec-

Semantic patch

%%KKK
KKK

Linux
C file(s)

||yyy
y

Coccinelle
transformation

engine

��
Transformed
Linux C files

Figure 1: Using Coccinelle

tion 4 describes our experiments in automating the port of
Linux to VLX. Section 5 presents related work and Sec-
tion 6 concludes.

2. Overview of Coccinelle

Coccinelle is an automated program transformation sys-
tem. Automated program transformation is now starting
to see wide use in the form of the refactoring engines
provided by integrated development environments such
as Eclipse. Coccinelle, however, diverges from such sys-
tems in that the set of transformations is not built-in, and
instead must be specified by the programmer, using the
semantic patch language SmPL. This requires some in-
vestment from the programmer, but provides greater flex-
ibility. SmPL is based on the standard patch syntax [3],
in which transformations are expressed in terms of code
fragments. Initial reactions from Linux developers who
have read SmPL code suggest that they find it under-
standable.1

Figure 1 illustrates the usage of Coccinelle. Initially, the
programmer develops a semantic patch that expresses
the desired transformation. The semantic patch may be
programmed directly, but in practice it is often useful to
derive it from the differences found in some sample files.
Specifically, one can update some typical files by hand,
apply diff to compute the differences between the old
and new versions, and finally generalize the result to cre-
ate a semantic patch. The semantic patch is then given to
the Coccinelle transformation engine along with the files
that are to be transformed. The transformation engine ap-
plies the semantic patch to the files, and can either modify
them in place, create new copies, or produce a record of
the changes as a Linux patch, as desired. Coccinelle pre-
serves the coding style of the original files, by preserving
the preprocessor code, spacing, and comments, so that
the resulting files are amenable to further development
and maintenance.

In many of our experiments, we have applied Coccinelle
to the entire Linux kernel. Because of the use of indexing,
provided by glimpse [4], and other related strategies to
reduce the amount of code that is considered in detail,
this process typically requires only a few minutes. It is
also possible to limit the application to a single directory

1http://www.emn.fr/x-info/coccinelle/#feedback

or a set of files if more control is required over where the
transformation is performed.

3. SmPL Samples

In this section, we illustrate SmPL semantic patches
through a series of examples. All examples are drawn
from collateral evolutions that have been needed in re-
cent versions of Linux.

3.1 Basic structure

A semantic patch consists of a sequence of rules, each of
which begins with some context information, delimited by
a pair of @@s, and then describes a transformation. This
structure is based on that of a standard patch, which con-
sists of a sequence of regions, each of which begins with
the affected line numbers, delimited by a pair of @@s, and
then describes a transformation as a sequence of lines to
be added and removed. In the case of a semantic patch,
the context information contains a variety of information
about how the transformation should be carried out, as
described below, and the description of the transforma-
tion lists the subterms that should be added and removed,
as well as any required relationships between them.

As a first example, we consider the case of a set of in-
terrupt handling flags, which in Linux 2.6.18 received new
names. These changes affected over 500 files, including
the file drivers/net/tg3.c. Figure 2 shows a standard
patch for updating tg3.c accordingly. This patch was cre-
ated by first making a copy of the file, then making the
changes at the various places where it was needed, and
finally using the diff tool with appropriate options to cap-
ture the differences between the old and new versions. In
the resulting patch, each change is indicated by the old
and new versions, marked by - and +, respectively, of the
complete line in which it occurs. Because each line con-
taining a use of the interrupt handling flags is different, the
patch consists of many regions, potentially one for every
affected statement. The patch is furthermore applicable
to only a single file, the file from which it was created.

Figure 3 shows a semantic patch for making the same set
of changes.2 A semantic patch mentions only the specific
terms that are affected, i.e., the old interrupt flags and
their new counterparts. Because there is no extra code
specific to a given Linux file, this semantic patch can ap-
ply to any Linux file. Indeed, we can apply this single
semantic patch to the entire Linux source tree to update
all of the files affected by the collateral evolution, including
tg3.c, at once.

A semantic patch is applied to a source file by applying
each rule in turn to each of the source file functions and
top-level declarations. No inter-procedural analysis is per-

2There are actually 11 interrupt flags that change names; for con-
ciseness, we show only the ones that are relevant to the file tg3.c. The
full semantic patch, which is available at our website, is similar.

--- drivers/net/tg3.c
+++ drivers/net/tg3.c
@@ -6702,12 +6702,12 @@

fn = tg3_msi;
if (tp->tg3_flags2 & TG3_FLG2_1SHOT_MSI)

fn = tg3_msi_1shot;
- flags = SA_SAMPLE_RANDOM;
+ flags = IRQF_SAMPLE_RANDOM;

} else {
fn = tg3_interrupt;
if (tp->tg3_flags & TG3_FLAG_TAGGED_STATUS)

fn = tg3_interrupt_tagged;
- flags = SA_SHIRQ | SA_SAMPLE_RANDOM;
+ flags = IRQF_SHARED | IRQF_SAMPLE_RANDOM;

}
return (request_irq(tp->pdev->irq, fn, flags, dev->name, dev));

}
@@ -6726,7 +6726,7 @@

free_irq(tp->pdev->irq, dev);

err = request_irq(tp->pdev->irq, tg3_test_isr,
- SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
+ IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);

if (err)
return err;

Figure 2: Patch updating tg3.c to use the new interrupt
flags

@@ @@
- SA_SHIRQ
+ IRQF_SHARED

@@ @@
- SA_SAMPLE_RANDOM
+ IRQF_SAMPLE_RANDOM

Figure 3: Semantic patch for updating any file to use the
new interrupt flags

formed. The transformation indicated by a rule is only ap-
plied if the rule matches completely. Furthermore, a rule
is never applied to the result of its own application, so
termination is guaranteed.

3.2 Metavariables and dots

The example of the previous section shows that a seman-
tic patch abstracts away from the specific code surround-
ing a change site. It is, however, often necessary to ab-
stract away from some of the code contained within the
affected terms, as well. For example, in Linux 2.6.23, the
function kmem_cache_create lost its last argument. To
describe the transformation without being specific about
the contents of the other arguments of this function,
which may be different at each usage site, we intro-
duce metavariables, E1 through E5, to represent them.
Metavariables are declared between the @@s at the be-
ginning of the semantic patch rule. The declaration of a
metavariable describes what kind of term it can match,
e.g., identifier, expression, type, etc. In the case
of the kmem_cache_create semantic patch, all metavari-
ables represent expressions. The semantic patch is
shown in Figure 4.

The semantic patch in Figure 4 removes a complete call to
kmem_cache_create and then adds it back. Another ap-
proach is to simply remove the last argument, as shown

@@ expression E1, E2, E3, E4, E5, E6; @@
- kmem_cache_create(E1, E2, E3, E4, E5, E6)
+ kmem_cache_create(E1, E2, E3, E4, E5)

Figure 4: Semantic patch for updating calls to kmem_-

cache_create

@@ expression E1, E2, E3, E4, E5, E6; @@

kmem_cache_create(E1, E2, E3, E4, E5
- , E6

)

Figure 5: Semantic patch for updating calls to kmem_-

cache_create, specifying removal only

@@ expression E; @@

kmem_cache_create(...
- , E

)

Figure 6: Semantic patch for updating calls to kmem_-

cache_create, specifying only the last argument

in Figure 5. It is also possible to specify that the last ar-
gument should be dropped without being precise about
how many arguments precede it, by using three dots, i.e.
“...”, as shown in Figure 6. Dots, however, may not ap-
pear in added code.

3.3 Reusing metavariables

The previous examples merely use metavariables as
placeholders. A semantic patch can also use metavari-
ables to ensure that various parts of the code matched by
a semantic patch have the same structure.

As an example, we consider the reorganization of the
management of work queue structures, as was performed
in Linux 2.6.20. A work queue is initialized using the
macro INIT_WORK. Prior to Linux 2.6.20, this macro took
three arguments: the address of the work structure, a
pointer to the function that should be invoked to perform
the desired work, and a pointer to the data that this func-
tion should use. Starting in Linux 2.6.20, this macro was
redefined such that it no longer took the data argument;
now the work function was passed the work structure
when the work was to be performed. This change im-
plied that not only did all calls to INIT_WORK have to lose
their last argument, as for kmem_cache_create, but it
was also necessary to store the original data somewhere
so that the work function could retrieve it. In one com-
mon case, the data is the structure that contains the work
structure. In this case, the revised work function can ap-
ply the macro container_of to the work structure to re-
trieve the desired data. The semantic patch of Figure 7
implements the transformations required in this case.

The first rule in Figure 7 detects the case where the
work structure passed as the first argument to INIT_WORK

is a field of the structure passed in as the data in the

@ device_arg @
type struct_type;
struct_type *device;
identifier fn, fld;
@@
INIT_WORK(&device->fld, fn

- , device
);

@@
identifier dataq, device_arg.fn, device_arg.fld;
type device_arg.struct_type;
fresh identifier workq;
@@

fn (
- struct_type *dataq
+ struct work_struct *workq

)
{

+ struct_type *dataq = container_of(workq,struct_type,fld);
...

}

Figure 7: A semantic patch implementing collateral evo-
lutions in the use of a work structure

third argument. This rule defines several metavariables:
struct_type is an arbitrary type, device is an expression
of type pointer to struct_type, fn is an identifier that is the
name of the work function, and fld is another identifier that
is the name of the field holding the work structure. As in
the case of the semantic patch for kmem_cache_create,
the transformation part of the rule specifies that the last
argument to INIT_WORK should be dropped. The trans-
formation part furthermore specifies that the expression
matching device must appear in both the first and third
arguments. Note that although INIT_WORK is a macro,
it appears without expansion in both the semantic patch
and the generated code. Coccinelle does not expand
macros or other preprocessor directives, to maintain the
code structure.

The second rule in Figure 7 updates the definition of the
work function. This rule handles the case where the type
of the original parameter dataq of the work function is
the same as the type of the data value. The parameter
dataq is replaced by a parameter with a fresh name of
type work_struct, and dataq, which is likely to be used
within the body of the work function, is converted to a local
variable, which is initialized using a call to container_of.
This rule again uses “...”, here to represent the arbitrary
code in the body of the function. In general, “...” can be
used whenever there is a region of arbitrary code about
which nothing further needs to be specified.

The second rule uses a number of metavariables that
were defined in the first rule: fn for the name of the work
function, fld for the name of the field containing the work
structure, and struct_type for the type of the data argu-
ment. To indicate that these metavariables should have
the values established by the first rule, we give a name to
the first rule, device_arg, within the rule’s initial @@s, and
then use this name in declaring the fn, fld, and struct_type
metavariables in the second rule. In general, the first rule
may apply at multiple sites in the file, i.e., if there are mul-
tiple calls to INIT_WORK. For each such call, there may be
a different work function that must be updated. Coccinelle

@@ expression E; @@

- if ((E->flags & (1 << TTY_DO_WRITE_WAKEUP))
- && (E->ldisc.write_wakeup != NULL)) {
- ... when = \(printk(...); \| dbg(...); \)
- E->ldisc.write_wakeup(E); }
+ tty_wakeup(E);
...

- wake_up_interruptible(&E->write_wait);

Figure 8: A semantic patch introducing the use of
tty_wakeup

thus instantiates the second rule for each possible tuple
of values of fn, fld, and struct_type and then applies each
instantiation to the entire source file.

The semantic patch shown in Figure 7 addresses only
one of many possible cases, depending on where the
data for the work function should be stored. The full
semantic patch addresses cases where it is stored in a
global variable, where it is already a field of an existing
structure, where it must be added as a field of an existing
structure, etc.

3.4 More about dots

In several semantic patches, we have used “...” to rep-
resent some arbitrary code. When “...” appears at the
top-level in a sequence of statements, it means not an ar-
bitrary block of code, but an arbitrary path in the function’s
control-flow graph. This path is furthermore the shortest
one that has the given endpoints.

As an example, consider the semantic patch shown in
Figure 8. In the first four lines, this semantic patch
matches a rather complicated conditional. This condi-
tional must then be followed along all execution paths
by a call to wake_up_interruptible. The matching of
“...” in terms of control-flow paths means that the con-
ditional and the call need not be in a straight-line se-
quence, but a matching call to wake_up_interruptible

must always be executed after the conditional,3 to
ensure that the transformation to use tty_wakeup,
which encompasses both the conditional and the call to
wake_up_interruptible, preserves the original behav-
ior. Furthermore, the use of the shortest path ensures
that when the pattern appears multiple times within a sin-
gle function, the right conditional is matched up with the
right wake_up_interruptible.

The semantic patch in Figure 8 also uses “...” at the
statement level in matching the initial conditional. Here
“...” is qualified with a when clause requiring that the
matched code contain only printing or debugging state-
ments. Because all of this code will be deleted, it is im-
portant to ensure that it does not have any effect on the
behavior of the rest of the function. It is also possible to
specify code that should not appear as a subterm within
the code matched by “...”, by using when with != rather

3Coccinelle relaxes this requirement for control-flow paths identified
as error paths.

than =.

Finally, the semantic patch in Figure 8 explicitly compares
E->ldisc.write_wakeup to NULL, while Linux code of-
ten checks for the non-nullity of a pointer by just testing
the value of the pointer itself. In general, for an arbitrary
pointer-typed expression X, all of X == NULL, NULL ==

X, and X are equivalent. Coccinelle abstracts away from
these minor syntactic differences by a collection of rules
known as isomorphisms. Isomorphisms are specified us-
ing a syntax similar to that of semantic patches, and new
isomorphisms can be defined by the user.

3.5 Assessment

SmPL provides a simple, code-based notation for ex-
pressing the kinds of collateral evolutions that are often
needed in Linux code. The language is also in the spirit
of the standard patch syntax, which is already familiar
to Linux developers. We have written over 60 seman-
tic patches implementing collateral evolutions that have
been required in recent versions of Linux [5]. These col-
lateral evolutions affect over 5000 files from various Linux
versions, and our semantic patches have been sufficient
to update over 93% of these files. In addition, we have
identified over 150 files in which the human programmer
made a mistake in performing the collateral evolution, but
the semantic patch performs the transformation correctly.
Finally, we have recently submitted several patches to
Linux based on our work that complete previous collateral
evolutions.

4. Applying Coccinelle to VLX

We next consider how Coccinelle can be used to per-
form the changes required to port an existing version of
Linux to VLX. The actual porting work was done by a
Masters students who had no previous experience with
Coccinelle, Linux kernel code, or VLX. This task is, fur-
thermore, quite different from that of the collateral evo-
lutions considered previously. Collateral evolutions entail
an API-level change at many places in a single version of
the Linux kernel. In the case of porting an OS, our goal is
to make many kinds of changes, both high and low level,
across multiple versions of the Linux kernel. We find that
while the approach is adequate for applying the port to
closely related Linux versions, it is not sufficient when the
versions start to diverge significantly in functionality.

In the rest of this section, we first briefly describe VLX,
then enumerate the kinds of changes that are required to
port an existing version of Linux to VLX, and finally de-
scribe our results in applying semantic patches derived
from Linux 2.6.13 to later versions of Linux.

Figure 9: An example use of VLX

4.1 Overview of VLX

VLX is a real-time hypervisor that enables multiple guest
OS’s to run simultaneously on the same single-core or
multi-core processor. A typical use of VLX is illustrated in
Figure 9. With VLX, the guest OS’s are independent from
each other, but can cooperate via efficient communication
mechanisms. VLX runs on various processors, including
Intel x86, PPC, DSP’s and ARM. The version used in this
project was based on the ARM processor.

VLX isolates the guest OS’s from the underlying hard-
ware. It uses partitioning of resources between the guest
OS’s and virtualization of resources that cannot be parti-
tioned. Typically, physical memory is partitioned between
the guest OS’s while the CPU, FPU, MMU and other parts
of the system such as the real-time clock and interrupt
controller are virtualized.

Partitioned resources such as memory, which will only be
used by a single given guest OS, are exclusively owned
by that guest OS. Thus, each OS may use its own native
mechanisms and policies, such as memory management,
without interfering with other guest OS’s. Similarly, I/O
devices used by a single guest OS are assigned to that
guest OS, and thus native device drivers can be re-used
without any modification.

Resources that are common to more than one guest OS

such as the CPU and real-time clock are virtualized so
that they can be shared between those various guest
OS’s which need to access the resource.

In order to ensure efficiency, VLX employs paravirtual-
ization techniques, meaning that some adaptation of the
guest OS kernel is required. These changes are com-
parable in both effort and scope to porting that OS to a
hardware very similar to the underlying one.

VLX virtualizes the CPU, FPU and MMU (if any). The
CPU is shared by means of a scheduler which assigns
the processor to the selected guest OS and guarantees
that a real-time guest OS will get a higher priority. When
a guest OS has been granted CPU access, it uses its own
native scheduling policies for its applications.

If present, the MMU is virtualized so that each guest OS
may use it for its own purposes. Use of the MMU by one
guest OS is independent from the use of the MMU by
another guest OS.

VLX provides each guest OS with synchronization (cross-
interrupt) mechanisms, shared access to devices such as
disk controllers, network interfaces, serial lines and inter-
OS communication mechanisms through virtual devices.

Devices such as an Ethernet controller or a serial line may
need to be accessed by more than one guest OS. For
such I/O devices, “back-end” device drivers manage the
physical hardware devices, virtualize it, and export a vir-
tual view of that device to other guest OS. This approach
provides these guest OS’s with access to features of each
device without actual access to the device.

Communication between the different guest OS’s is pro-
vided by virtual communication devices. Different types
of such devices can be configured depending upon the
needs of the communicating applications. For example, a
system might use a virtual Ethernet to implement a local
private network that is located wholly internally to the ma-
chine, and/or it might use a virtual UART device to pass
AT modem commands from one guest OS to the other.

4.2 Creating semantic patches for VLX

Porting a version of Linux to VLX requires making
changes to the assembly code, the C code, and the vari-
ous configuration and make files. As we are considering
only the ARM architecture, these changes primarily affect
files in the arch/arm directory. Because Coccinelle only
works on C code, the other changes have to be made by
hand. We found that between Linux 2.6.13 and 2.6.14
there was no change in the code in the context of the
assembly code that needed to be changed, and thus it
was possible to simply copy the new assembly code from
the 2.6.13 version and to the 2.6.14 version. Updating the
configuration and make files was also reasonably straight-
forward.

In the C code, the main kinds of changes that are required
to port a version of Linux to VLX are to add the VLX in-
clude files, to add new functions, to insert calls to these

new functions, and to augment structure declarations. In
particular, the changes are mostly non-intrusive; the main
changes required within existing function bodies are to
replace a call to a Linux function by a call to its VLX coun-
terpart.

All of the files affected by VLX must include the VLX in-
clude files. For this, a semantic patch such as the follow-
ing was used:

@@ @@
#include <asm/memory.h>

+ #ifdef CONFIG_NKERNEL
+ #include <asm/nk/f_nk.h>
+ #endif

The new code is added within ifdefs to maintain the abil-
ity to generate both the original and ported implementa-
tions. This semantic patch relies on the presence of an
include of asm/memory.h in the source file to determine
where to perform the modification. In general, however,
it may not be the case that there is some existing include
file that is common to all of the files that should be modi-
fied. SmPL thus also permits only a portion of the name
of an include file to be specified, for greater genericity.
The following semantic patch specifies that the new in-
clude file(s) should be added after the last asm header file
include:

@@ @@
#include <asm/...>

+ #ifdef CONFIG_NKERNEL
+ #include <asm/nk/f_nk.h>
+ #endif

At the function level, 42 function definitions needed to be
inserted and 11 deleted. These changes are again made
within ifdefs. Adding a function is expressed similarly to
adding an include, in terms of existing code that the func-
tion should be placed adjacent to:

@@ @@
+ #ifdef CONFIG_NKERNEL
+ static inline void nkidle(void) {
+ // the definition of nkidle
+ }
+ #endif
cpu_idle(...) { ... }

Removing a function similarly involves adding ifndef
around it, as follows:

@@ @@
+ #ifndef CONFIG_NKERNEL
cpu_idle(...) { ... }

+ #endif

Note that in both cases, we have specified code that
should be added before the function definition by indicat-
ing that it should appear directly before the function name,
without mentioning the return type or other attributes that
may be associated with a function declaration. Coccinelle
ensures that the added code is placed before the com-
plete function definition and its attributes, thus making the
semantic patch insensitive to changes in the set of at-
tributes that are provided.

Thirty-two changes were required within existing func-
tions. These were primarily to replace function calls by
calls to their just-added VLX counterparts. A typical se-
mantic patch performing such a change is as follows:

@@
expression E1, E2;
@@

doSomething(type parameter) {
<...

+ #ifdef NKERNEL
+ nk_action(E1, E2);
+ #elseif

native_action(E1, E2);
+ #endif

...>
}

This semantic patch converts calls to native_action to
calls to nk_action. Metavariables are used to copy the
arguments from the original call to the new one. In gen-
eral, the new arguments can also be computed from the
old ones in some way, e.g., reversing them, dropping
some, or constructing a new value based on other in-
formation matched in the semantic patch. This seman-
tic patch only converts calls occurring within the function
doSomething. The use of <... and ...>, known as
a nest, indicates that this transformation should be per-
formed wherever a call to native_action occurs within
the function body. The dots, “...”, we have used previ-
ously would require that every control-flow path from the
beginning to the end of the function contain exactly one
call to native_action, which in the case of renaming a
function is often too constraining.

In nine cases, it was necessary to add or remove a field
from a structure type declaration. In this case, the seman-
tic patch has the form of the structure declaration, some
lines are specified to be removed using the - annotation,
and others are specified to be added before or after exist-
ing fields.

Finally, in nine cases some other top-level declarations
needed to be added. These were done analogously to the
insertion of a new include or a top-level function definition.

4.3 Applying the semantic patches to Linux 2.6.14

and Linux 2.6.15

The semantic patches were created from the changes re-
quired to port Linux 2.6.13 to VLX. Our goal, however, is
not to simply create a patchset that is applicable to a sin-
gle version of Linux, but instead to create one that can be
reused over multiple versions of Linux, including both sub-
sequent versions in the Linux source tree and versions
that have been customized by a client. To determine to
what extent we have reached our goal, we have applied
our semantic patches to Linux 2.6.14 and 2.6.15.

In the case of Linux 2.6.14, we used semantic patches de-
rived from the port of Linux 2.6.13 to two versions of VLX:
MH 3.0.1 and MH 3.1. For MH 3.0.1, only two days were
necessary to obtain a functioning VLX version of Linux

2.6.14. The main difficulty encountered was to manu-
ally fix some erroneous code that resulted from weak-
nesses in Coccinelle’s treatment of preprocessor code.
These problems in Coccinelle have subsequently been
fixed. For MH 3.1, four days were required. The transfor-
mation was more difficult in this case, because it touched
the implementation of third-party drivers, which changed
in a more drastic way between Linux 2.6.13 and Linux
2.6.14 than ARM code in the Linux kernel source tree.
These changes implied that the context code in the se-
mantic patch before or after which the VLX code was to be
added did not always have the same form in Linux 2.6.13
and Linux 2.6.14. In many cases, it was possible to make
this context code more generic, allowing it to match both
the Linux 2.6.13 code and the Linux 2.6.14 code. As an
example, when adding one function before another exist-
ing function, the existing function can be described with
an explicit parameter list or with (...) as the parameter
list. The latter encoding is less sensitive to changes in the
source code.

The problems encountered in porting Linux 2.6.14 to MH
3.1 persisted and multiplied in trying to port Linux 2.6.15
to MH 3.1. In particular, the memory initialization strategy
appears to have changed drastically in Linux 2.6.15, thus
making the patches derived from Linux 2.6.13 inadequate
to complete a port.

4.4 Assessment

The success of our experiment with VLX was only par-
tial; we showed that semantic patch could be applied to
a version of Linux other than the one for which they were
designed, but we found that the semantic patches were
fragile with respect to certain kinds of changes in Linux
code.

Indeed, as initially noted, the task of porting a Linux ver-
sion is somewhat different from performing the collateral
evolutions for which Coccinelle was developed. The se-
mantic patches for collateral evolutions described in Sec-
tion 3 perform localized changes to code directly de-
pendent on generic API functions, and rely heavily on
metavariables to provide genericity and to express rela-
tionships between disjoint code fragments. The seman-
tic patches for VLX, on the other hand, are dominated
by complete functions that are added adjacent to various
specific functions in the existing file. There is little use of
metavariables, and most semantic patches are applica-
ble at only a single position. The semantic patches are
thus not much more abstract than standard patches, and
are quite sensitive to changes in the source file across
multiple versions. Furthermore, while API changes tend
to have an impact that is quite similar across many files,
drastic changes can occur when moving from one version
of Linux to another, implying that new functionalities have
to be introduced in the VLX code. This lead ultimately to
the inability to apply the Linux 2.6.13 semantic patches in
the Linux 2.6.15 case.

Nevertheless, our experiment with Linux 2.6.14 shows
that the use of semantic patches can provide some flex-
ibility, and suggests that the use of semantic patches
could be beneficial for porting closely related Linux ver-
sions, such as one customized by a client.

5. Related Work

The program transformation system C4 [1] is also moti-
vated by the difficulty of keeping multiple versions of sys-
tems code up to date. C4 is inspired by aspect-oriented
programming [2], and thus focuses on inserting code be-
fore, after, and around standard points of modularity, typi-
cally function calls. This degree of expressiveness is suf-
ficient for specifying the transformations that we have car-
ried out in porting Linux to VLX. However, one could con-
sider whether the ability of SmPL to express transforma-
tions on any kind of program construct could allow a more
fine-grained specification of the transformations required
to use VLX, at the statement level rather than the function
level. This could reduce the number of lines of code that
are affected by the transformation and that thus have to
be updated by the client manually, when they affect client
customizations. We have not yet explored this issue, but
hope to do so in future work. C4 is not currently publicly
available.

A number of other program transformation systems have
been developed. Among these, JunGL [6] targets the
problem of specifying refactorings. The language relies
very heavily on library functions to access and manip-
ulate code fragments. In contrast, a SmPL semantic
patch is very close to C code. Another well-developed
program transformation system is Stratego [7]. Transfor-
mations are expressed in terms of concrete syntax code
patterns and the Stratego language. This mix of lan-
guages can make it difficult to discern the structure of
the affected code. Furthermore, Stratego has no notion
of the semantics of the code that is being processed, and
thus is restricted to the traversal of abstract syntax trees.
Coccinelle, on the other hand, follows control-flow paths,
which encode the semantics of control structures, such
as loops and conditionals.

6. Conclusion

Many specialized variants of Linux are becoming avail-
able, for virtualization and other purposes. Because Linux
is an open source system, clients can adapt these ver-
sions to their needs. But there remains the difficulty of
keeping such a hybrid version up to date with the many
tracks of Linux development, both in the Linux source tree
and in the specialized variants. In this paper, we have
shown that semantic patches can help with this prob-
lem, by providing a specification of code changes that
abstracts away from inessential details, and thus is ap-
plicable to multiple versions of the system. But we have

also seen limitations of the approach, when the changes
in the system to be patched are too drastic. We will con-
sider how to address this issue in future work.

Acknowledgements

This work has been supported in part by the Agence
Nationale de la Recherche (France) and the Danish Re-
search Council for Technology and Production Sciences.

Availability

Coccinelle and associated documentation are available at
http://www.emn.fr/x-info/coccinelle/

References

[1] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker.
Patch (1) considered harmful. In 10th Workshop on
Hot Topics in Operating Systems (HotOS X), Santa
Fe, NM, June 2005.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of As-
pectJ. In ECOOP 2001 – Object-Oriented Program-
ming, 15th European Conference, number 2072 in
Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 2001.

[3] D. MacKenzie, P. Eggert, and R. Stallman. Com-
paring and Merging Files With Gnu Diff and Patch.
Network Theory Ltd, Jan. 2003. Unified Format sec-
tion, http://www.gnu.org/software/diffutils/

manual/html_node/Unified-Format.html.

[4] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. In USENIX Winter 1994
Technical Conference, pages 23–32, San Francisco,
CA, Jan. 1994.

[5] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
linux device drivers. In Eurosys 2008, Glasgow, Scot-
land, Mar. 2008. To appear.

[6] M. Verbaere, R. Ettinger, and O. de Moor. JunGL:
a scripting language for refactoring. In International
Conference on Software Engineering (ICSE), pages
172–181, Shanghai, China, May 2006.

[7] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-
0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in
Computer Science, pages 216–238. Spinger-Verlag,
2004.

