
HAL Id: hal-02270306
https://hal.science/hal-02270306

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene-Auto: an Automatic Code Generator for a safe
subset of Simulink/Stateflow and Scicos

A Toom, T Naks, Marc Pantel, M Gandriau, I Wati

To cite this version:
A Toom, T Naks, Marc Pantel, M Gandriau, I Wati. Gene-Auto: an Automatic Code Generator
for a safe subset of Simulink/Stateflow and Scicos. Embedded Real Time Software and Systems
(ERTS2008), Jan 2008, Toulouse, France. �hal-02270306�

https://hal.science/hal-02270306
https://hal.archives-ouvertes.fr

Gene-Auto: an Automatic Code Generator for a safe subset of
Simulink/Stateflow and Scicos

A. Toom1,4, T. Naks1,4, M. Pantel2, M. Gandriau2, I. Wati3

1: IB Krates OÜ, Akadeemia tee 19, 12618 Tallinn, Estonia
2: IRIT-ENSEEIHT, University of Toulouse, 2, rue Charles Camichel, 31071 Toulouse Cedex, France

3: CRIL Technologies, Alyotech France, 104 Boulevard Auguste Blanqui, 75013 Paris, France
4: Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

Abstract: Model Driven Engineering (MDE) and
Automatic Code Generation (ACG) have been very
successful in the systems engineering domain. An
important aspect, however, is that the required
lifetime of critical embedded systems can be very
long. For instance, avionic software must be
maintainable for up to 80 years. Secondly, the
reliability of high criticality software must be qualified
according to high industry standards (e.g. DO-178 in
the avionics). The Gene-Auto project addresses
these issues by developing an open-source toolset
for code generation from high level modelling
languages like Simulink/Stateflow and Scicos to
executable code for real-time embedded systems. It
is the goal of the project to prepare the ACG for full
qualification according to the requirements of safety
critical industries. However, since the traditional test-
based verification methodologies are very costly,
Gene-Auto develops and aims to qualify some parts
of the toolset using novel formal technologies.

Keywords: Model Driven Engineering (MDE),
Automatic Code Generation (ACG), open-source,
qualified toolset, Simulink/Stateflow, Scicos.

1. Introduction

Model driven engineering emphasizes the use of
models to raise the level of abstraction in the design
of complex systems and model transformations that
eventually lead to executable code [1]. The
assumption is, that application specific constructs
and solutions can be more easily described using a
model than a programming language. Higher level of
abstraction enables to verify/validate solution before
adding implementation details. Model
transformations are intended to ensure that solution
described in an abstract model is carried to the
implementation correctly and without losses.
A specific kind of model transformation that
produces executable program code is referred to as
"code generation" (or "automatic code generation" to
emphasise that the process involves little or no
intervention from the programmer). The goal of the
approach is to increase the level of software quality
by suppressing routine phases of development
(coding, unit testing) and also reduces the cost of
software development by shortening the

development process. The latter may not apply in all
cases, as the input models are required to be much
more detailed and consistent than the models that
are created only for communication purposes and
are interpreted by human programmers. However, in
the safety critical domain, the increased level of
correctness is still an advantage of the model driven
development, even if some drawbacks in the
development time might occur. Second target for
cutting the length of development process is testing.
Provided that the solution is verified/validated on the
model and the transformation from model to code is
proven to be correct, some phases of testing can be
potentially reduced or completely removed.
Additionally, models allow to express separately
different concerns – e.g. functionality, performance,
safety, etc. All of these will be then merged in the
source code and the binary executable.
The design models used in the systems engineering,
that includes also safety critical domains like
aerospace, automotive, etc, are often in the form of
functional data-flow diagrams and finite automata.
One of the most widely used tools in this domain are
Simulink [2] and Stateflow [3], belonging to the
Matlab family. An open source tool similar to
Simulink is Scicos [4], part of the Scilab toolset.
However, often such tools have been designed for a
much wider audience and allow usages, which do
not always fit the quality requirements of safety
critical systems. Examples of formalisms that were
specifically developed for the safety critical domain
are the languages belonging to the synchronous
language family such as Esterel [5], Lustre [6] and
Signal [7] and Lucid-Synchrone [8], which led to the
industrial products Esterel Studio [9], SCADE Suite
 [5] and RT-Builder [11].
This paper describes the aims and current results of
a project on an Automatic Code Generator for the
safety critical domain – Gene-Auto. The purpose of
the Gene-Auto project is, on one hand, to define a
modelling language which is a safe subset of
Simulink/Stateflow and Scicos and fits the needs of
its industrial partners, and on the other hand to
specify and implement an ACG taking as input this
modelling language and producing as output a safe
subset of the C language, corresponding to the
usual coding rules for real-time embedded safety

 Page 1/10

critical systems. As the ACG will produce the source
code for the system without any humans in the loop,
it is currently required by some certification authori-
ties to have the same safety level as the system it is
used for. Current testing technologies make reaching
this level of safety in an ACG very laborious. Gene-
Auto will therefore rely as much as possible on
formal technologies to ensure the quality of the
toolset.
The motivation to start another project for creating
code generation in a domain, where several
industrial-grade tools exist already, is manifold. The
first and main aspect is the required longevity of
support. For instance, in the aerospace domain the
required lifetime of control software (and thus also
the lifetime of all tools required to support this
software) is up to 80 years. It is difficult to expect
from a single organisation to guarantee support for
such a long period. One possible solution is the
open-source approach. Having access to the source
code of a software product will allow to maintain this
product after the end of support from its original
producer. The second requirement is related to tool
qualification. As already mentioned above, when the
software tool will replace some of the activities
performed by human programmers, the tool must
conform to the same safety level than the developed
software. This means automatically that the tool
development procedure should follow specific rules
and detailed information about the development
process must be available for the certification
activities. It takes considerable effort to follow all
necessary procedures for qualification and usually
tool developers (with some exceptions) do not find it
cost effective or even feasible. The Gene-Auto
consortium has a goal to follow the required
development process and prepare all necessary
records for the future qualification of the tool in
automotive and aerospace domains.
This contribution will present the Gene-Auto project
and its various parts. It will mainly focus on the
proposed input language and on the practical and
theoretical design constraints that are used in order
to help the users in writing correct and easy to
understand and maintain models, and on the other
hand to provide a clean semantics, well suited to
formal verification and validation technologies both
for the models and the ACG.

2. The languages

2.1 Requirements and approach

The main purpose of the Gene-Auto toolset is to
implement a code generator transforming a set of
high-level graphical modelling languages to a textual
programming language that will be used for
developing safety critical real-time embedded
systems. Initially, the Simulink, Stateflow and Scicos

languages have been chosen as Gene-Auto input
formalisms and C as the target language.
There are two main groups of requirements specified
for the Gene-Auto toolset:
• User requirements, which define the subsets

and semantics of both the input and output
languages of the code generator and its
qualification constraints.

• Tool requirements, which define the relation
between the input and output languages that
must be satisfied by the developed tools and
their qualification plan.

Additionally to the input and output languages, two
intermediate languages have been defined: one
related to the input modelling language and the other
related to the output language. The purpose of the
first one is to generalise the common concepts found
in the tools used for developing safety critical
embedded systems and provide them with clean
rigorous semantics. This language is called Gene-
Auto modelling language. The other one is called
Gene-Auto code modelling language and it is
semantically close to the intended target languages
of the code generator. The definition of these
intermediate languages includes abstract syntax and
semantics, but also modelling and programming
rules that are meant to ensure that the models are
well formed and the output code conforms to the
coding requirements of end-users.

2.2 The Gene-Auto modelling language

2.2.1 Requirements and objectives

Most of the modelling languages widely used for
designing safety critical embedded systems, have
been designed for much broader purposes (for
example UML2 or Simulink/Stateflow). Therefore,
they provide great expressiveness and rely on
complex semantics, which is usually not formally
defined and changes from version to version of the
tools or standards (UML2 even provides standard
semantics variation points). Similarly to previous
works (e.g. [12]) Gene-Auto defines a restricted
subset of the input languages that has a simple,
well-defined semantics. Such a subset is “safe”,
because it avoids complex error-prone constructs
and allows for simple verification of intended
properties, e.g. termination, context independency,
while still preserving the essential features of the
language. The developed language must not only
suit the needs of the various partners of the project
but also be the basis of an open standard promoted
by Gene-Auto. It serves as a basis for independent
model verification tasks (including conformance to
the chosen subset of the input formalism), as well as
further refinement in the course of code generation
(e.g. type or clock inference). However, it must be
pointed out that it is not the purpose of the Gene-

 Page 2/10

Auto project to provide means for graphical editing
and simulation. In fact, the effort for defining a
common modelling language is similar and related to
the larger open source and open architecture project
for critical embedded systems TOPCASED [13].
The Gene-Auto modelling language’s semantics is
based on the Kahn synchronous network model of
computation [14]. Motivated by the commonly used
graphical notations, this language defines four kinds
of hierarchical diagrams: functional, automata, truth
table and decision network, plus an action language.
Following is a brief informal description of these
languages along with some simple examples from
different modelling tools.

2.2.2 The functional diagram

This diagram is the classical data-flow widely used in
the systems engineering to express command and
control systems. Signals carrying values are
interconnecting blocks through their input and output
ports. Each block can either be a basic (atomic)
block or a subsystem. Each block can have a clock,
an activation port and an execution rank. The clock
is used to relate all the blocks, which will be
synchronised implicitly. Two blocks with different
clocks can only be connected through explicit rate
adapter blocks. The activation port is used to decide
if a block must be executed when its clock is ticked.
The execution rank is an integer which must be
unique in a given diagram and allow to decide the
order in which the blocks with the same clock in a
diagram are executed in a given clock tick. The basic
blocks provide a combinatorial or sequential function
handled by the code generator or provided by
libraries following the Gene-Auto interface.
Subsystem blocks can contain any diagram whose
clocks are sub-clocks of the block ones.

(a)

(b)

Figure 1: Functional diagram models in Simulink (a)
and Scicos (b)

2.2.3 The automata diagram

This notation is derived from the Harel’s StateCharts
 [15] and is widely used in many modelling
languages (UML2, Statemate, Stateflow, etc.).
Gene-Auto proposes both Moore (actions in states)
and Mealy (actions on transitions) models as well as
parallel automata relying on the synchronous
semantics. The potentially non-terminating “run-to-
completion“ semantics together with the intricate
“early return” mechanism in Stateflow ([3], [12]) are
avoided.

Figure 2: A chart with parallel automata in Stateflow

2.2.4 The truth table diagram

This diagram is the classical boolean algebra truth
table. A cell is selected depending on the values of
boolean expressions related to the values of input
variables. Cells contain actions, which are executed
when a particular cell is selected.

Figure 3: A truth table in Stateflow

2.2.5 The decision network diagram

A so-called decision network is a diagram that is a
combination of junctions and transitions. It is derived

 Page 3/10

from the junction notation used in UML2 Statecharts
and Stateflow diagrams. A junction is a kind of a step
in a sequential execution. Actions are associated to
the transitions between junctions. A transition is
taken and the corresponding actions are executed,
when the transition’s guard evaluates to true.

Figure 4: A graphical function in Stateflow

2.2.6 The action language

The purpose of the action language is to achieve
some noticeable effect with the computation. Actions
are associated to transitions, states of an automaton
and cells of a truth table. The action language is a
small imperative language that is a subset of the
output language of the code generator.

2.3 The Gene-Auto code modelling language

The initial output of Gene-Auto code generator is an
abstract language that captures the required subsets
of the intended target languages. Currently only
imperative languages like: C, C++, ADA and Java
are considered. This language provides the
minimum set of concepts required to generate
efficient code: expressions, function/macro
definitions, function/macro calls, read and write to a
variable, definition of global/local variables,
sequence, conditional statements, error handling,
etc. The abstract output language is also a basis for
further optimisation and verification tasks that
can/will be performed before converting to specific
concrete code. During the first phase of the Gene-
Auto project only C language output will be
generated.

3. Toolset architecture

The Gene-Auto toolset is an open-source
customisable framework for generating software
code from models of safety critical embedded
systems. The scope of the Gene-Auto project is
currently initiated for the generation of C-code from
safe subsets of Simulink, Stateflow and SciCos
modelling languages. However, the architecture
supports adding both input and output languages.
Another important goal is the validation and
verification of the code generation process and
support for model verification. For the end-user the
Gene-Auto process is one-directional and all
information needed for the code generation process

is specified either in the source model or as code
generator parameters. However, the toolset
architecture supports exporting models between
transformation steps for validation and verification
and/or for optional transformation steps using add-on
tools.
To allow for the maximum flexibility of tool
development and qualification, the toolset
architecture is modular and each module is an
isolated functional component. Smaller components
make specifying and verifying the properties of each
component easier and make the whole toolset less
sensitive of the implementation details of individual
components. The requirement of pure functional
nature (the behaviour of each component depends
only on its input) makes it possible to verify and
validate each component in isolation and combine
the components later without any side-effects. In
addition to reducing the verification effort, this also
gives the possibility to use different verification and
validation methods in different components. Gene-
Auto intends to qualify selected parts of the code
generator using formal methodologies, as a replace-
ment for testing used in classical methods. As this is
a challenging task, it will not be applied to the whole
tool-chain at once, but rather, in the first Gene-Auto
production version there will be parts that are
qualified using traditional test-based techniques
together with parts developed and verified using
formal techniques. As the architecture is fully
modular, each component can be replaced by a
different one, yielding in time a code generator that
has been fully built and verified using formal
techniques.
There are several classes of general functionalities
proposed in the tool-set architecture:
• Model importers – components that enable to

import a source model from its native format and
convert it to the Gene-Auto modelling language.

• Model transformers – components that do a
specific transformation step on either a model in
the Gene-Auto modelling language or a model in
the Gene-Auto code modelling language. The
output of such a transformation is again a model
in either one of these languages, until the model
is ready for printing out to concrete programming
language code.

• Model verifiers – components that enable to
validate the correctness of the model and
correctness of the individual transformation
steps. Validation of the model itself is out of the
scope of the Gene-Auto tool-set, except to check
that the model conforms to the required
modelling constraints.

• Model serialisers – components that are coupled
to both of the Gene-Auto model formats: the
modelling language format and the code

 Page 4/10

modelling language format, and manage the
transformation between the model and a file.
Model serialisers are a compulsory feature of the
implementation rather than tools on their own.
They guarantee that the model can be losslessly
stored and retrieved between the individual
transformation steps.

In addition, a set of external modelling assistants
and verification/validation tools are envisaged that
are outside of Gene-Auto scope but are necessary
for verification and validation of the input model.
External tools can interface with the Gene-Auto tool-
set due to the open modelling languages.

4. Formal verification

Gene-Auto relies on proof assistant technologies for
the validation and verification of the toolset. Proof
assistants allow to build both: specifications and
proof of properties about specifications that are
correct by construction. The specifications are very
similar to functional programming languages. Data
are expressed as term algebra. Properties are
expressed by pattern matching and induction/co-
induction on the data structure.
Proof assistants are used in the Gene-Auto project
to:
• Write formal specifications of:

• Abstract syntaxes, design rules and
execution semantics (user requirements) of
the input and output languages
• The relationship between the input and
output languages (tool requirements)
• Coherence properties of the different
parts of the specification
• Completeness properties of the different
parts of the specification
• Code generation tools
• Model and code verification tools
• Soundness properties of the code
generation
• Soundness properties of the model and
code verification tools

• Design a proof that:
• The specification is coherent, complete
and sound
• The tools both for generation and
verification are sounds

• Generate automatically the implementation of
the tools from their specification and soundness
proof

• Generate test cases for the manually developed
tools, based on their specification

The soundness property for a code generator
expresses that the execution of the model and of the
generated code produces the same result. A key
point is the definition of the «same» relationship

between the input and output languages. The study
that led to the technological choices and preliminary
experiments on the scheduling of blocks in the data-
flow models is described in more detail in [16].

5. Scope of the toolset

The Gene-Auto toolset covers a ll part of the sma
software development process. The toolset is
intended to replace the programmer in the coding
phase of a subset of control applications. However,
usage of such tool influences the organisation of the
whole lifecycle. As the analysis and design models
must be eventually fed to an automatic tool for code
generation, the models must be composed
according to the "expectations" of this tool. To have
the full effect of using an automatic tool, the testing
processes should be adjusted to leave out the
testing of those features that are already guaranteed
to be correct by the code generator. The figures
below illustrate the scope of the Gene-Auto toolset in
the IEC 61508-3 V-model.

analysis IEC 61508-3

Software safety
requirements
specification

Validation testing

«validates»

Software architecture Integration testing
(compoents, subsystems

and programmable
electronics)

«verifies»

Software system
design

Integration testing
(module)

«verifies»

Module design Module testing

«verifies»

«verifies»

Coding

Figure 5: Simplified version of the IEC 61508-3 V-

model

 Page 5/10

analysis IEC 61508-3 ga

SupressedGene-Auto

Process-specific development/modelling tools (UML, textual specifications etc)

Simulink/Stateflow/Scicos

Software safety
requirements
specification

Software architecture

Software system
design

Module design

Coding

Integration testing
(module)

Integration testing
(compoents, subsystems

and programmable
electronics)

Validation testing

Module testing

«validates»

«verifies»

«verifies»

«verifies»

Figure 6: IEC 61508-3 V-model with suggested tools

from the Gene-Auto toolset

Figure 5 presents the V model as suggested by the
IEC 61508-3 standard. Figure 6 has the same model
with annotations of Gene-Auto suggestions on tool
usage in each phase. Gene-Auto does not have any
effect on the first phases of the software
development. The requirements specification and
software architecture are composed using the
procedures selected by the given organisation (a
candidate for those phases of development from the
open-source domain is the TOPCASED toolset). In
system design the general architecture description
remains with the tool that was originally used to
gather the information. The behaviour of modules
that will be later coded using the Gene-Auto ACG
will be modelled using Simulink/Stateflow (or
alternatively Scilab-Scicos) toolset. When entering
the coding phase, the Simulink/Stateflow/Scicos
models are converted to executable code using the
Gene-Auto toolset. The responsibility of a
programmer is to write the integration framework
(communication middle-ware, hardware/ platform/
application-specific libraries etc) as required by the
system architecture. The next phase – module
testing – is suppressed for the auto-coded software
in an ideal case. The functionality of the modules is
verified on the model and the code generator
guarantees a correct transformation from the model
to software code. In a real process, it is still quite
likely that some of module testing is necessary for
aspects that can not be verified (or are too costly to
verify) adequately on the model. For instance,
numeric precision and implementation algorithms
may be different in simulation and runtime libraries.
In such cases a special unit test must be composed.
The rest of the integration and testing process
follows the rules set by the given organisation and is
not directly influenced by the usage of the Gene-
Auto toolset.

Another example of the development process
illustrates the splitdown of work between the
systems engineer and the software engineer. We
take the suggested tool flow from the SCADE
literature [17] as a basis and compare that to the
proposed Gene-Auto process.

Environment Modelling
& Control Law Validation

Software requirements

Software design

Software coding

Software integration

Simulink Simulink
Graphical editing

Simulation
Formal proof
Traceability

 SCADE
Graphical editing

Simulation
Formal proof

Code generation
Traceability

Requirements-based
verification

Gene-Auto
Code generation, traceability,

(formal proof)

Software integration Software integration

Development Flow Tool flow: Simulink &
SCADE

Tool flow: Simulink &
Gene-Auto

Figure 7: Comparison of tool flows suggested by

SCADE and Gene-Auto

Figure 7 above illustrates the tool usage in software
development process and also compares it to the
SCADE as closest to the approach that Gene-Auto
supports. The original picture is borrowed from [17]
and modified to show Gene-Auto in the same
context as SCADE. The first column in the figure
describes the classical phases of software
development process for developing control
software. Traditionally the Environment modelling &
control law validation is done by systems engineers
and most likely in continuous time domain. The rest
of the development activities are the responsibility of
a software team. All models used to describe the
behaviour of software must be discrete time models.
One of the most popular tools used by the system
engineers is Simulink. The tool allows both discrete
and continuous time models to be created, simulated
and, using the design verifier (a model-checker),
also formally verified. After the control law has been
designed in continuous time using Simulink, it has to
be converted to discrete time, refined to meet the
requirements imposed by the software architecture
and the implementation platform and, finally,
transformed into executable program code. The
approach suggested by SCADE suggests converting
the model into a different formalism that is
semantically a step closer to the final software
implementation – a Lustre-based model in the
SCADE tool. The SCADE tool can be then used to
do further software design activities, formally verify
the model with a model-checker and generate
software code.
Whilst in general such explicit multi-step approach is
reasonable for developing systems, the experience
of Gene-Auto partners shows that there exists a
wide range of applications where the intermediate

 Page 6/10

software model gives little or no value. In many
cases the system model describes already
adequately the algorithm to implement as well as the
structure of the designed software. Additions during
the software design step are minor and can be easily
done on the original model created by systems
engineer (provided that the software part of model is
discrete-time model). Simulink supports validation of
the model through simulation. A recently added
proof-checker also allows formal verification of the
model. The approach used in the Gene-Auto toolset
proposes continuous refining of the model created
by the systems engineer, until it is suitable for direct
transformation into software code. This way a
common modelling and simulation platform can be
maintained throughout the design and (model)
verification phases.
While providing a "one-step" approach from
(annotated) systems model to software code for the
engineer, internally the Gene-Auto toolset still uses
intermediate models/languages for several reasons.
First and the main reason is safety. It is widely
known that since Simulink is a general-purpose
simulation framework it allows composing models
that are not suitable for direct implementations in
safety critical environments (the models can be
context sensitive, subsystems too closely coupled
through global variables, usage of Stateflow allows
to create infinite cycles etc.) While converting the
Simulink model into an input model, the Gene-Auto
toolset detects and reports back to the user the
constructs that are not considered safe. Processing
stops and can be continued after fixing the model.
This is similar to the process in SCADE with one
exception – the intermediate model is completely
hidden from the user and will never be modified
manually. All necessary modifications are made on
the original Simulink model to assure that the original
assumptions made by the systems engineer still hold
and we do not alter the solution by adjusting the
intermediate model. The second reason for an
intermediate model is the wish to support input
models from several model editors. During the first
step the model in a source language is translated to
one common language and all the other
transformation steps are not dependent any more on
the source tool that produced the model. Currently
Simulink, Stateflow and Scicos models are
supported.
It would be unfair to finish this chapter before
commenting the relations between the Real-Time
Workshop (RTW) [18] code generator that belongs
to the Matlab product family and Gene-Auto. A
reader who is familiar with RTW probably noticed
already, that the approach suggested by Gene-Auto
and that of RTW are very similar. This is no surprise,
as process-wise the goal is the same – both tools
are set to transform Simulink/Stateflow models into

executable program code without producing any
explicit intermediate models. The differences are in
the level of control, openness and adaptability. Open
source code, gives more possibilities for controlling
the behaviour of the code generator than code
templates provided by RTW, and contribute to
vendor independent maintenance in case the
support periods are long or the tool usage is too
different from the mainstream. Gene-Auto can be
adapted to support input models from different tools
(it already supports Scicos). And finally, the open
nature of the Gene-Auto toolset simplifies its
qualification as a code generator for safety critical
processes.

6. Test cases

Validation that the Gene-Auto tools meet the
requirements set by the industrial partners in the
project is taking place on various concrete test cases
from following application areas:
• Aircraft flight control
• Automatic navigation
• Navigation display
• High reliability data transfer systems
• Servo control
• Car engine knock control strategy
The total number of validation test cases is 9 with an
average of 1 500 blocks per model. The total LOC
(Lines Of Code) of the manually written or
automatically generated reference code is
approximately 70 000.

7. Current status

The Gene-Auto project started in mid 2006. Its
current progress can be summarised by the
following:
• A Java-based Simulink code generator exists,

supporting all major modelling constructs of the
discrete part of Simulink and a selected set of
standard and custom Simulink blocks.

• A Haskell-based Stateflow code generator exists
that supports the full power of Stateflow models,
including parallel automata, event broadcast
schemes, graphical functions and truth tables.

• A Scicos Gene-Auto "palette" has been
developed. It is available as a plug-in for Scilab.

• The integrated toolset has entered the first
phase of industrial evaluation.

• A research team is working on the formal
verification of the transformation process. For a
part of the transformation there exists a
prototype that has been developed with the Coq

 Page 7/10

 proof system [19] and is based on the formal
specification of the transformation.

8. Conclusions

We have described a work in progress on a code
generator that is intended for real-time embedded
systems in the safety critical domain. An assumption
made by the project consortium is, that there exists a
large enough subset of control applications, where
the models created by a systems engineer can be
transformed to executable code without composing
explicitly intermediate software-specific models or
additional specifications. The validity of this
assumption is confirmed by the experience of the
end users involved in the project who are using
either commercial or in-house code generators for
similar applications for a long time and with great
success.
Commercial tools with similar functionality exist on
the market already (SCADE from Esterel
technologies, RTW from Mathworks, TargetLink from
dSpace to name the biggest). All of them, except
SCADE, lack one important quality that does not
allow to get the full benefit from their usage in the
development process of safety critical systems. A
code generator employing the model-driven
engineering approach can give savings in the
development time from two interrelated phases.
First, the time for coding is dramatically cut.
Secondly, there are savings that come from testing –
assuming that the solution was already verified on
the model, some tests on the generated code can be
suppressed. This is acceptable only if the code
generator is qualified for that application domain and
for the given process. The qualification effort is
usually too high to be undertaken by a vendor of a
general-purpose code generator. The closed nature
of a commercial tool and lack of information about its
development process does not allow the end-user to
do the qualification either. The Gene-Auto tool
development process supports the qualification of
the toolset according to the highest industry
standards (in particular the DO-178 avionic
standard) and the consortium aims to prepare all
necessary material for the qualification to take place
in the user context.
From the viewpoint of qualification SCADE is an
exception in the domain of code generation and
modelling product. The disadvantage of SCADE for
the chosen group of applications is that it binds the
user to specific formalism. Powerful converters are
provided to import models form tools such as
Simulink, however before generating code the user
is still required to work with the SCADE model. As
pointed out earlier, our assumption was that for a
certain group of applications the intermediate model
is not necessary and restricts the engineer too much.

As a summary the distinguishing characteristics of
Gene-Auto toolset are:

• Open source approach to facilitate long term
support, adaptability and tool qualification

• Support for multiple input formalisms and
fully automatic transformation from input
model to executable code

• Explicit support for qualification through
open architecture and suitable development
process

• Formally verified components
• Optimised output code
• Support for optional verification,

transformation and optimisation steps
performed by external plug-in components

Early tests show, that the toolset is capable of
generating code from industrial-grade models.
Comparison of the generated code and code written
manually by experienced programmers is currently
ongoing.

9. Related work

Gene-Auto is related to several projects in the
French “Aerospace Valley” cluster around the
development of a toolset for safety critical real-time
embedded systems:
• TOPCASED [13], funded by the French ministry

of industry (FCE call) and the Midi Pyrénées
regional authorities aims at building an open
source CASE tool based on Model Driven
Engineering for the left side of the V cycle.
TOPCASED will rely on Gene-Auto for
generating code for functional and automaton
models. TOPCASED may provide tools around
Gene-Auto modelling language.

• OpenEmbedd [20], funded by the French ANR
(RNTL call), aims at integrating various existing
projects around Model Driven Engineering for
the design or real time embedded systems.
OpenEmbedd offers graphical model editors for
several languages, including UML2, SysML,
AADL, SDL, SME, etc. It is based on the Eclipse
platform and TOPCASED toolset. It also offers
model transformation tools such as ATL and
Kermeta, and model checking tools.

• SPaCIFY, funded by the French ANR (RNTL
call) aims at defining the next generation of
modelling language with a synchronous
semantics and the associated CASE tools for on
board space applications. SPaCIFY will rely on
Gene-Auto for generating code for functional
and automaton models. SPaCIFY will provide
tools around Gene-Auto modelling language for
model editing and checking.

 Page 8/10

• ES_PASS, an ITEA2 project around the use of
static analysis for the V & V of source C code
and target binary code will provide requirements
for the generated code for improving the quality
of the analysis by providing model level
properties that are usually removed during code
generation.

• SPICES and TWINS that are both ITEA projects
around the architectural design and global co-
design cooperate with Gene-Auto in order to
have a coordinated development approach.

In the future, Gene-Auto could be integrated with the
TOPCASED platform as a qualified back-end for
generating source code from Scicos, some UML2
and SysML diagrams, SAM, SDL, etc.
Gene-Auto is related also to other projects and tools,
which involve the use of synchronous languages for
modelling safety critical embedded real-time
systems, such as the SCADE Suite [5] (based on
the Lustre [6] and SyncCharts [21] languages) from
Esterel Technologies and PolyChrony SME [22]
(based on the Signal [7] language) and to initiatives
for defining a safe subset of Simulink/Stateflow such
as [12]. The main difference is in the approach, we
start from the whole Simulink/Stateflow and try to
minimise the restrictions required to make it safe
whereas these works started from existing safe
languages and extended it towards something
similar to Simulink/Stateflow (see, for example [23]).
The Gene-Auto approach is therefore more user
friendly, whereas the other ones are more minimal
and clean on the semantic side.

10. Acknowledgements

Gene-Auto is an ITEA (Information Technology for
European Advancement) project (ITEA 05018). The
Gene-Auto Consortium involves following industrial
partners: Airbus France, Barco, EADS-Astrium,
Siemens VDO, Thales Alenia Space, software
developers: IB Krates, CRIL Technology and
academic institutions: ENSEEIHT, INRIA and Tallinn
University of Technology. The authors want to thank
the project members for their contribution.

11. References

[1] Schmidt, D. C.: “Model-Driven Engineering”, IEEE
Computer February 2006

[2] The MathWorks: “Simulink® - Simulation and
Model-Based Design”
http://www.mathworks.com/products/simulink/

[3] The MathWorks: “Stateflow® - Design and simulate
state machines and control logic”
http://www.mathworks.com/products/stateflow/

[4] INRIA: “Scicos: Scilab's block diagram
modeler/simulator” http://www.scicos.org

[5] Berry, G.: “Esterel v7: From verified formal
specification to efficient industrial designs” –
Proceedings of the FASE’05 conference, 2005

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Place
“Lustre: a Declarative Language for Programming
Synchronous Systems”, Proc. ACM Symp. on
Princ. of Prog. Langs. (Munich, West Germany),
1987

[7] Le Guernic, P., Benveniste, A., Bournai, P.,
Gautier, T.: “SIGNAL - A Data Flow-Oriented
Language for Signal Processing.” – IEEE
Transactions On Acoustics, Speech, And Signal
Processing, 1986, ASSP-34 (2), 362-374

[8] Pouzet, M.: “Lucid-Synchrone”
http://www.lri.fr/~pouzet/lucid-synchrone/

[9] Esterel Technologies: “Esterel Studio”
http://www.esterel-eda.com/products/

[10] Esterel Technologies: “SCADE Suite”
http://www.esterel-
technologies.com/products/scade-suite/

[11] TNI Software: “RT Builder Product Overview”
http://www.tni-
software.com/fr/produits/rtbuilder/index.php

[12] Scaife, N. Sofronis, C., Caspi, P., Tripakis, S.,
Maraninchi, F: “Defining and Translating a “Safe”
Subset of Simulink/Stateflow into Lustre” –
Proceedings of the 4th ACM international
conference on Embedded software. 2004, 259–
268.

[13] “TOPCASED Toolkit In OPen source for Critical
Applications & SystEms Development”
http://www.topcased.org

[14] Caspi, P., Pouzet, M.: “Synchronous Kahn
networks” In ICFP ’96: Proceedings of the first ACM
SIGPLAN international conference on Functional
programming, pages 226–238. ACM Press, 1996.

[15] Harel, D: “Statecharts: A visual formalism for
complex systems” – Science of Computer
Programming, 1987, 8 (3), 231-274

[16] Izerrouken, N. Thirioux, X. Pantel, M. Strecker, M:
“Certifying an Automated Code Generator using
formal tools: Preliminary experiments in the Gene-
Auto project” – Proceedings of the ERTS’08
conference (Toulouse, France), January 2008

[17] Esterel Technologies: “Simulink Users Connect
with Esterel’s SCADE Suite for Safe Embedded
Software” http://www.esterel-
technologies.com/files/Simulink2SCADE.zip

[18] The MathWorks: “Real-Time Workshop®”
http://www.mathworks.com/products/rtw/

[19] “The Coq proof assistant” http://coq.inria.fr/

[20] OpenEmbeDD: “Model Driven Engineering open-
source platform for Real-Time & Embedded
systems” http://openembedd.org/home_html

 Page 9/10

[21] André, C: “SyncCharts: a Visual Representation of
Reactive Behaviors”, I3S Research Report # 96.56,
Sophia Antipolis (F), April 1996.

[22] Brunette, C., Talpin, J.-P., Besnard, L., Gauthier, T:
"Modeling multi-clocked data-flow programs using
the Generic Modeling Environment". Synchronous
Languages, Applications, and Programming
(SLAP'06). Elsevier, March 2006.

[23] Colaço, J.-L., Hamon, H., Pouzet, M.: “Mixing
Signals and Modes in Synchronous Data-flow
Systems” ACM International Conference on
Embedded Software (EMSOFT'06), Seoul, South
Korea, October 2006.

8. Glossary

MDE: model-driven engineering
ACG: automatic code generator

 Page 10/10

	1. Introduction
	2. The languages
	2.1 Requirements and approach
	2.2 The Gene-Auto modelling language
	2.2.1 Requirements and objectives
	2.2.2 The functional diagram
	2.2.3 The automata diagram
	2.2.4 The truth table diagram
	2.2.5 The decision network diagram
	2.2.6 The action language

	2.3 The Gene-Auto code modelling language

	3. Toolset architecture
	4. Formal verification
	5. Scope of the toolset
	6. Test cases
	7. Current status
	8. Conclusions
	9. Related work
	10. Acknowledgements
	11. References

