Timed Properties RAMS Constraints Abstract Architecture Proof Obligations Functional Architecture SW Architecture Assert Virtual Machine APP Containers

Keywords: MDE, TOPCASED, ECLIPSE, AADL, UML, profile, HRT-UML, OMEGA, LUSTRE, IF, RCM, DSL

The ASSERT (Automated proof based System and Software Engineering for Real-Time Applications) European Integrated Project (IST-FP6-004033, http://www.assert-project.net/) defined and experimented a multi formalism Model Driven Engineering (MDE) process, enforcing an approach with separated specification and refinement of functional and non-functional properties. • Functional specification, design and development is based on UML profiles to support AADL concepts [2] and behavioural specification. • Real time Architecture properties are based on extensions targeting Ravenscar Computing execution Model (RCM see [6]) constraints upon component interface and ports. • Model transformation is supporting correctness preserving rules towards a Virtual Machine execution environment or a verification dedicated environment. A tool chain called IDEA (Integrated Development Environment for ASSERT) supporting the process was developed by the CS ASSERT team on top of the Eclipse/TOPCASED environment allowing: • Integrated use of several formalisms in a development life-cycle (UML, AADL, IF[4]) . • Model transformation from UML to IF, AADL to RCM and RCM to Ada • Automated code generation

The approach experimented allows combined use of best suited formalisms and features for MDE developments. The TOPCASED tool proved to be a unique integrated toolset for prototyping UML and meta models supporting tools. The main feedback gained from applying the notations and approach on small to medium case studies is that UML profiling is not scalable, and that use of several Domain Specific Languages (DSL) seems far more suitable. Semantic clashes can be limited by raising the abstraction level, and by partitioning properties for verification.

Introduction

The main objective of ASSERT is to define a more reliable and scientific, proof based approach for system and software engineering based on modelling and model transformation, with preservation of system properties. The key idea is to minimize the validation effort for critical and complex real time systems by automating model transformation with smart combination of various pieces of proofs in the development life-cycle. Based on inputs available at the start of the project, (especially AADL [START_REF] Lewis | The SAE Architecture Analysis & Design Language (AADL)[END_REF] and various technology inputs from partners) work focused on the definition and implementation of an ASSERT MDE process [START_REF] Cass | A new Lifecycle for the Development of Aerospace systems[END_REF] based on:

• System Family approach: to benefit from already proven building blocks and frameworks; • Reuse of "functional" building blocks;

• Separation of concerns: functional and nonfunctional properties are modelled in separated spaces in order to ease a proof-by-construction concept within relevant scopes and domains • Combined use of appropriate formalisms and languages to capture the various properties

Based on requirement analysis, the SW architecture of a computer based system (CBS) is modelled at different levels of abstraction (see figure 1):

. SW & System Engineering Activities

• Functional architecture As the main scope of ASSERT is the space domain, a functional unit is responsible for a specific activity of the spacecraft (propulsion, thermal control, Guidance Navigation Control (GNC), communication…), and is mostly composed of equipment (gyroscope, star-tracker, thrusters…) and a software unit (SWU). SWU can be decomposed in several SW functional processes. Generic functional architecture may be defined with domain specific units such as mission management, Fault Detection Isolation and Recovery (FDIR) and a Telemetry / Telecommand (TMTC) unit communicating with all the others functional units • Physical architecture takes into account non functional properties (e.g. fault tolerance implying replicas; reactivity implying CPU availability and distribution on several processors, etc…). Others constraints have to be taken into accounts for e.g. power constraints, location constraints (accessibility for maintenance, etc…) • Real time software architecture is the definition of SW tasks, interactions and RT constraints taking into account previous constraints (functional and non functional requirements, choice of functional and hardware architecture). SW schedulable entities (SWSE) are defined as well with relevant mappings on SWU and processors.

Non Functional Engineering will complement functional architecture specifications through a set of non functional properties -mainly timed and RAMS (Reliability, Availability, Maintainability, and Safety) properties.

• Timed properties can be reactivity (defined between 2 events in the system) or deadlines resulting from activation of SW processes. • RAMS properties define fault tolerance properties, such as maximal tolerated outage of the system based on analysis of functional units and relationships. Altarica safety modelling[17],

[18] is used with an AADL to Altarica model transformation.

In that context, modelling activities and supporting formalisms had to be carefully engineered in order to eventually integrate within a process leading to automatic code generation of software applications, and compliant with the ASSERT target Virtual Machine abstracting the target execution platforms.

2

The MDE Approach

The ASSERT process promotes separation of functional specification of properties from non functional ones. Such an approach can be supported by a multi view MDE approach with each view focusing on dedicated domain abstractions and • a HRT-UML2 track relying on the HRT-UML2 meta-model that implements RCM [START_REF] Bordin | Correctness by Construction for High-Integrity Real-Time Systems: a Metamodel-driven Approach[END_REF]. These two tracks can converge at some specific points and a user can possibly switch from one to the other using the 3ADL-AADL and AADL-RCM transformation gateways.

Implementation

In the following we describe in more specifically the work performed by the CS ASSERT team to define the 3ADL/profile, model transformations and integration into the TOPCASED/ECLIPSE environment.

UML profiling

A profile is the standard way to extend the UML language. A UML profile can be integrated into any UML2 supporting tool (TOPCASED, Papyrus, RSM, Rhapsody...).

• A profile is defined as a set of stereotypes (a classifier that can be applied on an element). which can contain attributes (or tagged values) that are typed. • A profile can also contain types (base types, enumerations or even classes -not well supported by currently available tools-) that will be used for tagged values.

At the start of the project, as no graphical tool was available to support AADL, the first activity was to define and implement an UML2 profile supporting the AADL concepts. After defining the mapping of AADL concepts into UML ones, the implementation had to start first using the Rational Software Modeller from IBM-SW (RSM) tool (because of poor support for profile in early release of TOPCASED).

As AADL extensions was named 3ADL (for ASSERT AADL), the UML profile for 3ADL was named 3ADL/UML The latter was then constantly updated as new inputs were ready for integration, and ported to the TOPCASED platform, as soon as the OSATE tool from the Software Engineering Institute (SEI) was integrated in the TOPCASED distribution.

The profiling process consists in identifying and describing in a suitable way the subset of AADL concepts to which the actual profile is bounded, and then defining a convenient method for mapping them into UML equivalents with respect to the semantics. AADL concepts supported are:

• Packages, components, subcomponents, ports & port groups, subprograms & subprograms calls • Data/bus access • Connections • Binding • Properties Almost all AADL items could be mapped in a rather intuitive way to equivalent UML elements. The port group however had no equivalent concept in UML. Bindings had to be mapped into UML deployment relationships and property sets to packages of the 3ADL/UML profile. The profile is fully described in [START_REF] Boisieau | CS 3ADL/ASSERT AADL: Reconciling the Needs of Architectural Description with UML[END_REF]. All associated stereotypes are prefixed with "AADL"

The FW Profile [START_REF] Cechticky | A UML Profile for Designing Reusable and Verifiable Software Components for On-Board Applications[END_REF] defines rules that constrain the way UML2 class diagrams and state machines are built in order to enforce a framework approach [START_REF] Cechticky | A UML Profile for Designing Reusable and Verifiable Software Components for On-Board Applications[END_REF] The description of the FW Profile is best given in terms of 3 features:

• the restriction of the UML2 state machine model; • the component extension mechanism;

• the action language to define actions in the state machines. Integration of the FW profile was straight forward:

• extension scope is limited to state machines.

• the "FwtriggerOperation" stereotype for operation was compatible with existing elements in the 3ADL/UML. The FW stereotypes are prefixed with "FW" Integration of data modelling support. After analysis of impacts and potential extensions needed for data modelling in the ASSERT process, it appeared that relevant attributes could be directly supported by AADL properties and that no specific extensions were needed. The data modelling is based on the formal and standardised ASN.1 language [START_REF]Abstract Syntax Notation One (ASN.1) Specification of Basic Notation ITU-T Rec. X[END_REF] and existing support tools (editors and code generators). The principles are as follows (see figure 3):

• data types are specified, and refined using ASN.

3ADL/UML to AADL transformation

As AADL and UML meta-models are defined in the same formalism (MOF), 3ADL/UML models could be easily converted into AADL models by applying transformation rules on their meta-models.

The transformation was developed by TNI-Software using the ADT [START_REF] Allilaire | Adt: Eclipse development tools for atl[END_REF] plug-in of TOPCASED, a Java implementation of the Atlas Transformation Language (ATL) within the Eclipse Generative Model Framework project.

Atlas is a hybrid language (a mix of declarative and imperative constructions) designed to express model transformations as required by the MDA™ (http://www.omg.org/mda/) approach of OMG. It is described by an abstract syntax (a MOF metamodel), a textual concrete syntax and an additional graphical notation allowing modellers to represent partial views of transformation models.

A transformation model in ATL is expressed as a set of transformation rules. Despite issues in accessing stereotypes and a tricky user interface (in case of error) this transformation could eventually be successfully integrated in the TOPCASED environment. This 3ADL-AADL transformation was completed recently by the AADL-RCM one.

3ADL/UML to IF transformation.

To perform a transformation using ATL [START_REF] Farail | The TOPCASED project: a Toolkit in Open source for Critical Aeronautic SystEms Design[END_REF] both the source UML meta model and the target IF meta model are needed. If the UML meta model was at hand in the EMF technology (from ECLIPSE), an IF meta model had to be designed.

The IF meta-model was derived from the IF language grammar [START_REF] Bozga | IF toobox for validation of timed asynchronous systems[END_REF], and produced in several iterations to take into accounts intermediate attributes related to the transformation steps.

It appeared soon that a stepped process too would be needed to support parsing of OMAL action language. Whereas the initial choice of ASSERT contributors was to rely on the ECLIPSE development environment as the common integration platform, the motivation to shift to TOPCASED was to benefit from the added value brought over ECLIPSE:

• early availability of graphical editors for AADL

• meta model management tools and relevant services (editor generator, model comparison) • communication support with external tools through the external bus (through a SOAP server and adapters) On the down side we had to suffer from an immature implementation. All UML2 diagrams were not supported, stereotypes were not supported with early ATL, etc, what required experts of the environment close to developers (-fortunately it was the case at CS). However implementation matured considerably with TOPCASED 1.0.0 release In order to support deployment attributes capture, a small graphical editor called DAME (Deployment Attributes Model Editor) was developed using successfully the TOPCASED editor generator from a DAM meta model extracted from the RCM model.

Although not used in the tool chain, it provided interesting insights in the issues of handling meta models through sub meta models and consistency links.

3ADL2IF

In order to support the user in editing models and attributes using 3ADL/UML models, some add-ons were also developed: In summary, the TOPCASED tool proved to be a unique integrated toolset for prototyping UML, meta models, and model transformations. IDEA thus supports the use of several formalisms (or Domain Specific languages -DSLs), and automates the transitions between the modelling spaces.

Conclusion

This models to define a structured world, possibly projectable (or projected) to one or several formal spaces by correctness preserving model transformation. Such an approach is described in [START_REF] Bordin | Correctness by Construction for High-Integrity Real-Time Systems: a Metamodel-driven Approach[END_REF] and implemented in ASSERT through the "RCM" meta model. AADL is far more focused than UML and is easily mastered when compared to UML. AADL formalism is well suited for architecture specification as it supports formal definition of links between the software components and their execution support, as well as identification a how functions are implemented and executed. It thus supports capture of system attributes and properties and detection of mapping errors and analyses. With extension under work (see [15], [16]) and more supporting tool available, AADL could be the core architecture meta model to support the MDE approach. However AADL is not suited for functional specification and link with functional models(UML, LUSTRE/SCADE...) would require meta model integration work, and further development of transformation to more restricted formal languages and spaces.

Formal languages are complex to manipulate for SW designers, and direct monolithic modelling seems not possible on industrial scale. UML and AADL are suitable complementary formalisms for the modelling and capture of system components properties, but their lack of formal semantics render them unsuitable for verification. This drawback can be partially solved by transforming their models into formal ones such as IF or Altarica. It was demonstrated how to go that way, and round trip engineering support should be next. In addition solutions and support for correctness verification of model transformation software must be available before this technology can to be used for certifiable systems.

One of the goal of CS R&D activities is now to achieve better integration of formal verification techniques within industrial engineering contexts. An approach which is now going to be further evaluated is based on the concept of proof units [START_REF] Dhaussy | Mise en oeuvre d'unités de preuves pour la verification formelle de modèles[END_REF], a kind of projection by model transformation of user models into consistent "proof contexts" with all data and properties required for the verification.

Figure

 Figure 5. UML to IF code transformation steps

Figure 6 .

 6 Figure 6. IF meta model extract for behavioural description support The resulting 3ADL/UML2 IF gateway was experimented on two case studies provided by ASTRIUM-ST: • the ARIANE5 flight software (validation of the gateway through comparison of IF compilation results with the ones in OMEGA/UML1.4 [9]) • the Proximity Flight Safety System from ATV, a case study worked out by ASTRIUM-ST in to verify properties with Observers and IF simulation.

Figure 7 Figure 7 .

 77 Figure 7 presents the targeted tool chain as a set of plug-ins, built either on top of TOPCASED or Eclipse. All plug-in work on model stored in the EMF/Ecore format. External tools can communicate through AADL text files, and can be integrated through the external bus.• STOOD5 from Ellidiss[15] was the first tool integrated (http://www.ellidiss.com/) • ASN.1 toolkit is available from SEMANTIX (http://www.semantix.gr/) • OCARINA is available from ENST (http://ocarina.enst.fr/) and is going to be integrated in TOPCASED • 3ADL/SCADE gateway is available from Esterel -Technologies (http://www.estereltechnologies.com/products/scade-suite/) • 3ADL/ISG is available from BSSE (http://www.bsse.biz/)

ECore

Figure 8 .Figure 8

 88 Figure 8. Model Transformations implemented to support the ASSERT process Figure 8 summarises the set of model transformations actually implemented. IDEA is supporting: • Integrated use of several formalisms in a development life-cycle (UML, AADL, IF) • Integrated use of the HRT-UML tool implementing the RCM meta model. • Model transformation from UML2 to IF, AADL to RCM and RCM to Ada • Automated code generation based on MOFscript technology.

The deployment view supports capturing the

	properties.(see figure 2 below) • The functional view supports identification of
	SW "Application level" blocks and interfaces,
	using classical SW engineering principles,
	enhanced with new domain specific techniques
	(cf ETH SW framework and FW/UML profile[7])
	optimized for reuse and tailoring.. • The interface view defines logical containers
	encapsulating functional Application SW blocks
	as APplication Level container (APLC) defining
	component through provided and required
	interfaces By specifying RCM properties at the
	provided interface level, it is possible to perform
	property preserving generation of a real time
	architecture (concurrency view) through vertical
	transformation • The concurrency view or Virtual Machine Level
	Container (VMLC) view are run-time containers
	that manage tasks, synchronizations and
	transparent distribution. VMLCs are automatically
	generated from properly specified interface view
	and defines the schedulable real time
	concurrency architecture.
	The functional view and the interface view
	together constitute the Platform Independent
	Model (PIM) specification of the system in the
	MDE terminology, whereas the concurrent view
	does represent the Platform Specific Model
	(PSM) that in the current implementation targets
	the Ravenscar Computational Model (RCM) [6]
	The three views support distinct and non
	overlapping properties of the system, with
	consistency ensured by one meta model, and
	rules defining what semantics to attach (and how)
	to what model element. • physical architecture in terms of nodes,
	communication links, processor and allocation of
	APLCs to partitions, Virtual Machine (VM) and
	processors.
	Figure 2. ASSERT Multi-View Approach

Concurency view Feasibility analysis Hardware and deployment View (physical properties) Functional view Complete system

	VM Level Containers
	(RunTime Component)

Interface view (NF properties)

	Suitable formalisms for specifying and refining views
	were based on AADL and UML, possibly extended to
	support specific domain attributes:	
	• for the functional component specification and
	view use of UML2 extended through the ASSERT
	AADL or 3ADL/UML profile[8] integrating:
	o	AADL concepts and properties[1]
	o	FW/UML2 profile to support FrameWork
		modelling as defined in [7].	
	o	OMEGA/UML as defined in [9] and adapted
		to 3ADL/UML2		
	• for the interface and concurrency views, use of
	an UML like formalism implementing the RCM
	meta model outlined above, and supported by the
	HRT-UML2 tool implemented as an ECLIPSE
	plug-in by Intecs (http://www.intecs.it/).
	• for the Hardware and deployment view use of
	AADL only.		
	Feedback from elaboration and experimentation of
	the approach has highlighted two possible tracks
	which have both been experimented in the scope of
	the ASSERT project: • a full AADL based track with some ASSERT
	AADL	specific	extensions	(using	AADL
	properties)		
						Functional Modeling
						Application Components	(UML, AADL, SCADE, ASN1,…)
						Application Level Containers
						(NF properties)
						Vertical
						transformation
						Virtual Machine
						RTOS
						Automatic
						code generation

Acknowledgement

This work was performed in the context of the ASSERT project coordinated by ESA and partially funded by the European Commission The authors of this paper gratefully acknowledge the contribution of their team colleagues in the ASSERT and TOPCASED projects.

Supporting a Multi-formalism Model Driven Development Process with Model Transformation, a TOPCASED implementation

Xavier Dumas 1 , Tristan Faure 1 , Sébastien Gabel 1 , Julien Honoré 1 , Maurice Heitz