
HAL Id: hal-02270300
https://hal.science/hal-02270300

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The MeMVaTEx methodology: from requirements to
models in automotive application design

A. Albinet, S. Begoc, J.-L. Boulanger, O. Casse, I. Dal, H. Dubois, F. Lakhal,
D. Louar, M.-A. Peraldi-Frati, Y. Sorel, et al.

To cite this version:
A. Albinet, S. Begoc, J.-L. Boulanger, O. Casse, I. Dal, et al.. The MeMVaTEx methodology: from
requirements to models in automotive application design. Embedded Real Time Software and Systems
(ERTS2008), Jan 2008, Toulouse, France. �hal-02270300�

https://hal.science/hal-02270300
https://hal.archives-ouvertes.fr

 Page 1/10

The MeMVaTEx methodology: from requirements to models in
automotive application design

A. Albinet1, S. Begoc2, J.-L. Boulanger3, O. Casse2, I. Dal2, H. Dubois4, F.
Lakhal5, D. Louar5, M.-A. Peraldi-Frati6, Y.Sorel5, Q.-D. Van3

1: Siemens VDO, BP 1149, 31036 Toulouse, France.
2: Monditech, 1 Place C. De Gaulle, 78180 Montigny-Le-Bretonneux, France.

3: UTC/HEUDIASYC UMR 6599, 60205 Compiègne, France.
4: CEA LIST, Boîte 94, 91191 Gif-sur-Yvette Cedex, France.

5: INRIA, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France.
6: I3S, UNSA, CNRS/INRIA, B.P. 121, 06903 Sophia-Antipolis, France.

Abstract: This paper presents a model-based
methodology for requirements expression,
traceability and verification. The methodology relies
on the EAST-ADL2 framework and two of the UML2
profiles: MARTE for real-time embedded systems
and SysML for system requirements modelling. The
methodology defines the different models used at
each abstraction level of the process. The results are
a requirement model and a solution model which is
related to the requirements. Verification and
validation models and techniques are connected to
these models. An automotive case study, namely a
knock controller, illustrates the proposed
methodology. The tools used in the process are also
presented.

Keywords: requirements, methodology, automotive,
model-driven engineering.

1. Introduction

This paper presents current results of a work
achieved within the framework of the MeMVaTEx
project1 [1]. This project is intended to provide a
methodology for requirements traceability using a
model driven engineering (MDE) approach in order
to design automotive embedded systems. Sound
methodologies are necessary to tackle the
complexity and the quality concerns. As the
MeMVaTEx thematic is complementary to others
French or European projects, such as ATESST [2]
and TIMMO2, we have collaborations and we share
experiences on real-time design models approach
with their members.
Requirements expression and management is a very
important challenge in a MDE approach. The
MeMVaTEx project focuses on two main objectives.

1 This work has been performed in the context of the

MeMVaTEx project (http://www.memvatex.org) of the

System@tic Paris Region Cluster. This project is partially

funded by the French Research Agency (ANR) in the “Réseau

National des Technologies Logicielles” support.
2 See the TIMMO project web page: https://www.timmo.org

The first one consists in enriching the requirement
expression in order to take into account multiform
and multi-users requirements. The second important
objective is to reduce the gap between the
specifications and the solution model, and for this
purpose we propose mechanisms to improve
traceability. The first step is the validation of the
consistency between requirements model and
solution models.
This paper presents a model-based methodology for
expressing requirements and traceability
mechanisms during the modelling process, before
finally considering verification & validation (V&V).
Our approach relies on different standards. Firstly,
the EAST-ADL2 [2] (Electronic Architecture &
Software Tools – Architecture Description
Language), which is defined for vehicle embedded
electronic systems development. Moreover, two of
the UML2 profiles are considered: MARTE
(Modelling and Analysis of Real-Time Embedded
systems) mainly for timing properties expression
[12], and SysML (System Modelling Language) for
requirements modelling and traceability [9].
From the EAST-ADL2 framework, we adopt a
decomposition of the design process into abstraction
levels. For each level, we built separately
requirement models and solution models. The
relationships between elements of those models are
expressed by using traceability mechanisms of
SysML. The real-time aspects and non functional
constraints are modelled within the UML MARTE
profile. V&V techniques can then be connected to
these models to express the satisfaction of the
requirements by the proposed solution.
All these aspects will be developed and illustrated in
the paper on the knock control application. This
example is a good illustration of electronic
embedded systems: multiform requirements, data
flow and control flow behaviours, real-time aspects
(temporal constraints, deadlines, limited resources).

 Page 2/10

This paper is organized as follows: first, we give an
overview of the methodology in the second section.
The section 3 presents the different model elements
for requirement expression (MeMVaTExRequirements
profile). The section 4 is dedicated to the solution
models with a special focus on temporal behaviour
expression hardware and allocation aspects. The
verification and validation means are presented in
the section 5. The section 6 focuses on all
traceability concerns. After presenting the concepts
of the methodology, we demonstrate it on the case
study. Finally, since MeMVaTEx aims to provide a
tooled methodology, we present the tool architecture
that we use in order to express and trace the
requirements, as well as to create the solution
models.

2. The triptych for an EAST-ADL2 based
methodology

EAST-ADL was developed in the context of the
EAST-EEA3 European project [5] and the EAST-
ADL2 version proposed by the ATESST project is
now under finalization and validation [3]. It provides
a unified notation for all the actors of a car
development (car-maker, suppliers…). EAST-ADL2
allows the decomposition and the modelling of an
electronics system through five abstraction levels
(Feature, Analysis, Design, Implementation, and
Operational). These levels and the corresponding
model elements provide a separation of concerns
that is the basis of the structure for the different
models in the MeMVaTEx methodology.
Our objective is to help the designer in managing
requirements during the system development. In
order to deal with requirements, we first need to
express them and then, to trace them all along the
modelling process. Usually, two ways of considering
requirements are followed:
• Either the requirements are managed via a

requirement tool, independently (considering the
used formalisms) of the modelling design. These
approaches are based on requirements tools
such as Reqtify4 or its open source version
TopCased-TRAMWAY5. Links between
requirements and models are some kind of
annotations that help in following the
requirements in the models. The advantage of
this approach lies in the fact that requirement
management can be done on them (which ones
are validated, which ones are decomposed,
etc.).

• Or requirements are directly attached to the
solution models but without real specific

3 See EAST-EEA web page: http:// www.east-eea.net
4 See Reqtify web page: http://www.geensys.com
5 See TRAMWAY web page: http://gforge.enseeiht.fr

management (requirements are considered as
informal comments). The advantage of this
approach lies in the fact that we can keep the
same modelling formalism. This simplifies the
traceability management of the requirements
between them and the proposed solutions.

In order to avoid the management of the
requirements, we have chosen another approach,
based on models, that takes advantages of both
previous ones. This approach directly includes the
requirements in the modelling process, so that
requirements can directly be put in the models, and
connected to the developed solution for an easier
traceability and management.
In order to strongly isolate requirements
management from solution management, we
decided to have a specific structure that clearly
separates the different concerns: the requirements
on the one hand, and the solution on the other. This
issue is crucial because similar requirements can
lead to different solutions. Both are based on the
same modelling formalism and thus, traceability is
strongly facilitated. These three types of concerns
constitute what we call a triptych composed by:
• The requirement models: a repository for

requirements. We also consider the links
between requirements for two succeeding levels,
the links to solution model elements that satisfy
the requirements, and the links to the V&V.

• The solution models: the developed models that
should answer to the related requirements. We
can here express the functional and non
functional modelling with a special focus on real-
time constraints modelling.

• The V&V means used to validate solution
models with respect to the related requirements.

These three aspects are developed in the next
sections.

3. Requirement models

In this section, we present the structure of a
requirement definition.

As presented in the MeMVaTEx glossary [8], and as
defined in the EIA 632 norm [6], a requirement is
«Something that governs what, how well, and under
what conditions a product will achieve a given
purpose». It is also defined as followed in the IEEE
1233a [7] standard:

(A) A condition or capability needed by a user to
solve a problem or achieve an objective.
B) A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or other
formally imposed document.
(C) A documented representation of a condition or
capability as in definition (A) or (B).

 Page 3/10

(D) The necessity that a system has a particular
feature.

In order to define requirements in the requirement
models, we base our approach on the SysML profile
that defines how to express requirements with
specific Requirement Diagrams. The SysML profile
allows the designer to consider requirements as first
class concepts in UML for system level design, and
to deal with traceability concerns since relations
between requirements, and requirements or model
elements, are also defined in SysML. We only
consider in this section the requirement part of
SyML. Figure 1 shows that a Requirement in
SysML is composed by two tagged values: an
identifier (Id) and the description of the requirement
(Text). This stereotype is useful for requirement
annotation of the diagram.

Figure 1 - The Requirement stereotype in SysML

But this definition is not enough for requirement
engineering since requirements are not sufficiently
detailed to support the analyst when he validates
requirements with respect to the developed solution.
Indeed, this profile does not offer the possibilities to
follow requirements (if they are fulfilled), and to
relate them to the verification process. These
reasons have led us to define our specific profile for
the satisfaction of ours needs. The definition of the
MeMVaTEx Requirement stereotype is presented
in Figure 3.
This stereotype is associated to the SysML
requirement stereotype in order to get the relations
defined in SysML for requirements to model
elements. The SysML Requirement stereotype is
thus not re-usable since the related requirements are
referenced as attributes. This profile replaces the
Requirement defined in SysML with the following
tagged values:

• Title: this information is a unique identifier
of the requirement. It is structured in order to avoid
any kind of identifier as proposed in SysML. In our
case, a Title is composed as follows:

Figure 2 - Title of a MeMVaTExRequirement

where the EAST-ADL-Level is specified, as well as
the RequirementKind (functional or non
functional), the Non-FunctionalRequirement
Kind (such as Safety, Maintainability, Variability,
Performance and so on…), and the
RequirementNumber to uniquely distinguish
requirements of the same category.

• Description: to give the full description of
the requirement if this is a textual description.

• Verifiable: a boolean indication that
specifies if the requirement should be verifiable as
such, or if a refinement of this requirement should be
considered.

• Priority: used to differentiate a
mandatory requirement from an optional one.

• VerificationType: to memorize or
precise the verification technique that is used to
check the requirement: Test, FormalProof, etc.

• Author: the author of the requirement.
• SourceReference: the name of the initial

document from which the requirement is taken.
• Status: to specified if the requirement is

Analysed, Rejected, ToBeAnalysed.
• Justification: the reason why this

requirement is here (important in case of
decomposition or in case of justified choice).

• DocumentType: the type of the source
document: a report, a meeting, a drawing, etc…

• ASIL-Level: the ASIL-Level (from A to D)
when this information is known.

Figure 3 - The MeMVaTExRequirement stereotype

The usage of this stereotype will be illustrated later
on.

4. Solution models

 Page 4/10

In automotive, and more generally in the embedded
real-time system domain, the trend is to switch from
programming to composition for the management of
the overall engineering information. The objectives
are to control the complexity, to increase the quality
of the software and to reduce the development cost
of systems [10].
The use of models, even if they not perfectly fit the
specifications, provides the only known solution to
abstract and reduce details of an application. By the
concepts of “views”, the model-based methodology
focuses on a domain specific modelling and provides
a way to analyze the model and refine it.

Figure 4 - The solution model space

The Figure 4 shows the three dimensions of the
space of solution models. The abstraction levels
represent the knowledge level of the application, in
the case of a development from scratch. They are
mandatory to handle efficient development and
manage complexity of automotive embedded
systems. The disciplines allow for observing our
application with respect to different perspectives.
They correspond to the engineering skills involved
such as the system description, function design,
software development, hardware and software
architecture. With such decomposition, the analysis
only considers a specific domain view of the system,
at a particular level of abstraction. This “ideal”
decomposition of a system raises the tricky problem
of the relationship between the levels.
We adopt a similar approach of decomposition in the
project. The abstraction levels are those of EAST-
ADL2. The disciplines are the ones of vehicle feature
description, control/command modelling, software
design, architecture description and allocation. In the
next subsections, we present the different model
elements used for the solution model at the analysis
and design levels, and we illustrate the software
design of functions and the allocation activity of
these functions onto a hardware architecture.

4.1. Temporal and Functional Modelling

At the analysis and design levels of the EAST-ADL2
process, the functional modelling is based on the
metaclass ADLFunctionType which extends
SysML blocks. Our methodology allows making a

clear distinction between the design at the higher
abstraction levels (Analysis and Design) and the
execution at the lower levels (Implementation and
Operational: AUTOSAR6 (AUTomotive Open System
Architecture). All ADLFunction Type have the
capacity to describe the internal behaviour of a
function, possibly with hierarchy. These elements
are connected and communicate through ports
(which extend SysML ports) and specific connectors.
At the Implementation Level, the application software
is modelled as an atomic unit without any hierarchy
called AtomicSoftware Component [2].

EAST-ADL2 does not support the expression of
temporal constraints associated with ADLFunction
Type or AtomicSoftware Component. The only
element that deals with time is the ADL
requirements. They consider the temporal needs
such as jitter, period, max and min duration.
ADLrequirements can express temporal
requirements by the way of EndtoEndDelays of
ADLFunctionType or EndToEndDelay between
ADLPortFlow. The unit used for time expression is
the classical clock (the chronometric one).
We extend EAST-ADL2 by the time models of
MARTE for expressing temporal constraints that can
be either linked to a chronometric time but also with
a logical time. Examples of logical time are the
camshaft and crankshaft angular positions in an
engine. The period of these logical clocks depends
on the engine rotation speed. The
clockconstraints of MARTE is a way to express
relations between clocks.
A clock is perfectly defined in MARTE. A clock has
a clockType with different properties (nature,
resolution, max and min offset) and a unit (logical
or chronometric).
In EAST-ADL2, the structure of the application is
described hierarchically using ADLFunctionType/
Prototype. ADLbehaviour is a property of an
ADLFunctionPrototype.
The behaviour of ADLFunction is given by
runnableEntity. A runnableEntity is an UML
CallBehaviourAction on which we apply with
the timedProcessing stereotype of MARTE. By
this way, timedEvent characterizes the start and
stop of a runnableEntity. A timedEvent is
linked to a clock whose type can be
chronometric or logical. The duration
property of a TimedProcessing is a
TimeValueSpecification whose expression
may combine both chronometric and logical clocks,
intervals and instants. CVSL7 is the language
supporting such expressions.

6 See AUTOSAR web page : http://www.autosar.org
7 CVSL : Clocked Value Specification Language

 Page 5/10

4.2. Hardware architecture modelling

In EAST-ADL2, the hardware architecture may be
modelled from the Design Level. At this level, the
hardware architecture is described at a high level of
abstraction and can be used for simulation. This
level factorizes general elements of the hardware
architecture. It contains ECUs, power supply, sensor
and actuators, their connectors and ports. In EAST-
ADL2 the hardware elements extends SysML blocks
notion, that are usually used for describing the
hardware architecture of embedded systems. The
details of theses elements are not given at this level.

In the EAST-ADL2 approach, the refinement of the
hardware architecture is performed in the next level,
i.e. Implementation Level. This level references the
AUTOSAR profile. Indeed, all hardware architecture
elements at the Implementation Level are factorized
through the abstract metaclass HW_Element from
the AUTOSAR profile. The hardware elements
described at the Design level are expected at the
Implementation Level with more details or properties,
like for example the memories size and the number
of processors in the microcontroller of an ECU.
Moreover, the model brings more information about
the hardware architecture by adding new hardware
elements like communication between ECUs,
specific devices (timers, DAC…), peripherals, I/O
(analog, digital), etc.

4.3. Allocation Modelling

Finally, in order to implement an application onto a
hardware architecture, it is necessary to be able to
associate a particular application element to a
particular hardware element. In the EAST-ADL2
language, allocations constraints corresponding to
requirements inherited from the SysML requirements
can be expressed from the Design Level. Indeed,
there is a specific requirement called
AllocationConstraint to express an allocation
between an ADLFunction, or an AUTOSAR
element (application part) and an ECU. At this level,
it is only a choice of allocation and not an actual
allocation. Actually, allocations are performed at the
Implementation Level by using AUTOSAR features.

5. Link to the V&V methods

The V&V activities concern 2 aspects:
• Verification of the realization (“Do we build the

product right?”). It is the analysis of the works
that have been done, generally document
analysis, code inspection, unit and integration
testing.

• Validation of the application (“Do we build the
right product?”), this is a test phase whose
objective is to show that intended services are

fulfilled. This test phase is realized on the
product.

The next figure shows V&V activities in a standard V
cycle development process.

Figure 5 – V&V activities in a V-cycle development

process.

In the development process, the V&V is
characterized by activities that are performed by a
specific V&V team, independently of the activities
performed by the realization team. In order to model
verification activities, we propose the modelling of
different activities by “use cases”. These “use cases”
show the concerning persons, and necessary
elements (procedure, document, etc.). The modelling
is independent of the project but reflects the
enterprise process of the company.
Verification activities need to be linked to
requirements. It implies that:
• Every requirement is analyzed in the design

phase. It implies the verification of the
traceability and the justification of that
verification.

• Every requirement is taken into account in the
design. It concerns the satisfy links that show
how requirements are realized by the elements
of the solution models.

• Every requirement is taken into account in the
verification. It concerns the verify links that
show how requirements can be verified by test
cases.

In SysML, a test case is intended to be used as a
general mechanism to represent any of the standard
verification methods for inspection, analysis,
demonstration, or test. SysML has the capability for
representing test cases and attaching them to their
related requirements or use cases. A test case can
be an operation or a behavioural model (Interaction,
State Machine, Sequence or Activity Diagram).

Figure 6 – Verification activities for Requirements

 Page 6/10

Tests can be executed in the context of a test
scenario where test objects, their interactions, inputs
and expected outputs are detailed. Then, actual
outputs are confronted to expected outputs, giving
the test verdict. Four test verdict possibilities are
defined: pass, fail, inconclusive, and error. More
descriptions on test activity can be found in [13].

Figure 7 – SysML TestCase streretoypes.

The model-based design has several advantages for
test and verification. These advantages are now
supported by powerful tools that offer an
environment for executable specifications, dynamic
behaviour analysis, and algorithm design.
Performing V&V early at the design level avoids
costly prototypes. And correcting errors early at the
Design Level is more effective than at the
Implementation Level.

6. Traceability management

Once the specificities of requirements models,
solution models and V&V means are presented,
explaining traceability management implies to
describe traceability mechanisms that are used for:

1. Relating requirements of the same abstraction
level.

2. Relating requirements through successive
abstraction levels.

3. Relating requirements to other elements from
solution models or V&V means.

The definition of this traceability into the MeMVaTEx
methodology is important since this usage will
guarantee that requirements management will be
possible also in the modelling structure of the
system, and not only outside the modelling process.
This will help the analyst in building a solution that
checks all the requirements. This approach is
different of the one that uses a specific requirement
management tool for tracing requirements. The main
benefit of our approach is that the modeller of the
solution system can follow all the input requirements
directly in the model, and not by using an external
tool that adds another annotation complexity to the
modelling despite an efficient management of the
requirements.

Traceability links used in MeMVaTEx are those
proposed by SysML, but they concern MeMVaTEx

Requirement elements and not Requirement
elements from SysML. They are presented in Figure
8.

Figure 8 - Requirement streretoypes in SysML

These SysML relations are not useful for every
usage, and our methodology clarifies the usage of
each traceability link.

In a same EAST-ADL2 level (1), requirements can
only be decomposed or refined. We thus use:
• The DeriveReqt dependency relationship

between requirements for a requirement A (the
client) refined into a requirement B (the
supplier).

• And the requirement containment
relationship for the decomposition of a parent
requirement into several ones.

For considering requirements of different levels (2),
we use the previous relationships and also the copy
dependency relationship. This last one is related to
requirements that appear in a level and that are
unchanged when considering the next EAST-ADL2
level.
For relating requirements to other elements (3), the
traceability links that are useful in this case are the
followings:
• The satisfy dependency relationship that

relates a requirement and a model element that
fulfils the requirement

• The verify relationship between a requirement
and a test case that can determine whether a
system fulfils the requirement. This link was
detailed in the previous V&V section.

7. Illustration on an automotive case-study

In this section, after a short presentation of the knock
control application, we illustrate the proposed
methodology by some elements of the case-study.
In a four stroke engine, the knock phenomenon is a
self ignition that borns in the combustion chamber
due to high pressure and temperature. When it
occurs, this abnormal ignition generates a
shockwave that disturbs the combustion, and have a
negative impact on the engine lifetime, the comfort,
the consumption and the torque (see Figure 9). The
knock control consists in the noise estimation
(capture, acquisition and filtering of knock samples
signal) and the correction by calculating the advance
of the ignition angle.

 Page 7/10

Figure 9 – The knock phenomenon

7.1 Requirement models

For the case study, we define requirements models
that are based on the MeMVaTExRequirement
profile presented in the previous section. An
example is given in Figure 10.

Figure 10 - Some Functional Requirements from FL

EAST-ADL2 level

In this example, we show three functional
requirements (UML elements in the right hand side
of the figure) of the first EAST-ADL2 level: the
Feature Level (FL). These requirements are
stereotyped by the MeMVaTExRequirement
stereotype, and three properties are here displayed
for each one: the Title, the Description and the
Status.

7.2 Solution models

Modelling Acquisition with EAST_ADL2 and MARTE
We illustrate the concurrent use of EAST-ADL2 and
MARTE to express the structure and the behaviour
of an application. The Figure 11 is an EAST-ADL2
diagram representing the structure of the acquisition.
The execution of acquisition is triggered by events
whose occurrences are linked to an angular time
base and a chronometric time base. To express
temporal relations and constraints on behaviours, we
create two clocks types in the model, namely the
angularClock and the IdealClock, and we
instantiate three clocks (°CAM, °CRK, IdealClock)
from these types.

Figure 11 - ADL FunctionType of Aquisition

The behaviour of the acquisition is expressed
through an activity diagram stereotyped by
TimedProcessing. The Figure 11 shows the
temporal properties applied to the activity. The
duration is the Min function between two different
clocks. The start and stop of the activity is modelled
by timedEvents (TE_ITDC and TE_KWE).

Figure 12- TimeValueSpecification for Acquisition

The temporal characterisation of ADLFunction
makes it possible to construct timing chains on
ADLFunctions and their connectors and permits
two kinds of verifications. The obtained results are
linked to the temporal requirements by a requirement
relation. The allocation phase described in the next
section, must takes into account these constraints in
order to make the best association between
functions and hardware components.

Modelling the allocation of functions onto the
hardware components

In the MeMVaTEx context, several requirements
concerning the architecture must be satisfied. The
following example illustrates the link between a
requirement and a model solution in our case-study.
In this example at the Design Level an allocation
requirement expresses that the acquisition function
shall be allocated to the ECU. Thus, in order to
satisfy this requirement, on the one hand we use the
hardware architecture diagram that describes the
architecture with an ECU connected to a sensor and
an actuator, and on the other hand we use the
acquisition function. To perform the allocation, we
use the AllocationConstraint stereotype by
creating a reference link towards the allocated
element here the acquisition function and another
reference links towards the hardware element here
the ECU. Some tagged values may be added to
complete the AllocationConstraint stereotype.
For example, it is possible to specify some aspect
about requirement traceabilities. At the Design Level,
the Figure 13 represents the hardware architecture
connected to a partial application software of the

 Page 8/10

case-study, and the Figure 14 represents the
example of allocation.

Figure 13 - Hardware architecture at the Design Level

Figure 14 - Allocation at the Design Level

7.3 V&V means

The Figure 15 illustrates a requirement diagram
realized with requirements from the knock case
study. Requirements are classified by EAST-ADL2
levels. In the diagram, a traceability link from
Feature Level to Design Level is shown: AL-F-12 is a
functional requirement at the Analyse Level. It is
derived from the requirement VL-F-9 at Feature
Level, and then refined to DL-F-7 at Design Level.
The three requirements are respectively satisfied by
Knock_Correction, Engine_Control, and
Threshold_Calculation blocks; each block is
represented by a Block Definition Diagram.

Figure 15 – A requirement diagram and its

traceability.

In this example, a test case is created to verify the
requirement AL-F-11: “If no knock is detected, base
value shall be restored”. The test case, described by
a simple activity diagram in [13], compares actual
values, and pre-defined values then, returns a
verdict. A sequence diagram may be sketched out to
complete the sequence of actions to be realized.

Figure 16 – A test case realized by an activity diagram.

A requirement at an upper level may also be verified
by a document or code analysis. The analysis
verifies if the requirement is in the right place,
responds to a need, or conforms to the specification
book. In the case study, “Engine Control shall
manage Knock phenomenon” at Feature Level is
such a requirement. The conformity of requirements
is analyzed by independent analysts and system
engineers. We represent this verification by a “use
case” diagram in the Figure 17.

 Page 9/10

Figure 17 – A use case verifying VL-F-9 requirement.

7.4 Traceability links for requirements

In this section, we illustrate different traceability links
defined in the section 6. We illustrate some of the
identified traceability links.
For traceability link in the same requirement model,
we illustrate in the Figure 18 the requirement
containment relationship for the decomposition of
a parent requirement into several ones.

Figure 18 - Traceability links in the same requirement

level.

In this figure, three functional requirements from the
Design Level (DL) are defined (DL-F-1, DL-F-2 and
DL-F-3), and the DL-F-2 requirement is decomposed
into the DL-F-1 and DL-F-3 ones. This traceability
links are present in the requirement definition part of
the requirement models for each level.

In the Figure 19, we illustrate the traceability links
between requirements in two successive levels. The
illustrated links is the copy one which concerns non
functional variability requirements. This is done in a
specific diagram because this link relates
requirements from different levels.

Figure 19 - Traceability links between requirement

from levels FL to AL

The FL-NF-V-4 requirement in EAST-ADL2 FL
(Feature Level) is copied in the EAST-ADL2 AL

(Analysis Level). The names of the requirement are
different since this corresponds to distinct
requirements: one for each level. But, as the
variability has to be mentioned in the early FL level
and since this variability can only be managed in the
solution in the AL level, we have to copy this
requirement from the FL level to the AL one.

8. Tool architecture

Our methodology has been applied to the case study
using tools which are presented in this section. We
define a consistent tooled methodology for
requirement capture and modelling, solution
modelling, validation result feedback integration in a
consistency management.
A list of currently deployed tools for industrial
projects in embedded SW design, described in [10]
was used to identify State-of-the-art file formats for
interoperability and interaction: RIF (Requirements
Interchange Format) [15] & XRI (Extensible
Resource Identifiers) [16] for requirements, XMI
(XML Metadata Interchange) [14] for profiles and
models exchanges.

Figure 20 - Generic Approach

Then, we chose tools for supporting those files
interfacing as smoothly as possible, able to support
our methodology.

Figure 21 - MeMVaTEx Approach

One key feature of our methodology is the need to
aggregate several profiles: MARTE, EAST-ADL2,
AUTOSAR and SysML. We decided to develop our
own UML dedicated profile, called RPM (standing for
Requirement Profile of MeMVaTEx) as the DSL
(Domain Specific Language) support, importing a

 Page 10/10

subset of needed stereotypes from profiles
mentioned earlier.
The used tools for the methodology are:

- For requirements writing: MS Word, MS Excel or
any tool allowing the text inputs, as they are the
state of practice in automotive domain.
- For requirements traceability: Reqtify or its open
source version TopCased-TRAMWAY. This tool
allows almost any link with UML/SysML modelling
tools, text editors, spreadsheets and testing tools. It
will behave as the traceability gateway between
requirements, models and V&V results. Recently,
Geensys has announced a RIF support which
strengthens us in this choice.
- For EAST-ADL2 and UML modelling: ARTiSAN
Studio8 was chosen for the creation of the
requirement and solution models. Indeed, it offered
the most advanced SysML support when the project
has started and has now the most complete RPM
support and a powerful API to connect other tools.
Furthermore, ARTiSAN Studio provides full UML2.1
support needed for MARTE profile.
- For information release, documentation and
reports: MS Word or similar tool.

9. Conclusion & perspectives

We presented our methodology for requirements
traceability in the field of automotive applications.
Following the EAST-ADL2 abstraction levels, the
methodology is mainly based on a triptych
composed of the requirement models issued from
the requirement expressions, the solution models
which answers to these requirements by actually
implementing functional specifications onto actual
hardware while satisfying non-functional
specifications, and finally the V&V process based on
links established between the requirements and
solution models. Then, we illustrated the
methodology through some parts of a knock
controller: a realistic case study of the automotive
domain. Finally, we presented the tools that are used
in the methodology.

The next development of the methodology concerns
the integration of “heterogeneous” models in order to
improve the V&V process in the methodology.

10. References

[1]. A. Albinet, J.-L. Boulanger, H. Dubois, M.-A. Peraldi-
Frati, Y. Sorel, Q.-D. Van. Model-based methodology
for requirements traceability in embedded systems,
3rd ECMDA workshop on traceability, June 07, Haifa,
Israel.

[2]. ATESST project - The Modelling Approach in
ATESST – Overview. Overview of the EAST-ADL2

8 See ARTiSAN web page : http://www.artisansw.com

(D.3.1). And Report on behaviour modelling with the
EAST-ADL2 (D.3.2, version 1.0). Reports of the
Advancing Traffic Efficiency and Safety thought
Software Technology (ATESST) project.
http://www.atesst.org.Final versions, 2007.

[3]. P. Cuenot, P. Frey, R. Johansson, H. Lonn, M.-O.
Reiser, D. Servat, R. Tavakoli Kolagari and D.J. Chen.
Developing Automotive Products Using the EAST-
ADL2, an AUTOSAR Compliant Architecture
Description Language. 4th European Congress ERTS
Embedded Real Time Software. Toulouse, France,
January 2008.

[4]. P. Cuenot, D.J. Chen, S. Gerard, H. Lonn and M.-O.
Reiser, D. Servat, C.-J. Sjostedt, R. Tavakoli Kolagari,
M. Torngren and M. Weber. Managing Complexity of
Automotive Electronics Using the EAST-ADL.
Proceedings of the 12th IEEE International
Conference on Engineering Complex Computer
Systems (ICECCS 2007), Washington, DC, USA,
2007.

[5]. V. Debruyne, F. Simonot-Lion and Y. Trinquet. EAST-
ADL an Architecture Description Language, Validation
and Verification Aspects. In IPIP World Computer
Congress - Workshop on Architecture Description
Language, Toulouse, France, August 27, 2004.

[6]. Government Electronics & Information Technology
Association EIA norm for Processes for Engineering a
system. EIA Standard 632. April 1998.

[7]. Institute of Electrical and Electronics Engineers. IEEE
Guide for Developing System Requirements
Specifications (including IEEE 1233a). IEEE, New
York, 1998. IEEE Standard 1233. 1998.

[8]. MeMVaTEx glossary. Public report,
http://www.memvatex.org . November 2007.

[9]. MeMVaTEx State of the Art. Public report,
http://www.memvatex.org . April 2007.

[10]. W. Milam. MBSE: What is it really?, In SAE
Engineering Propulsion Controls Symposium, Detroit,
USA, September 05.

[11]. OMG Specification. OMG System Modeling Language
(OMG SySMLTM) Specification. Final Adopted
Specification ptc/06-05-04. May 2006.

[12]. OMG Specification. A UML Profile for MARTE, Beta 1.
OMG Adopted specification ptc/07-08-04. August
2007.

[13]. OMG Specification. UML Testing Profile v1.0. Final
Adopted Specification ptc/05-07-07. July 2005.

[14]. OMG Specification. XMI MOF 2.0 / XMI Mapping
Specification, v2.1.1. December 2007.

[15]. HIS Working Group, results, Simulation and Tools
Information on RIF 2004: http://www.w3.org/2005/
rules/wiki/RIF_Working_Group

[16]. XRI from XERIF project (XML-BasEd Requirements
Interchange Format). http://2005.reconf.de/
AcevedoM_247.pdf

