
HAL Id: hal-02270298
https://hal.science/hal-02270298

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Design for AUTOSAR Software
Components
Ulrich Eisemann

To cite this version:
Ulrich Eisemann. Model-Based Design for AUTOSAR Software Components. Embedded Real Time
Software and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270298�

https://hal.science/hal-02270298
https://hal.archives-ouvertes.fr

 Page 1/7

Model-Based Design for AUTOSAR Software Components

Ulrich Eisemann

dSPACE GmbH, Technologiepark 25, 33100 Paderborn, Germany

Abstract: The AUTOSAR initiative is without doubt
one of the most forward-looking and important
developments in the automotive industry. Tool
support is essential for efficient software
development according to AUTOSAR, particularly for
developing the actual application software in the
form of AUTOSAR software components. This paper
deals with the adaptation of model-based design and
automatic production code generation techniques to
the proposed AUTOSAR workflow. It shows that
existing approaches are well suited for the
development of AUTOSAR software, preserving all
the advantages of model-based design such as early
testability, precise specifications, and last but not
least, automatic production code generation.

Keywords: AUTOSAR, Software Components,
Code Generation

1. Introduction

For years now, the automotive industry has faced
the problem of development times becoming shorter
while the complexity of vehicle software grows.
Modern development methods such as model-based
design and automatic production code generation
have become established as a result, see [1], [2].
Alongside these activities, which are primarily
oriented to the actual application part of the
software, the AUTOSAR initiative aims to establish
an open standard for entire electrics/electronics
(E/E) architectures in vehicles, see [3]. The topic of
this article is the adaptation of model-based design
and automatic production code generation to
efficient, AUTOSAR-compliant development of the
application software itself, called AUTOSAR
software components. A tool chain based on

MATLAB/
Simulink/Stateflow and TargetLink is

taken as an example to demonstrate the concepts.

2. The AUTOSAR Software Architecture

According to the AUTOSAR standard, the software
architecture of each AUTOSAR-compliant electronic
control unit (ECU) has the general structure shown
in Figure 1. The ECU software is basically
subdivided into three different layers: the AUTOSAR
software components, the Run-Time Environment
(RTE), and the basic software. The AUTOSAR
software components (SWCs) contain the
application’s actual functional code, while the basic
software serves to abstract from the specific
hardware, provides basic services for task

management, hardware access, and communication
drivers. The Run-Time Environment constitutes the
“glue code” between the application software and the
basic software, i.e., it provides well-defined,
standardized interfaces for data exchange with the
services of the basic software and between the
AUTOSAR software components themselves. Data
exchange is performed exclusively via the RTE, so
not only is the application software completely
abstracted from the hardware, it is also possible to
distribute SWCs across different ECUs in a network
independently of one another, without needing any
modifications to the SWCs themselves. Thus, each
SWC can be developed regardless of whether a
second component is run on the same ECU or
another. It is up to the RTE to make sure that
communication is established between software
components and basic software. Depending on the
locations of the components, the RTE allows data
exchange either directly via a shared memory or by
sending messages via a bus. During software
development, these differences are taken into
account by what is called the RTE Generator, which
generates the Run-Time Environment for each ECU
appropriately. This approach means that AUTOSAR
software components can be deployed fairly freely
on different ECUs and different platforms. The reuse
and replacement of individual components are also
greatly simplified.

Figure 1: The AUTOSAR software architecture with
the layers AUTOSAR software components (SWCs),
Run-Time Environment (RTE), and basic software.

3. Model-Based Design for AUTOSAR Software
Components

For designing AUTOSAR software components, a
model-based approach using automatic production
code generation is helpful. This ensures that
AUTOSAR-compliant design benefits from the

 Page 2/7

known advantages of model-based development,
such as immediate simulatability and automatic
production code generation, leading to considerably
reduced development times, cost savings, and
enhanced quality. AUTOSAR software components
consist not only of AUTOSAR-compliant code, which
is basically C code with special RTE macros for
communication. In addition, each AUTOSAR SWC
also entails a so-called standardized software
component description listing all the SWC’s
structural AUTOSAR elements. The description
serves to integrate the software component in an
overall AUTOSAR application. Hence, to generate
AUTOSAR software components from model-based
designs, code and component description files have
to be generated, see Figure 2.
To fulfill AUTOSAR requirements, the production
code generator TargetLink has been extended to
provide comprehensive support for designing
AUTOSAR software components and performing
automatic production code generation for them. This
closes a gap in the area of tool support for
AUTOSAR-compliant software development, as the
actual application code can now be designed on a
model basis with tool support. In conjunction with
appropriate OS, COM, and RTE generators, this
opens the way to developing AUTOSAR-compliant
ECUs with great efficiency in the future.

Figure 2: To adapt model-based design to
AUTOSAR requirements, it is necessary to generate
AUTOSAR-compliant code and software component
descriptions in XML format from models.

4. Modeling

As a production code generator, TargetLink is fully
integrated in Simulink/Stateflow and enables users
to implement ECU functions designed as block and
state diagrams directly as production-ready code.
For modeling AUTOSAR software components,

TargetLink offers users special AUTOSAR blocks,
see Figure 3, for specifying AUTOSAR structural
elements such as runnable entities and ports. These
special AUTOSAR blocks are now combined with
the established TargetLink blockset used for
modeling the algorithmic parts of the controller.

Figure 3: Library with special AUTOSAR blocks for
modeling AUTOSAR SWCs.

The TargetLink AUTOSAR blockset consists of the
following elements:

• A Runnable block to identify a particular
subsystem as a runnable, i.e., an executable
unit according to the AUTOSAR standard.
Runnables may be triggered periodically or by
external events. During code generation, a C
function is generated for each runnable.

• Runnable Inports and Runnable Outports to
associate signals in TargetLink with individual
data elements of an AUTOSAR interface. The
Runnable Ports specify the data exchange and
communication mechanisms between individual
runnables. TargetLink supports interrunnable
communication, sender/receiver communication,
and synchronous client/server communication,
all of which are specified in the AUTOSAR
standard. All communication mechanisms
translate into special code patterns known as
RTE macros during code generation later on.

• Receiver and Sender Ports for software
components. These are mostly optional and can
be used to highlight the connection between
signals in TargetLink and the ports of a software
component. The blocks are the direct equivalent
of AUTOSAR ports on the model level.

• A Client Port block to model a client call of a
method provided by the basic software or by
another software component. The most common
use cases are service calls, for instance to an
NV-RAM manager.

 Page 3/7

From the modeling and code generation perspective,
it makes little difference whether communication
takes place between SWCs within the application
layer or between an SWC and, for instance, services
of the basic software. The latter have well-defined
AUTOSAR interfaces just like software components,
and communication is therefore specified in a similar
way.

When modeling runnables, users can now combine
the regular TargetLink blockset with the TargetLink
AUTOSAR blocks. The algorithmic aspects of a
runnable are modeled using the regular TargetLink
blocks, and the partitioning of the algorithm into
separate runnables and data exchange between
them is modeled by adding TargetLink AUTOSAR
blocks. Figure 4 shows the design of a simple
controller for the AUTOSAR use case. Whenever a
subsystem is to become an AUTOSAR runnable
during code generation, the Runnable block must be
dragged into it. For communication with other
runnables, the Runnable Inports and Outports have
to be inserted to receive and send input and output
signals. This reflects the AUTOSAR principle that all
communication between runnables is routed through
an AUTOSAR interface, which is implemented in the
form of an RTE macro during code generation. The
algorithmic part of the controller, however, is
modeled in the exactly same way as in the non-
AUTOSAR use case.

Figure 4: Designing a controller for the AUTOSAR
use case by combining algorithmic blocks such as
Gain, Switch, and Look-Up Table blocks with
AUTOSAR blocks.

Developers are given convenient and extremely
powerful modeling options for turning function
models into AUTOSAR-compliant components.
Since the modeling of runnables follows a proven
workflow, existing models can be easily migrated to
AUTOSAR. Users must primarily split the designed
functionality into runnable entities in the same way
as they would partition it into subsystems or
functions. Moreover, users continue to work in their
familiar environment, making the modeling of

AUTOSAR software components particularly
attractive and efficient.

5. Managing AUTOSAR-Related Data

Alongside the use of AUTOSAR blocks at model
level, AUTOSAR-related information is kept in a data
dictionary. This serves as a central data container
and is used not only for AUTOSAR specifications but
also for code generation information in general, such
as data types, scalings and variables. These
specifications define how individual signals appear in
the generated code. The AUTOSAR-related
information stored in the data dictionary are software
components, runnables, ports, interfaces, etc. All
these elements require a set of associated attributes
which are defined by the AUTOSAR standard.
Interfaces, for instance, must specify the data types
of their enclosed data elements, while runnables
must define the events by which they are activated.
To connect the AUTOSAR blocks on the model level
with the AUTOSAR specifications in the data
dictionary, the latter are simply referenced from the
AUTOSAR blocks. Thereby, the appropriate
AUTOSAR specifications are assigned to the
individual signals in the model, see Figure 5, and the
proper RTE macros are generated during code
generation later on.

Figure 5: Specifying AUTOSAR properties in the
data dictionary and referencing them in AUTOSAR
block dialogs.

6. Production Code Generation

An essential advantage of model-based
development is that the model serves as a
reference, and executable code can be generated
from it at any time, practically with just a click. This
obviously also applies to AUTOSAR software
components modeled with TargetLink. After all
specifications have been made at block level or in
the dSPACE Data Dictionary, actually generating

 Page 4/7

AUTOSAR-compliant code is a matter of only a few
clicks.
The generated code is characterized, according to
AUTOSAR requirements, in that all accesses to I/O,
basic services, and communication with other
components are implemented as RTE macros in the
following way:

• Runnables become functions in the generated
code.

• Incoming or outgoing signals - i.e., Runnable
Inports and Outports - appear in the code as
standardized RTE macros. Instead of
referencing connected software components
directly, which would make it impossible to reuse
each component, these macros reference the
components’ own ports. In this sense ports are
proxies for the components that will be
connected to them later on. Figure 6 shows a
small example: The “linearization_runnable”
runnable reads one variable using the RTE
macro Rte_Receive_RequiredSignals_pos and
writes the result using the macro
Rte_IrvIWrite_PosLinearization_LinPos. The

definitions of these macros are generated later
on during the RTE generation phase once
software components have been mapped to
individual ECUs. AUTOSAR standardizes the
syntax of these macros.

• Communication between the runnables of one
software component is handled specially using
so-called interrunnable variables, as in the
macro Rte_IrvIWrite_PosLinearization_LinPos.

void linearization_runnable(void)

{

 /* storage class for local variables */

 SInt16 S13_switch1 /* LSB: 2^-10 OFF: 0 */;

 S16_pos pos /* LSB: 2^-10 OFF: 0 */;

 /* call of

 Required signal pos */

Rte_Receive_RequiredSignals_pos(&(pos));

 /* # combined # update(s) for inport

 controller/Position_Linearization_Runnable */

Rte_IrvIWrite_PosLinearization_LinPos(S13_switch

 1);

}

Figure 6: Example code fragment for the simple
controller in Figure 4.

7. Generating Software Component Descriptions

As indicated in Figure 2, an AUTOSAR software
component consists not just of the C code itself but
also a software component description. This is
standardized by AUTOSAR and constitutes an XML
file which contains a precise characterization of the
structural elements contained in a component, such
as runnable entities, ports, and communication
interfaces. The component description provides the
basis for a software architecture tool to read off the
relevant properties of each software component,
which enables the software architect to link the
individual components in an AUTOSAR tool chain.

When model-based design and automatic production
code generation are used, it is obviously not
necessary to create and edit the software
component description manually. Instead, all the
relevant information is stored on the model level or in
the data dictionary, and the description can be
generated automatically at any time, for instance
along with the AUTOSAR-compliant code. This
ensures consistency between the model, code, and
software component description. TargetLink
supports the generation of AUTOSAR software
component descriptions at a click, with the required
information being retrieved from the dSPACE Data
Dictionary, see Figure 7.

Figure 7: Excerpt from a software component
description file, which can easily be generated along
with the AUTOSAR compliant-code.

8. Simulating Software Components

One of the great advantages of model-based design
has always been the ability to simulate functional
behavior at very early stages of the development
process. This paves the way for immediate validation
and verification techniques and hence greatly
reduces the risk involved in the development
process. These advantages also hold true for the
modeling of AUTOSAR SWCs.

 Page 5/7

For the purpose of simulation, the modeled
AUTOSAR software components are included in a
special simulation frame realized by a TargetLink
subsystem, see Figure 8. This makes sure that
software components can not only be simulated on
the block diagram level, usually called model-in-the-
loop mode (MIL), but also in software-in-the-loop
mode (SIL), in which the generated code is executed
for the controller part of the model.

Figure 8: Modeling style to properly simulate
AUTOSAR software components. Runnables are
included in the TargetLink controller subsystem and
activated by events emitted by the Stateflow chart
called Chart.

The AUTOSAR standard specifies that runnables
are activated by so-called RTE events. Simulink
provides a comparable concept in the form of
function-call-triggered subsystems, whose execution
is actuated by events from other blocks.
Consequently, runnables are implemented as
function-call-triggered subsystems, see Figure 9. It is
a common practice to activate function-call-triggered
subsystems, i.e. the runnables, by events from a
Stateflow chart residing outside the software
component, see Figure 8. The latter is therefore
used only for simulation purposes and has no
bearing on subsequent code generation steps or the
software component itself, see [4]. If a runnable is
time-triggered, it can also be implemented as an
ordinary Simulink subsystem with the proper sample
rate.

For software-in-the-loop simulation, code for the
AUTOSAR SWC is generated and wrapped in a
Simulink S-function, a concept for including user
code in a Simulink simulation. To build the S-
function, wrapper code resembling a simple Run-
Time Environment has to be generated along with
the actual component’s code. During software-in-the-
loop simulation, the blocks inside the TargetLink
subsystem in Figure 8 are replaced by the generated
S-function. The same concept can be used to
perform what is known as processor-in-the-loop
simulation (PIL), in which the code is executed on an
evaluation board containing the target processor.

However, the capacity to realistically simulate
AUTOSAR SWCs in Simulink, be it in MIL, SIL or
PIL mode, is limited. Simulink simulations can serve
to test the functional behavior, but they are not
sufficient for proper simulation of real-time behavior,
which arises, for instance, from later mapping of
runnables to the tasks of an operating system.

Figure 9: Runnables are implemented as function-
call-triggered subsystems and activated by function
calls emulating AUTOSAR RTE events.

9. Integration in an AUTOSAR Tool Chain

Production projects in the automotive industry
nowadays often take individual software components
as the starting point for development. After an
AUTOSAR software component has been
successfully developed, for instance with TargetLink,
it has to be integrated in an overall AUTOSAR
application. This procedure is of course supported by
the AUTOSAR methodology and system design
tools such as SystemDesk serve that purpose, see
[5].
A software integrator uses SystemDesk to integrate
individual SWCs provided by function developers to
make a system. The AUTOSAR SWC descriptions
are imported into the tool, providing all the necessary
information about the ports and interfaces of the
required software components. Using model-based
design on the system level, the integrator now simply
connects individual components to model
communication between AUTOSAR SWCs and the
basic software, see Figure 10. Tool support is
applied to check compatibility between the interfaces
of software components. If the interfaces are not
compatible, for example because different fixed-point
scalings were used, the function developers have to
adjust the interfaces.

Rather than starting from individual function models
(bottom-up approach), it is to be expected that an
architecture-driven procedure (top-down approach)
will be pursued in the future. A software architect first
designs the whole architecture in a system design
tool and specifies the connections between SWCs
and their formal interfaces at an early stage in the
development process. Individual developers then

 Page 6/7

transform functional models into AUTOSAR SWCs
based on the specified software architecture. The
advantages of this approach are that compatible
interfaces are created systematically and that all the
signals required are provided by other SWCs. In
addition, each function developer can use the
software component description to generate a frame
model as a starting point to migrate existing function
models to AUTOSAR more easily.

Figure 10: Using model-based design techniques for
software architecture design.

To build the overall AUTOSAR application, it is of
course necessary to perform an RTE generation
step. As mentioned before, AUTOSAR-compatible
application software must not use any direct calls to
basic software layers such as I/O drivers, to other
software components, or to the communication
stack. Instead, standardized RTE macros in the
components’ code are used for that purpose. It is
now up to the RTE generator to provide
implementations for these macros according to the
configuration of the overall system.
Once the software components have been properly
connected by the software architect/integrator,
individual software components have been mapped
to ECUs and runnables have been mapped to tasks,
an RTE generator has the necessary information to
provide the implementation of the RTE macros.
Hence, platform-independent communication
patterns used in software component code are
implemented with the proper communication means
such as CAN messages, inter-task messages, and
global variables. The RTE generator also generates
the required tasks for the real-time application.
A system design tool like SystemDesk also supports
OS and COM configurations as well as exporting this
information to other tools like EB tresos, see [6],
which then serve to generate the OS and the COM
stack to build the final AUTOSAR application. The
whole tool interaction is summarized in Figure 11.

Figure 11: Interaction between functional behavior
modeling, RTE generation, and OS and COM stack
generation.

10. Conclusion

The AUTOSAR initiative is likely to achieve a
substantial increase in the efficiency and quality of
automotive software development if the development
process is supported by proper tools. As regards the
actual application software, model-based
development is the most obvious approach. The
paper therefore shows how a tool chain based on
Simulink/Stateflow and TargetLink can be adapted
to model AUTOSAR software components on the
basis of block and state diagrams. This enables
users to design function models in their familiar
development environment, with practically the same
workflow and with intensive tool support. Most
importantly, the software components can be directly
implemented in the form of highly efficient
AUTOSAR-compliant production code ready to be
integrated on an AUTOSAR ECU.

The paper also highlights the importance of
seamless integration of model-based design
techniques in an AUTOSAR tool chain, especially
their interaction with architecture tools and RTE
generators. As a whole, the development of
AUTOSAR software components benefits greatly
from model-based design techniques, particularly
since the success of AUTOSAR is heavily
dependent on efficient tool support.

11. References

[1] M. Beine, U. Eisemann, R. Otterbach.
Transforming a Control Design Model into an
Efficient Production Application, CACSD
Conference, October 2006

[2] M. Beine, R. Otterbach and M. Jungmann.
Development of safety-critical software using
automatic code generation. SAE World
Congress, Detroit, 2004

 Page 7/7

[3] AUTOSAR. Internet Homepage
http://www.autosar.org

[4] AUTOSAR. Applying Simulink to AUTOSAR,
http://www.autosar.org/download/AUTOSAR_
SimulinkStyleguide.pdf

[5] D. Stichling, O. Niggemann, J. Stroop, R.
Otterbach. From Function Design to System
Design in Model-Based Software
Development, ATZ, No. 1, 2007

[6] EB Internet Homepage.

 http://www.elektrobit.com/static/en/eb_tresos.
html

12. Glossary

AUTOSAR AUTomotive Open System ARchitecture

RTE Run-Time Environment

SWC Software Component

