
HAL Id: hal-02270295
https://hal.science/hal-02270295v1

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COntinuuM, a CO-modelling Methodology for the
Integration of Real-time Architecture Models

I Perseil, Laurent Pautet

To cite this version:
I Perseil, Laurent Pautet. COntinuuM, a CO-modelling Methodology for the Integration of Real-time
Architecture Models. Embedded Real Time Software and Systems (ERTS2008), Jan 2008, Toulouse,
France. �hal-02270295�

https://hal.science/hal-02270295v1
https://hal.archives-ouvertes.fr

 Page 1/5

COntinuuM, a CO-modelling Methodology for the Integration of Real-time
Architecture Models

I. Perseil, L. Pautet

TELECOM Paristech – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris cedex 13, France

isabelle.perseil@enst.fr,laurent.pautet@enst.fr

Abstract: The design of Distributed Real-time
Embedded (DRE) architecture models for complex
and critical systems with safety, liveness, timeliness,
dependability concerns, forces the use of formal
languages.

Because of the high level of criticity, proof
techniques are required instead of model-checking
with limitations relatively to the state space explosion
problems.
Proofs of these non-functional properties can only be
established on the basis of formal languages with
high verification capabilities (theorem provers).

Therefore, we have concentrated our efforts on the
development of a methodology that would better
integrate formal aspects into the design of DRE
architectures, which is usually based upon the use of
(semi-formal) Architecture Design Languages
(ADLs). This methodology has both to support the
traceability of non-functional property proofs (from
the requirements to the deployment of a DRE
system) and the integration of formal and non formal
modelling languages.

The approach is bottom-up when the method states
that each realization artifact, even hidden, has to be
detected from the capture requirement stage (each
possible realization artifact has to be identified
during a prototype coding stage)
As a consequence, language translations are not
based on the MDA process that supposes some
projections. These projections would be responsible
for the gap between abstractions used to understand
and describe the problem and those used for
implementation.
To bridge those gaps is the major aim of the
methodology, so we called it “Continuum” as it would
help to restore the development process continuity.

The new aspects of this methodology (and its
difficulties) are essentially the introduction of low
level concepts (needed for the implementation
stages) into the modeling language structures,
usually more generic.

The methodology application is the development of
an algorithmic language translator that enable the
generation of a safe code.

Keywords: Co-modeling, ADLs, Real-time Systems,
Distributed and concurrent algorithms, Proof-based
system engineering

1. Introduction

Architectural configurations of critical real-time
systems have to be formally verified. Non-functional
properties are often specified through algorithms that
mainly involve process units, but these algorithms
are not described so that we can easily trace both
their impact and accuracy. Many of the architecture
design languages are providing features concerning
the dual possibility of describing software and
hardware components, as well as the
implementation process and non-functional property
specifications. However they do not provide enough
formal capabilities to describe component behavior.
This is the reason while component behavior is often
described separately.

Although ADLs are more focused on programming in
the large, the behavior of a component is correlated
to the behavior of its subcomponents. Consequently,
we have chosen to build bridges between a strict
and static design process that only focuses on the
topology, and a dynamic process that raises all the
design levels to bring the parameters of an optimal
configuration to the upper levels, particularly, when
we choose to implement an algorithm that involves
atomic components (like threads).

Due to our new co-modeling methodology, we may
follow each step of software design process without
any discontinuity.
Our approach is based on the introduction of
algorithmic blocks at the highest level of the design.
These blocks are instanced and optimized through
an iterative process that allows feedback from
successive implementations.
In order to build a complete design of component
behavior, we introduce methodical guidelines that

 Page 2/5

ease the work of designers. Some elements of the
design will be hidden in order to offer a more
conceptual view, but from step to step, it will be
easier (in terms of compliance) to show
implementation details, than to generate them
through a classical MDA approach.

To support our approach, we have fully integrated an
algorithm language, +CAL, in the architecture design
process, so that we can gather a code issued from
an ADL (AADL) specification and a code issued from
the +CAL specification. Therefore, we will present
the +CAL/Ada translator we have realized and its
integration in our Ocarina toolset that has been
previously designed for AADL translations to Ada.
The produced Ada code will be validate, once the
TLA+ specifications, automatically generated from
the +CAL specifications, are checked.

Introducing every concept in the earliest phases of
design that might be taken in account by the final
code, we save intermediate translations and model
transformations which are often hard to validate.
So at the same time, we dramatically reduce the
software costs, improve the reuse and reinforce the
necessary proof based system engineering for the
critical real-time system we design.

2. Background

2.1 Context

Methods have been supplanted by standards.

In the past, Methods dedicated to real-time systems
design, like SART, for instance, had a very large
scope and were applied in many fields. Systems
were less complex and it was easier to adapt a
generic method.

Then came a strong wish to standardize best
practices, and to start with the modelling language.

After a while, the standardization process reached
the patterns and then specific metamodels, e.g.
UML profiles.

2.2 State-of-the-art (Related works)

Analysis and design of real-time architectures are
realized without any standardized process or
methods. Some well-known processes do exist but
are not uniformly applied:

• Avionic standards as DO-178B, ARP4754
et proprietary guidelines

• MDE / MDA, a UML Profile for MARTE,
xUML, a UML Profile for AADL

• The set MetaH + ControlH
• The methodology Proof Based System

Engineering (PBSE)

The PBSE methodology, which is the most
advanced among the proof methodologies,
describes a potential cycle with feedback, but suffers
from a lack of guidelines and has no language
(neither theorem prover) support, in addition the use
of this methodology is not yet applied with any
modeling language.

A lot of research attempts of model-checking on
semi formal ADLs models (AADL with CPN) or
formal ADLs models (with Wright, Acme or Rapide)
linked with non formal requirements exist with some
results, but are not adopted by industrials, because
of the implementation complexity.

Nowadays, a lot of prototyping methodologies are
co-existing, far away to be generalized or
standardized, and moreover, these methodologies
are generally bypassing the requirement capture
stages, taking the domain understanding and its
modeling for granted.

So far, there exists a gap between the abstractions
used to formalize the problem domain and those for
the implementation. The MDA approach proposes
some model transformations techniques to bridge
the gap but this is not the only way to manage it.

2.3 Issues

This is a language integration problem. Languages
are defining a system at different granularity levels,
from one end to the other end of the life cycle.

MDA is not the solution for embedded systems,
because the physical environment has an impact on
the system behavior, so the software and the run-
time framework cannot be separated, as it is
proposed in the MDA approach.

The integration problem is located at many levels:

• There is no continuity between the
development stages: requirements, analysis,
design, coding, testing and verifications,
100% of traceability is far from reality, so
how to rely different levels of abstraction?

• The granularity and formalism language
integration is difficult, considering a system
through very different aspects: so how to
rely these languages that have different
levels of expressivity an from different types
(functional, imperative…)

2.4 Objectives

The main objective is the development of a method
that can both support specification proofs (for a
given problem, the specification perfectly answer to

 Page 3/5

the problem and a proof is provided) and to prove
that the implementation is correct.

The other objectives are:

• The possibility to adapt concurrent
algorithms, scheduling algorithms,
distributed algorithms or fault tolerant
algorithms to the target architecture
configuration or vice versa in order to
ensure a reliable architecture configuration:
a best behavior expressivity and the proof
on valid states.

• The methodology will be particularly
achieved to answer to the co-design issues,
when dealing with an embedded system that
requires to reduce to the maximum the
number of components meanwhile it has to
answer to hard real-time constraints.

3. Proposed approach

The DRE systems design require both high level and
low level languages.
High level languages as algorithm languages (here
+CAL) are most of the time used before describing
the global architecture with an ADL (here the AADL
a SAE standardized ADL), some kind of a low level
language, very close to a programming language
that will be used at the implementation stages.

Only the critical parts are requiring formal languages,
so the problem to solve is really a languages
integration problem.
We are striving to specify the behavior of each
component in a continuous way, from the smallest
granularity component (thread) behavior
specification to the highest (modes configuration).
Such an objective requires an integrated approach.

The main argument that leads us to expand the
AADL language lies in the fact the real-time systems
we are studying are using complex algorithms to
specify their atomic component behavior which have
a huge influence on the whole of the resulting
architecture. Not including construction of algorithms
in architecture design represents a high risk that they
will never be totally taken into account when
choosing the final architecture configuration. To
ensure the requirements traceability in the analysis
and design of the architecture, we consider
therefore, that algorithms must appear as a
significant element of the design.

Therefore, we propose to expand the AADL
language in order to integrate the main algorithmic
specifications that play a role in configurations.
Including an algorithm language also provides an
opportunity for automatic proof and clean code
generation. Considering the previous target of

encompassing critical system requirements, it is
necessary to retrieve proof at each level of
architecture design. It is not enough to claim that
proofs must occur during the earliest steps of the
design. The final mode configurations must be
chosen using proof argumentations. This leads us to
integrate a formal behavior specification language
right inside the architectural specification.

The integration of an algorithm language, +CAL, into
an AADL specification is under construction through
an annex mechanism.

4. Application of the approach

Behavioral descriptions are associated with AADL
components. Hence behaviors involving several
threads cannot be directly described.
The example on figure 1 describes a situation in
which describing local behavior, attached to each
AADL thread, is not sufficient. Two processes are
bound to different processors.

Each process is actually made of one thread and
encapsulates one data component. Both data
components are shared by the two threads of the
architecture.

Figure 1: Data shared between two processes

Since behavioral descriptions in AADL can be
associated with threads or subprograms, one can
describe how the shared data should be processed
by each thread. For example, it would be possible to
describe that thread1 reads and writes in both data
components, and that thread2 does the same,
periodically. Accesses to data components are
managed in each process by the AADL runtime.
Therefore, we can specify a locking policy on each
data component, handling the access requests sent
from the AADL threads.

Descriptions of local behaviors are not sufficient to
specify global behaviors. For example, we cannot
ensure that the two threads access alternatively both
data components, thus performing mutual exclusion
on the two data components at a time. We cannot
describe the management of the shared data,
and the necessary distributed lock.

 Page 4/5

We have choosen a mutex algorithm implementation
that can have an influence on the resulting
configuration.

This algorithm guarantees mutually exclusive access
to a critical section among a number of competing
processes.

−−algorithm bakery
variables Ex t r a c t i o n = [k \ i n 1 . .N |−> FALSE] ,
Rank= [m \ i n 1 . .N|−> 0] ;
process a process \ i n 1 . .N
var iable q ;
begin
 Ex t r a c t i o n [a process] : = TRUE;
 Rank [a process] : = 1 + max(Rank [1] . . Rank [N]) ;
 Ex t r a c t i o n [a process] : = FALSE;
 q :=1 ;
while q /= N+1 do
 while (Ex t r a c t i o n [q])
 do skip ;
 end while ;
 while ((Rank [q] / = 0) /\ ((Rank [q] , q) <
 (Rank [a process] , a process)))
 do skip ;
 end while ;
q :=q+1;
end while ;
 _The c r i t i c a l sec t ion
 Rank [a process] : = 0 ;
 _ non−c r i t i c a l sec t ion . . .
end process
end algorithm

Listing 1 : Lamport Bakery algorithm in +CAL

5. Integration in AADL Models

Given the following AADL description corresponding
to figure 1, we will first analyze where is the most
appropriate place to integrate algorithm structures.
We would rather like to insert the +CAL algorithm
within the global system implementation that
represents the whole architecture. This system
implementation is the place where the main
components (i.e. the processes, the processors,
etc.) are instantiated and connected. It is also the
place to describe the way data are shared.
In order to be compliant with the AADL annex
behavior specification V1.5, atomic behaviors should
also be attached to subprogram implementations.

From the +CAL description of the algorithm, we are
able to produce source code. In order to create a
complete description of the application, we have to
merge the source code we generate with the
description of the initial architecture (represented
on figure 1).
The implementation of the algorithm in itself implies
some modifications in the code executed in the
AADL threads, in order to add calls to procedures
such as the “entering” Ada generated procedure
from the +CAL algorithm.

procedure enter ing (a process : in (proc index) is
begin
 Ex t r a c t i o n (a process) := t rue ;
 Rank (a process) := 1 + maximum;
 Ex t r a c t i o n (a process) := f a l s e ;
 for q in 1 . .N loop
 loop
 delay 0 . 0 ;
 exi t when not Ex t r a c t i o n (q) ;
 exi t when (Rank (q)=0)
 or (Rank (a process)> (Rank (q))
 or (a process > q)
 end loop ;
 end loop ;
end entering ;
−−
−− Ex i t Protocol
procedure way out (a process : in (proc index) is
begin
 Rank (a process) := 0;
end way out ;
end algo Lamport bakery ;

Listing 2 : Lamport Bakery algorithm in Ada

In addition, the Bakery algorithm relies on two
variables, shared by all the threads. These variables
have to be integrated into the architecture, as shown
on figure 2.

Figure 2: Architectural impact of the Bakery
algorithm

The shared data is instantiated in one of the AADL
processes, and accessed by all AADL threads.
The locking policy of the shared data is centralized
at the level of one process, and can then be easily
managed.

6. Conclusion

Architecture analysis and design is mostly performed
without any standardized process or methodology.
As a consequence, there is a very little traceability to
handle the transition between the requirements,
analysis and architecture design steps.
On the one hand, in describing the global
requirements, the functional is separated from the
non functional properties. What is considered the
most suitable algorithm is then chosen to fit the
requirements of the non-functional properties.
Unfortunately, there is no going-back on the choices

 Page 5/5

we have made. In the prototype phase, it is often
necessary to adapt the algorithms to the architecture
configuration, and vice versa.
Our method provides a way, when choosing and
updating parameters, to dynamically build an optimal
configuration.
On another hand, we build architectures that follow
the requirements but, make abstraction of all the
behavior constraints. When the two branches of the
overall development cycle meet, arises the eternal
problem verifying that the architecture framework is
a good foundation for the application.
Our purpose is to complete the existing gap between
requirements and analysis. At the same time, the
complex algorithms that we have to manage in
critical systems are provided with a formal shape
which allows formal proofs.

7. Glossary

AADL: (the SAE) Architecture Analysis& Design
Language

ADL: Architecture Design Language

DRE: Distributed Real-time Embedded
MDA: Model Driven Architecture

+CAL : The algorithm language of Lamport

TLA: The Temporal Logic of Actions

UML: Unified Modeling Language

