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Abstract: The design of Distributed Real-time 
Embedded (DRE) architecture models for complex 
and critical systems with safety, liveness, timeliness, 
dependability concerns, forces the use of formal 
languages. 
 
Because of the high level of criticity, proof 
techniques are required instead of model-checking 
with limitations relatively to the state space explosion 
problems. 
Proofs of these non-functional properties can only be 
established on the basis of formal languages with 
high verification capabilities (theorem provers). 
 
Therefore, we have concentrated our efforts on the 
development of a methodology that would better 
integrate formal aspects into the design of DRE 
architectures, which is usually based upon the use of 
(semi-formal) Architecture Design Languages 
(ADLs). This methodology has both to support the 
traceability of non-functional property proofs (from 
the requirements to the deployment of a DRE 
system) and the integration of formal and non formal 
modelling languages. 
 
The approach is bottom-up when the method states 
that each realization artifact, even hidden, has to be 
detected from the capture requirement stage (each 
possible realization artifact has to be identified 
during a prototype coding stage) 
As a consequence, language translations are not 
based on the MDA process that supposes some 
projections. These projections would be responsible 
for the gap between abstractions used to understand 
and describe the problem and those used for 
implementation.   
To bridge those gaps is the major aim of the 
methodology, so we called it “Continuum” as it would 
help to restore the development process continuity. 
 
The new aspects of this methodology (and its 
difficulties) are essentially the introduction of low 
level concepts (needed for the implementation 
stages) into the modeling language structures, 
usually more generic.  

The methodology application is the development of 
an algorithmic language translator that enable the 
generation of a safe code. 
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1. Introduction 

Architectural configurations of critical real-time 
systems have to be formally verified. Non-functional 
properties are often specified through algorithms that 
mainly involve process units, but these algorithms 
are not described so that we can easily trace both 
their impact and accuracy. Many of the architecture 
design languages are providing features concerning 
the dual possibility of describing software and 
hardware components, as well as the 
implementation process and non-functional property 
specifications. However they do not provide enough 
formal capabilities to describe component behavior.  
This is the reason while component behavior is often 
described separately. 
 
Although ADLs are more focused on programming in 
the large, the behavior of a component is correlated 
to the behavior of its subcomponents. Consequently, 
we have chosen to build bridges between a strict 
and static design process that only focuses on the 
topology, and a dynamic process that raises all the 
design levels to bring the parameters of an optimal 
configuration to the upper levels, particularly, when 
we choose to implement an algorithm that involves 
atomic components (like threads). 
 
Due to our new co-modeling methodology, we may 
follow each step of software design process without 
any discontinuity. 
Our approach is based on the introduction of 
algorithmic blocks at the highest level of the design. 
These blocks are instanced and optimized through 
an iterative process that allows feedback from 
successive implementations. 
In order to build a complete design of component 
behavior, we introduce methodical guidelines that 
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ease the work of designers. Some elements of the 
design will be hidden in order to offer a more 
conceptual view, but from step to step, it will be 
easier (in terms of compliance) to show 
implementation details, than to generate them 
through a classical MDA approach. 
 
To support our approach, we have fully integrated an 
algorithm language, +CAL, in the architecture design 
process, so that we can gather a code issued from 
an ADL (AADL) specification and a code issued from 
the +CAL specification. Therefore, we will present 
the +CAL/Ada translator we have realized and its 
integration in our Ocarina toolset that has been 
previously designed for AADL translations to Ada. 
The produced Ada code will be validate, once the 
TLA+ specifications, automatically generated from 
the +CAL specifications, are checked. 
 
Introducing every concept in the earliest phases of 
design that might be taken in account by the final 
code, we save intermediate translations and model 
transformations which are often hard to validate. 
So at the same time, we dramatically reduce the 
software costs, improve the reuse and reinforce the 
necessary proof based system engineering for the 
critical real-time system we design. 

2. Background 

2.1 Context 

Methods have been supplanted by standards. 

In the past, Methods dedicated to real-time systems 
design, like SART, for instance, had a very large 
scope and were applied in many fields. Systems 
were less complex and it was easier to adapt a 
generic method. 

Then came a strong wish to standardize best 
practices, and to start with the modelling language. 

After a while, the standardization process reached 
the patterns and then specific metamodels, e.g.  
UML profiles. 
 

2.2 State-of-the-art (Related works) 

Analysis and design of real-time architectures are 
realized without any standardized process or 
methods. Some well-known processes do exist but 
are not uniformly applied:  

• Avionic standards as DO-178B, ARP4754  
et proprietary guidelines  

• MDE / MDA, a UML Profile for MARTE, 
xUML, a UML Profile for AADL  

• The set MetaH + ControlH   
• The methodology Proof Based System 

Engineering (PBSE) 
 

The PBSE methodology, which is the most 
advanced among the proof methodologies, 
describes a potential cycle with feedback, but suffers 
from a lack of guidelines and has no language 
(neither theorem prover) support, in addition the use 
of this methodology is not yet applied with any 
modeling language. 
 
A lot of research attempts of model-checking on 
semi formal ADLs models (AADL with CPN) or 
formal ADLs models (with Wright, Acme or Rapide) 
linked with non formal requirements exist with some 
results, but are not adopted by industrials, because 
of the implementation complexity. 
 
Nowadays, a lot of prototyping methodologies are 
co-existing, far away to be generalized or 
standardized, and moreover, these methodologies 
are generally bypassing the requirement capture 
stages, taking the domain understanding and its 
modeling for granted. 
  
So far, there exists a gap between the abstractions 
used to formalize the problem domain and those for 
the implementation. The MDA approach proposes 
some model transformations techniques to bridge 
the gap but this is not the only way to manage it.  
 

2.3 Issues 

This is a language integration problem. Languages 
are defining a system at different granularity levels, 
from one end to the other end of the life cycle. 
 
MDA is not the solution for embedded systems, 
because the physical environment has an impact on 
the system behavior, so the software and the run-
time framework cannot be separated, as it is 
proposed in the MDA approach. 
 
The integration problem is located at many levels: 

• There is no continuity between the 
development stages: requirements, analysis, 
design, coding, testing and verifications, 
100% of traceability is far from reality, so 
how to rely different levels of abstraction? 

• The granularity and formalism language 
integration is difficult, considering a system 
through very different aspects: so how to 
rely these languages that have different 
levels of expressivity an from different types 
(functional, imperative…) 

 

2.4 Objectives 

The main objective is the development of a method 
that can both support specification proofs (for a 
given problem, the specification perfectly answer to 
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the problem and a proof is provided) and to prove 
that the implementation is correct.  
 
The other objectives are: 

• The possibility to adapt concurrent 
algorithms, scheduling algorithms, 
distributed algorithms or fault tolerant 
algorithms to the target architecture 
configuration or vice versa  in order to 
ensure a reliable architecture configuration: 
a best behavior expressivity and the proof 
on valid states.  

• The methodology will be particularly 
achieved to answer to the co-design issues, 
when dealing with an embedded system that 
requires to reduce to the maximum the 
number of components meanwhile it has to 
answer to hard real-time constraints.  

3. Proposed approach 

The DRE systems design require both high level and 
low level languages. 
High level languages as algorithm languages (here 
+CAL) are most of the time used before describing 
the global architecture with an ADL (here the AADL 
a SAE standardized ADL), some kind of a low level 
language, very close to a programming language 
that will be used at the implementation stages. 
 
Only the critical parts are requiring formal languages, 
so the problem to solve is really a languages 
integration problem. 
We are striving to specify the behavior of each 
component in a continuous way, from the smallest 
granularity component (thread) behavior 
specification to the highest (modes configuration). 
Such an objective requires an integrated approach.  
 
The main argument that leads us to expand the 
AADL language lies in the fact the real-time systems 
we are studying are using complex algorithms to 
specify their atomic component behavior which have 
a huge influence on the whole of the resulting 
architecture. Not including construction of algorithms 
in architecture design represents a high risk that they 
will never be totally taken into account when 
choosing the final architecture configuration. To 
ensure the requirements traceability in the analysis 
and design of the architecture, we consider 
therefore, that algorithms must appear as a 
significant element of the design. 
 
Therefore, we propose to expand the AADL 
language in order to integrate the main algorithmic 
specifications that play a role in configurations. 
Including an algorithm language also provides an 
opportunity for automatic proof and clean code 
generation. Considering the previous target of 

encompassing critical system requirements, it is 
necessary to retrieve proof at each level of 
architecture design. It is not enough to claim that 
proofs must occur during the earliest steps of the 
design. The final mode configurations must be 
chosen using proof argumentations. This leads us to 
integrate a formal behavior specification language 
right inside the architectural specification. 
 
The integration of an algorithm language, +CAL, into 
an AADL specification is under construction through 
an annex mechanism. 

4. Application of the approach  

Behavioral descriptions are associated with AADL 
components. Hence behaviors involving several 
threads cannot be directly described. 
The example on figure 1 describes a situation in 
which describing local behavior, attached to each 
AADL thread, is not sufficient. Two processes are 
bound to different processors. 
 
Each process is actually made of one thread and 
encapsulates one data component. Both data 
components are shared by the two threads of the 
architecture. 
 

 

Figure 1: Data shared between two processes  

 
Since behavioral descriptions in AADL can be 
associated with threads or subprograms, one can 
describe how the shared data should be processed 
by each thread. For example, it would be possible to 
describe that thread1 reads and writes in both data 
components, and that thread2 does the same, 
periodically. Accesses to data components are 
managed in each process by the AADL runtime. 
Therefore, we can specify a locking policy on each 
data component, handling the access requests sent 
from the AADL threads. 
 
Descriptions of local behaviors are not sufficient to 
specify global behaviors. For example, we cannot 
ensure that the two threads access alternatively both 
data components, thus performing mutual exclusion 
on the two data components at a time. We cannot 
describe the management of the shared data, 
and the necessary distributed lock. 
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We have choosen a mutex algorithm implementation 
that can have an influence on the resulting 
configuration. 
 
This algorithm guarantees mutually exclusive access 
to a critical section among a number of competing 
processes. 
 
−−algorithm bakery 
variables Ex t r a c t i o n = [ k \ i n 1 . .N |−> FALSE] , 
Rank= [m \ i n 1 . .N|−> 0 ] ; 
process a process \ i n 1 . .N 
var iable q ; 
begin 
  Ex t r a c t i o n [ a process ] : = TRUE; 
  Rank [ a process ] : = 1 + max(Rank [ 1 ] . . Rank [N] ) ; 
  Ex t r a c t i o n [ a process ] : = FALSE; 
  q :=1 ; 
while q /= N+1 do 
    while ( Ex t r a c t i o n [ q ] ) 
        do skip ; 
    end while ; 
   while ( ( Rank [ q ] / = 0) /\ ( ( Rank [ q ] , q ) < 
            (Rank [ a process ] , a process ) ) ) 
   do skip ; 
   end while ; 
q :=q+1; 
end while ; 
         \_The c r i t i c a l sec t ion 
         Rank [ a process ] : = 0 ; 
         \_ non−c r i t i c a l sec t ion . . . 
end process 
end algorithm 

 

Listing 1 : Lamport Bakery algorithm in +CAL 

 

5. Integration in AADL Models  

Given the following AADL description corresponding 
to figure 1, we will first analyze where is the most 
appropriate place to integrate algorithm structures. 
We would rather like to insert the +CAL algorithm 
within the global system implementation that 
represents the whole architecture. This system 
implementation is the place where the main 
components (i.e. the processes, the processors, 
etc.) are instantiated and connected. It is also the 
place to describe the way data are shared. 
In order to be compliant with the AADL annex 
behavior specification V1.5, atomic behaviors should 
also be attached to subprogram implementations. 
 
From the +CAL description of the algorithm, we are 
able to produce source code. In order to create a 
complete description of the application, we have to 
merge the source code we generate with the 
description of the initial architecture (represented 
on figure 1). 
The implementation of the algorithm in itself implies 
some modifications in the code executed in the 
AADL threads, in order to add calls to procedures 
such as the “entering” Ada generated procedure 
from the +CAL algorithm. 

 
procedure enter ing ( a process : in ( proc index ) is 
begin 
  Ex t r a c t i o n ( a process ) := t rue ; 
  Rank ( a process ) := 1 + maximum; 
  Ex t r a c t i o n ( a process ) := f a l s e ; 
  for q in 1 . .N loop 
        loop 
             delay 0 . 0 ; 
             exi t when not Ex t r a c t i o n ( q ) ; 
             exi t when (Rank ( q )=0) 
                     or (Rank ( a process)> (Rank ( q ) ) 
              or ( a process > q ) 
         end loop ; 
 end loop ; 
end entering ; 
−− 
−− Ex i t Protocol 
procedure way out ( a process : in ( proc index ) is 
begin 
        Rank ( a process ) := 0; 
end way out ; 
end algo Lamport bakery ; 
 

Listing 2 : Lamport Bakery algorithm in Ada 

 
 
In addition, the Bakery algorithm relies on two 
variables, shared by all the threads. These variables 
have to be integrated into the architecture, as shown 
on figure 2.  
 

 

Figure 2: Architectural impact of the Bakery 
algorithm 

 
The shared data is instantiated in one of the AADL 
processes, and accessed by all AADL threads. 
The locking policy of the shared data is centralized 
at the level of one process, and can then be easily 
managed. 

6. Conclusion 

Architecture analysis and design is mostly performed 
without any standardized process or methodology. 
As a consequence, there is a very little traceability to 
handle the transition between the requirements, 
analysis and architecture design steps. 
On the one hand, in describing the global 
requirements, the functional is separated from the 
non functional properties. What is considered the 
most suitable algorithm is then chosen to fit the 
requirements of the non-functional properties. 
Unfortunately, there is no going-back on the choices 
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we have made. In the prototype phase, it is often 
necessary to adapt the algorithms to the architecture 
configuration, and vice versa. 
Our method provides a way, when choosing and 
updating parameters, to dynamically build an optimal 
configuration. 
On another hand, we build architectures that follow 
the requirements but, make abstraction of all the 
behavior constraints. When the two branches of the 
overall development cycle meet, arises the eternal 
problem verifying that the architecture framework is 
a good foundation for the application. 
Our purpose is to complete the existing gap between 
requirements and analysis. At the same time, the 
complex algorithms that we have to manage in 
critical systems are provided with a formal shape 
which allows formal proofs. 

7. Glossary 

AADL:  (the SAE) Architecture Analysis& Design 
Language 

ADL:  Architecture Design Language 

DRE:  Distributed Real-time Embedded  
MDA:  Model Driven Architecture 

+CAL : The algorithm language of Lamport 

TLA:  The Temporal Logic of Actions 

UML:  Unified Modeling Language 

 

 


