Franco Gasperoni
email: gasperoni@adacore.com

Free Software and Leveraged Service Organizations

Keywords: Free software, FLOSS, leveraged service organization, embedded real-time software market

In this work we concentrate on where forprofit pure FLOSS business organizations in the embedded real-time software space draw their revenue. The business model of these ventures rests on an original concept: the LSO (Leveraged Service Organization) which, thanks to its subscription-based model, is capable of generating a stable cash flow that can be invested in innovation and reward employees and investors alike. The leverage aspect, in an LSO, comes from concentration of know-how and expertise around the Free Software package(s) marketed. Thanks to this expertise an LSO can offer a service of extremely high-value to its customers.

Free Software is not Free-of-Charge

"There is no such thing as a free lunch" goes the adage. This is equally true in the free software world (or FLOSS for Freely Licensed Open Source Software). The creator of the free software movement, Richard Stallman himself, pinpoints that the term "free" in free software is a reference to the notion of freedom rather than a lack of cost [1].

And yet, when we pronounce the words free software, open-source software, or FLOSS, the first thing that comes to mind to many is "free lunch". Why this confusion? First, and foremost, FLOSS is characterized by the following freedoms [1]:

• The freedom to run FLOSS for any purpose;

• The freedom to study FLOSS by looking at its sources;

• The freedom to redistribute copies of FLOSS to anyone;

• The freedom to change FLOSS and distribute the modified software.

To protect these freedoms FLOSS uses intellectual property laws, and more specifically copyright as described in [START_REF] Gasperoni | FLOSS, COTS, and Safety: A Business Perspective[END_REF].

As one can see from the above there is no mention of price, it is only a matter of freedom: FLOSS can be sold or provided free-of-charge. In either case the recipient of FLOSS has the freedom to run, study, redistribute, and modify the software.

It is important not to confuse freedom to use and program (which characterizes FLOSS) with free-ofcharge downloads made over the internet which characterizes freeware and does not necessarily come with the programming freedoms of FLOSS.

Having said that, the source code and often the binary of most FLOSS is available for download freeof-charge over the internet. These free-of-charge downloads should not mislead the reader.

Whether it is Apache [3], GNU Linux [4], Eclipse [5],
or GCC -the GNU Compiler Collection [6], someone is picking up the bill for others to enjoy software freeof-charge. In the case of GCC, for instance, this generous "someone" may be a chip manufacturer such as Intel, AMD, or MIPS; computer hardware vendors such as IBM, or HP; Linux vendors such as Red Hat and Suse/Novell; or tools vendors such as CodeSourcery and AdaCore.

This state of affairs may resemble the situation with internet search engines, where individual usage is paid for by advertising. As the remainder of this article explains this is a misleading analogy.

Free Software Communities are really Co-Ops

The days of lone programmers writing FLOSS are behind us. Most contributions to FLOSS are funded by for-profit corporations.

Behind any significant FLOSS project you find several companies. Today most of the individuals that make up a FLOSS community are on the payroll of companies who have a vested interest in the FLOSS. As such a FLOSS community resembles much more to a software cooperative (co-op) than a not-for-profit organization such as UNICEF.

A co-op is an association formed and operated for the benefit of those participating in it. Its business purpose lies more in cost reduction than in revenue generation. The roots of the co-op concept lie in the work of Peter Kropotkin in 1902 [START_REF] Kropotkin | Mutual Aid: A Factor of Evolution[END_REF]. In his book Kropotkin describes how in Siberia animals, instead of competing for resources, have to work together to stay alive. Throughout his book, Kropotkin stresses that cooperation is the main factor in evolution.

It is precisely this drive for cooperation to solve a mutual problem, too hard or too costly to solve in corporate isolation that is the business case for coops.

The idea of industrial cooperation is not new. Airbus or the Eurofighter consortia are good example of cooperative efforts across aerospace companies and nations. What is novel, and what the FLOSS movement has shown, is that this idea can be applied to the development and evolution of software.

Embedded Real-Time Software and FLOSS

In this section we concentrate on the embedded real-time software (ERTS) market.

This market has very specific needs and a limited number of companies developing ERTS ("ERTS manufacturers") for use in larger systems such as planes, trains, or automobiles.

ERTS is inextricably linked to the characteristics of the underlying systems. These systems tend to have a life-span (and hence maintenance requirements) of decades, they have to operate in harsh temperature, mechanical, and electro-magnetic conditions, and may have to pay attention to safety issues such as those listed in DO-178B [START_REF] Eurocae | -178B: Software Considerations in Airborne Systems and Equipment Certification[END_REF].

Furthermore, the difference in life-span between transportation systems and the electronic hardware employed poses additional challenges (such as spare parts availability) onto the development of ERTS for these systems.

All these factors make the ERTS market very different from the traditional IT or office automation ones.

Given the characteristics of ERTS, how can ERTS manufacturers take advantage of FLOSS tools, libraries, operating systems, and other FLOSS components?

Free Software Co-Ops Share Technology

To answer the previous question let us turn once more to FLOSS co-ops.

From the GNU compiler collection, to the GNU debugger, to the GNU binary utilities, to Eclipse, to the GNU Linux operating system the FLOSS co-ops which relate to ERTS are many.

Secondly, at the root of FLOSS co-ops is the idea of pooling together R&D resources to work on and share a common technology base which is then tailored and adapted by each member of the co-op to its needs and those of its customers.

The key point when it comes to FLOSS co-ops is that these communities share technology, not products.

In some cases FLOSS co-ops also collaborate to create a joint general-purpose product from the technology such as Eclipse, FireFox, Thunderbird, or OpenOffice are some examples.

This phenomenon is predominant in markets, such as Java software development or office automation that have a large user base.

In a specialized market such as ERTS this is not a wide-spread phenomenon. For instance, several general-purpose GNU Linux binary distributions can be downloaded over the internet. Those geared towards the ERTS market, however, are not available in ready-to-use form free-of-charge.

The key message here is: in specialized markets such ERTS, the FLOSS co-op participants share technology not products.

Using FLOSS in the Construction of ERTS

There are various scenarios under which an ERTS manufacturer can employ FLOSS when constructing ERTS.

The FLOSS can be used as is

Given the specifics of the ERTS market this scenario is restricted to a limited number of FLOSS items such as the Eclipse core infrastructure and some of the Eclipse plug-ins.

Note, however, that the need to integrate the FLOSS component into a wider context or environment for the development of ERTS remains. If this integration is not straight-forward as-is use of FLOSS is not possible (e.g. several ERTS tool vendors se a tailored version of Eclipse for the ERTS market since out-of-the box use of Eclipse to develop ERTS is not immediate).

For those FLOSS components that can be used (and integrated) as-is without the need for special support or maintenance, the ERTS manufacturer needs to ascertain with its legal department that it has a proper FLOSS license for the software item it intends to use/integrate.

Limited support or minor changes are required

If limited support is needed during installation, use, and integration, or if minor changes are required for the FLOSS component the ERTS manufacturer may be able to tap into the FLOSS community (i.e. co-op) for help.

From a risk-management standpoint this approach is acceptable if the FLOSS component is not a critical item of the ERTS or its development life-cycle and the ERTS manufacturer can eventually do without this help or changes in a worst case scenario.

In-house expertise

The ERTS manufacturer can develop internal expertise to use, maintain, adapt, integrate, and evolve the FLOSS it intends to use.

In this case it is fundamental that the ERTS manufacturer become a member of the co-ops for the FLOSS it will use. Participation to the community effort around each FLOSS component is essential to warrant that the future needs of the ERTS manufacturer are taken into account.

Forking a private copy of the FLOSS that evolves differently from the mainstream one is often an extremely costly undertaking: What many do together via a co-op, one may not do alone. Furthermore, merging future FLOSS evolutions into one's private copy that has been enriched with possibly incompatible changes is expensive.

When analyzing this possibility it is important to evaluate the ability of the ERTS manufacturer to nurture, train, and retain expertise over time around the FLOSS component. This analysis rests on identifying the in-hose core competencies and knowhow.

Purchasing the FLOSS and associated services

The ERTS manufacturer can purchase FLOSS together with support and maintenance services from a vendor who participates to the community effort around the FLOSS.

When taking this route the ERTS manufacturer should avoid artificial purchasing boundaries: if FLOSS 1 and FLOSS 2 are tightly coupled purchasing them from different vendors leaves the manufacturer responsible for their integration.

FLOSS Sold as COTS

The possibility for an ERTS manufacturer to purchase the FLOSS and related support services may appear similar to the traditional relationship with a COTS (Commercial Off-The-Shelf) vendor [START_REF] Gasperoni | FLOSS, COTS, and Safety: A Business Perspective[END_REF].

It is important in this context to distinguish between COTS software that comes with a restrictive license and FLOSS sold as COTS. FLOSS sold as COTS changes the customer-vendor relationship radically since there is:

• No lock-in for software redistribution;

• No lock-in for software changes and evolution;

• No lock-in for support.

Given this absence of lock-ins it is interesting to analyze the role and business model of FLOSS vendors in the ERTS market.

Business Models and the ERTS Market

The business models underlying most of the traditional computer industry rest, at least initially, on the notion of supplier scarcity. Put simply, there are three basic types of scarcities: technology, expertise, and infrastructure.

An example of technology scarcity is the Microsoft operating systems technology: you can purchase a product based on this technology only from Microsoft. Microsoft has managed to established a stronghold in the PC industry thanks to the lock on its technology which is the de-facto standard, not because of the scarcity of expertise (or infrastructure) in building operating systems or office automation software.

The vendor lock-in that comes with restrictively licensed COTS is designed to create technology scarcity which under certain circumstances gives rise to monopolies or oligopolies. This phenomenon is well described in [START_REF] Moore | The Gorilla Game[END_REF].

Contrary to business models, such as Microsoft's, the FLOSS movement has created economies of technology abundance thereby shifting the focus of business based on FLOSS to expertise and infrastructure know-how (put it another way scarcity of expertise and QA infrastructure).

The Leveraged Service Organization (LSO)

This section describes a FLOSS business model that is particularly suited to the ERTS marketplace. Other FLOSS business models exist and are described in [START_REF] Comar | Open Source in Dependable Systems: Current and Future Business Models[END_REF][START_REF] April | Livre blanc sur les modèles économiques du logiciel libre[END_REF].

The business model described in this section is that of AdaCore [12, 13], a 100% free software company with many customers in the ERTS market. AdaCore is the leader in Ada software development solutions.

AdaCore sells several types of FLOSS development solutions. The important points about these solutions are detailed below.

What does AdaCore sell?

All solutions sold by AdaCore comprise two equally important items:

• A coherent and integrated suite of tools and libraries with a proper FLOSS license;

• Frontline support provided directly by AdaCore's developers which are part of the FLOSS co-ops that are the basis for AdaCore's tool suite.

AdaCore sales model

All of AdaCore's solutions are sold as a yearly subscription which has the advantage over a pay up-front model to generate a predictable and recurrent revenue stream.

The price of a subscription is based on the number of developers in the teams using the tools provided by AdaCore.

How does AdaCore check that customers do not exceed the number of users they purchased? It doesn't. AdaCore trusts its customers. Trust builds trust.

Benefits over a do-it-yourself approach

Everything that AdaCore sells is FLOSS. What are the benefits for an AdaCore customer to purchase and renew a subscription package with AdaCore? Here are some examples:

• The customer does not have to select, develop, adapt, or customize the tools, libraries, and other components required to make a coherent whole (product development and integration);

• The customer does not have to test and ensure compatibility with other popular tools, operating systems, or libraries it uses (compatibility);

• The customer does not have to participate to the FLOSS co-ops to guarantee integration, toolset coherency, and participate to FLOSS R&D efforts over time (product evolution);

• The customer does not have to set-up an infrastructure to ensure that changes and enhancements in the source code do not introduce regressions in future releases (continuous integration);

• The customer does not have to build and package releases (productization);

• The customer does not have to test and verify the final products (quality assurance);

• For new releases the customer does not have to worry about compatibilities with previous versions (backward compatibility);

• The customer does not have to set-up and maintain a build, continuous integration, and productization infrastructure for current and future target hardware (build and QA infrastructure);

• The customer does not have to setup a continuous integration infrastructure so that it can receive a new qualified release when it needs a new feature or a blocking problem is solved (continuous integration infrastructure for qualified pre-releases);

• The customer does not have to recruit, nurture, and manage in-house expertise to ensure longterm support and availability for the tool set.

What all of the above boils down to is the fact that when purchasing a subscription with AdaCore the customer purchases an insurance about what it receives and the guarantee to receive assistance throughout the critical moments of its project.

Leveraged service organization

We use the term LSO (Leveraged Service Organization) to designate organizations similar to AdaCore. The L in LSO comes from the leverages exercised by the concentration of technical expertise along with the ability to set up an industrial quality and release cycle infrastructure for the FLOSS packages marketed.

Thanks to its expertise and infrastructure leverages, an LSO can offer FLOSS products and services of extremely high-value to its customers.

On Aligning with Customer Interests

For customers, an important benefit of the subscription-based model for FLOSS products, over a pay-up-front model is the customer-supplier alignment of interests.

The ERTS customer is interested in receiving a highquality product with a responsive and high quality service.

A vendor of FLOSS products such as AdaCore has a vested interest in seeing its ERTS customers be satisfied throughout the duration of a project since this increases the likelihood that the customer renews its subscription year after year.

In summary the business model of an LSO is aligned with the customer's engineering objectives, and this is a sound basis for a healthy business.

Conclusion

In this article we have discussed the possibility an ERTS manufacturer has when it wants to use a related set of FLOSS technologies.

The ERTS manufacturer has two basic choices:

• Rely on the FLOSS co-ops;

• Build in-house expertise and support the FLOSS technologies itself;

• Rely on a FLOSS vendor.

In the end, the decision of whether to rely on the community (co-ops), build internal expertise, or purchase the FLOSS and the required services from a vendor rests on a cost vs. risk analysis.

In the paper we describe an LSO which provides an interesting business model for a FLOSS vendor in the ERTS market.

An LSO sells FLOSS solutions on a subscription basis. An LSO leverages on its concentration of technical expertise, its communication channel to FLOSS co-ops, and the ability to set up an industrial quality and release cycle infrastructure.

Thanks to its expertise and infrastructure leverages, an LSO can offer FLOSS products and services of extremely high-value to its customers.

Thanks to the nature of FLOSS, an LSO aligns the interests of the principal stakeholders: customers, employees, and long-term investors. Contrary to short-sighted win/lose intuition this alignment maximizes long-term value creation for these three constituencies, creating an enduring and selfsustaining virtuous circle.