J P Blanquart

C Delord
email: cdelord@sopragroup.com

J Doumerc
email: jdoumerc@sopragroup.com

G Hannoyer
email: gilles.hannoyer@continental-corporation.com

J C Laperche

M Morel

M Müller

C Seguin

Model Driven Engineering and Dependability Analyses: The Topcased 1 Approach

Keywords:

Model Driven Engineering approaches are widely promoted to overcome difficulties to design, validate and maintain large complex systems. They present interesting dependability characteristics especially in terms of prevention of design faults and validation of design correctness. However industrial needs, practices and applicable standards impose constraints on the dependability activities to perform and justify. Therefore it is necessary to analyze how a complete dependability and safety process can be integrated with model-driven approaches within a seamless global process: which dependability activities are naturally covered or facilitated by model-driven approaches, and which additional activities are needed with which support. This paper presents the results of a study aiming at the establishment of requirements to model-driven engineering methods and tools, to support dependability analyses.

Introduction

This document presents a synthesis of the work conducted within the Topcased 1 project, with focus on selected application case studies. The objectives were to manage the discussion and assessment of main issues to get efficient support to dependability analyses within a model-based engineering framework. They address the main following points:

• Identification and classification of the relevant dependability concepts, attributes and links, Identification of dependability analysis methods and tools; • Organisation of the dependability and safety process, activities, inputs and outputs and mapping to life cycle and model-based engineering entities, especially identifying the interactions between dependability and design;

• Illustration of the proposed approach on two complementary examples: o Association of failure modes and failure rates to design model entities, to support through model transformation the elaboration of dependability models for quantitative evaluation, o Representation of partitions (with respect to faults and failures) on design models, to support fault dependency or independency analyses (e.g., criticality level allocation, common cause analysis, etc.); • Discussion of current limitations (concepts, methods, tools) and proposals.

Dependability engineering

Background

Dependability, defined as the ability to deliver service that can justifiably be trusted [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing[END_REF] encompasses properties such as reliability (continuity of correct service), availability (readiness for correct service) etc. Dependability engineering, including validation, consists in ensuring the required dependability properties taking into account possible threats (faults, errors and failures). Faults, errors and failures are not "atomic" concepts. Detailed dependability analyses lead to distinguish permanent, intermittent and transient faults, or dormant and active faults (corresponding to a state where a given fault causes or does not cause errors), leading to the notion of fault dormancy. In the same way, errors may be detected or not detected, leading to the notion of error latency.

Failures may be characterised by their occurrence process (e.g., failure rate), and by the distinction between several failure modes. Failure modes may be themselves further characterised by their severity, leading to the notion of severity level, associated to the allocation of levels to entities according to the maximum severity of their potential failures: development assurance level, safety integrity level, software criticality.

Dependability Analyses: Needs and Objectives

Dependability engineering encompasses the set of activities intended to:

• Provide the system with the required dependability properties; • Ensure that the system actually fulfils its required properties. These two categories are in practice tightly coupled in an iterative process where solutions are progressively analysed and evaluated thanks to dependability analysis methods. In industrial practice and applicable standards, we can distinguish the following four categories of dependability analyses:

• Criticality analysis:

The objectives are to identify and allocate "criticality categories" to design entities (functions, hardware or software elements) reflecting the level of trust we must have on these entities (and therefore the level required for their design and validation).

• Dependency analysis (common cause analysis):

The objectives are to evaluate to which extent some design entities are independent with respect to failures i.e., to which extent we can assume that two considered failures are stochastically independent events. Conversely the approach may focus on the identification of common causes: either a potential source of failure propagating to two design entities expected to fail independently (redundancies) or a potential (undesired) path through which the failure of an entity may propagate and cause the failure of another expected independent entity.

• Quantitative dependability analysis:

The objectives are to provide an estimation of a quantitative dependability property (reliability, availability, error latency, coverage factor, etc.). This can be achieved through experimental (fault injection, field data collection) or analytical (modelling) techniques, based on a set of assumptions on the stochastic characteristics of the fault occurrence and propagation processes (see next point below).

• Fault propagation analysis:

The objectives are to characterize the process of propagation of faults and failures, in particular to assess whether the various fault tolerance and error detection mechanisms are sufficient or where additional ones are needed. Fault propagation analyses may be top-down (e.g., fault-tree analysis) or bottom-up (e.g., failure modes, effects and criticality analysis) (or even both such as HAZOP -Hazard and Operability analysis). It is worth noting that this fourth category is not exactly of the same nature of the previous three ones, in the sense that in addition to its own objectives as identified above, fault propagation analysis can also, and generally is, used as a support to perform criticality, dependency or quantitative analysis. In addition, a particular category of dependability analysis approaches is constituted by the analysis of the behaviour of fault tolerance mechanisms. It is similar by nature to analysis methods in support to the general engineering process. However their application to mechanisms (or elements, subsystems, procedures etc.) dedicated to dependability, leads to highlight here their important contribution as a dependability assessment means. Their objectives are to analyse and characterize the functional properties of the fault tolerance mechanisms. This may be used to validate that they fulfil their requirements, or as a support to other dependability analysis methods (e.g., to evaluate quantitative parameters such as error latency).

Dependability methods and tools

As mentioned previously, the fault propagation analysis is the kernel of any dependability analysis. It can be done by using experimental techniques on actual devices (e.g. fault injection in a hardware components) or by building some analytical models and then analyzing the models. In this section, we focus on the second approach. For sake of clarity, we try to separate concerns, presenting on the one hand the features of usual analytical models and on the other hand, the kind of computations that enable to exploit these models. The analytical dependability models depict how faults are propagated or confined inside the system. They catch causality chains between dependability concepts (how faults cause errors and then failures). Fault tree, FMEA and all system models that describe how a system reacts when a fault occurs can be considered as analytical dependability models. In the following, some features of these models are highlighted in order to understand their commonalities and differences. Models may have different scopes. They can be centred on a specific failure and forget all faults and errors that are not related to the studied failure. This approach is usually taken when designing fault-tree or reliability blocks models. Conversely, they can be "system centred" and gather in one model all causality chains of interest for this system. This approach is for example taken when injecting failures in a software model. Models may encode fault propagation in different ways. A model may consist in an explicit set of fault propagation paths. For instance, traditional fault trees usually encode dependencies between observable failures or between failures and primary faults by and/or gates. More details about the metamodels of fault-tree can be found for instance in [START_REF]Dependability requirements on TOPCASED[END_REF]. Conversely, a fault propagation may be modelled in a more compositional and implicit way. In such cases, the model consists in interconnected basic blocks of the system. Each basic block model depicts explicitly how the basic component may be faulty and propagate (or not) faulty inputs. The global propagation paths are left implicit and result from the composition rules of the basic components. Finally, the models can be specifically built for dependability analyses or may be reused and extended to cope with failure propagation. For instance, one may intend to reuse an AADL model that depicts the software architecture of a system. Then the model can be extended in order to describe the effects of a failure of each piece of the software architecture. Finally, we have to compile this extended model into a format that better support the safety analysis. For instance, the extended AADL model can be compiled in an AltaRica model [START_REF]Dependability requirements on TOPCASED[END_REF]. The kinds of computation that enable to use such models for dependability analysis rely on at least four general mechanisms: • Analysis of failure propagation paths: o bottom-up analysis: effect of one fault on the system o top-down analysis: search of faults leading to a feared event; • Quantification of the probability of occurrence of some events; • Verification of the validity of some hypotheses or requirements about a system or component design. Whatever the way for building models, the tools that implement these mechanisms operate on mainly two kinds of low level formats that encode causality chains:

• Boolean formulae when static view of causality is sufficient; • Automata when reasoning about system dynamic is necessary. Then the search of causes or effects of some events will turn out to compute either causes/consequences of formulae or exploring the system state space. For instance, Aralia is a tool used to deal with fault trees i.e. Boolean formulae. It performs both qualitative analysis (search of minimal cut sets) and quantitative one. OCAS, SIMFIA and COMBAVA are tools dedicated to mode automata models written in the AltaRica languages. They enable interactive model simulation, search of sequences of bounded length leading to a feared event, extraction of fault trees for static systems. In ISAAC project (see for more details [4: www.cert.fr/isaac/]), tools were also developed to inject failure modes inside Nu-SMV, Scade and Statechart models and then extract either fault tree or sequence of fault leading to a feared events. Similarly, the quantification of the probability of occurrence of a feared event will be computed thanks to a Boolean formula annotated by probability (e.g., by means of Aralia) or by stochastic simulation of an automata (e.g. COMBAVA) or by probabilistic model-checking (e.g. Prism model checker). Finally, the verification of the truth of some hypothesis can be performed by simulation or by proof (we mean here by "proof", a rigorous exhaustive verification. It can be achieved in several ways such as by so-called model-checking technique).

Relation with engineering models

To perform the fault propagation analysis described in §2.3, the dependability engineer may use different types of system modelling and associated attributes, which level of details depends also on the current step in the dependability process. The input of this analysis is the Functional Hazard Analysis which is made at an upper level, generally by the customer, and which defines the system Failure Conditions with associated qualitative and quantitative requirements. In practical, the first task for building the "safety" system model is to identify the functional paths i.e., the chains of functional dependencies, related to each Failure Condition or Feared Event, by mapping these paths on the system functions and components. The second step is the identification of interfaces between functions and equipment inside a same functional path, to express functional dependencies in the model:

Modelling entities

Attributes of entities

Attributes of attributes

• Identification of inputs / outputs links between functional block or equipment,

• Identification of intrinsic architectural "safety barriers" (redundancies or monitoring). Note that this activity may be performed at various decomposition levels (systems, equipment, software or hardware elements). At this stage, the fault propagation model may be used for criticality analysis, by adding "criticality" attributes to the modelling entities (e.g. at function and component levels), which are defined from the initial feared event severity allocated to each functional path and thanks to the mapping functional path / functions / components and the identification of "safety barriers" involved in the functional path.

Modelling entities

Attributes of entities

Attributes of attributes

Modelling entities

Attributes of entities

Function criticality of function Component criticality level

Then, the "dependability" system model is expanded with a description of the component behaviour face to failures to constitute the analytical dependability model described in §2.3, which will be used for all the dysfunctional analysis mentioned in §2.2. In particular, specific quantitative attributes may be added to this fault propagation model, in order to perform the quantitative dependability analysis (basically FMEA for single failures, FTA for scenarios of multiple failures, etc) through the use of specific tools: For the dependency analysis, a specific "common mode" attribute may be added to each component (e.g. potential common mode are related to: common design or technologies, common resources, common operational or maintenance tasks on several components, etc.), in order to validate the independence hypotheses between safety barriers.

Modelling entities

Attributes of entities

Attributes of attributes

Modelling entities

Attributes of entities

Attributes of attributes

Case studies

3.1. Quantitative analysis Using a simple digital output example, a draft workflow at the functional level is established. It illustrates the application of the failure rate attribute in the early architecture phase. The important features to be provided by engineering models are marked bold. Based on the system analysis, certain failure rates with specific failure modes are assigned to the digital output functionality DGO, labelled with '1' in the figure 1 below. E.g. this could be 5•10 -6 /h for the 'detected loss' and 10 -6 /h for the 'undetected erroneous transmission'. Models shall support the annotation of the quantitative values and enable the user to define generic failure modes to be referenced in the further modelling activities. Each failure mode contains an attribute to quantify it's by percent participation to the objects over all failure rate ('% of failure rate'). In the next step, the safety objective of the function is linked with the related and relevant sub-functions ('2' in figure 1

above). Again additional dependability modelling facilities are required, to express relations between objects or functions in terms of RAMS dependencies.

A two fold approach is used to elaborate a feasible architecture. On one side the primary objectives are refined to the resulting sub-function requirements. On the other side, failure mode specific failure rates are put on the sub-functions ('2'), based on experience, a data base or research. So models shall provide means to verify the quantitative breakdown of the dependability objectives by a bottom up assessment of the current architecture and sub-function property assumptions. In the next step failure mode specific barriers and monitoring functions ('3' in figure 2 below) are added and assessed as in the previous step. The applied measures are linked with the failure mode attribute they are designed to cope with. So models shall provide means to quantify the impact of monitoring functions on the failure mode detection and the failure rate coverage. Also relations between entities in the design models and dedicated dependability assessment models such as FTA or failure propagation models shall be supported.

To conclude the results of the example work flow, engineering model based environments should provide a dependability tool bar in some diagrams and views, to ease the access to certain important dependability attributes and links. The process for the failure rate, failure mode and '% of failure rate' described above shall be extended and generalized to be applicable for all dependability attributes. Merging and linking design and dependability aspects makes dependability visible for the developers and helps to avoid inappropriate design choices by enabling an 'on the fly' assessment of the dependability attributes.

Partitioning

Partitioning is an important issue in system dependability. It is worth noting that partitioning may be seen from two complementary perspectives:

• On the one hand partitioning is used to limit the impact of faults and the propagation of failures between different functions and components. In dependable systems some entities are protected by barriers. • On the other hand, partitioning enables dependability analyses. Only by restricting and knowing the relevant faults, that affect a function or component quantitative assessments such as failure rate estimations are possible. When looking at functions in general we try to reduce dependencies and want to get an overview how these entities contribute to some common failure conditions. The dependability engineer analyses, if a small number or events can cause multiple sub function failures which lead in their summation to a critical system state. Barriers as means of partitioning are applied then to reduce the spread out of failures The partitioning of redundant functions is somehow a special case of the above. Redundancy is applied to cope with certain failures and to avoid their propagation into subsequent functions. In this case the technical implementation is given and the partitioning analysis is performed as a dependability justification. The dependability engineer is looking for common cause failures that bypass the redundancy and verifies the barriers. Partitioning may be represented as a logical separation between functions and pieces of software, as illustrated in figure 4. An appropriate support to dependability analyses or partitioned systems should provide means to assign an "area of influence" to a fault / failure or the responsible failure mode of a function or component, so as to obtain a flexible method to describe the impact of failures. We can express and quantify independence in terms of several aspects • There are geometrical areas, which use distances to avoid failures with physical impact to propagate. The faults that we want to address may be e.g., over temperature, shock waves or leakage of critical liquids. • There are also logical physical areas, such as an independent power supply or short circuit failure isolation by galvanic decoupling. • Finally there are software considerations, e.g. the independence in terms of memory and scheduling. Many open questions remain to be answered in further research activities. Up to now it is not clear, for example, how these areas should be represented in models, especially how the relation and interaction with the standard design models may look like.

Hardware O/S + Drivers + Services

Configuration

Towards Model-based dependability engineering

Embedded systems become more and more complex while their criticality increases due to their wider functional coverage. Consequently complex systems have to be designed to be fault tolerant, reliable and robust. More often, such critical systems shall also be proven dependable. The acceptance process depends on the application domain (aeronautic, space, automotive, nuclear power station, etc.). The certification processes are periodically updated in order to better fit the evolutions of technologies (IMA, smart sensors and actuators ...) or development process (model based design, use of COTS, open-source software ...). In the aeronautic field, major documents (e.g., ARP4754, DO178B, ARP4761) are currently under revision. In a similar way, for automotive field, ISO WD 26262 is in progress. Today we find a layered process, starting with some preliminary and abstract design studies and ending with the validation of the product, e.g. an embedded device. All stages of this well known V-cycle typically make use of different methods and tools to perform the required tasks. In the last years more and more modelling techniques were introduced to offer a common platform for all the lifecycle activities. Models provide the ability to successively refine a draft design and to enter the coding and verification phases seamlessly.

A common concern is to adapt the certification processes in order to reduce their cost whilst covering new practices. The following points highlight some difficulties. Sometimes, the certification objectives are overspecified. This induces unnecessary cost and may lead to discard the use of innovative product in embedded systems. For instance, in DO178B, levels of test coverage are recommended according to the software criticality level. This mean of compliance is costly and prohibit the use of some COTS whereas it would be better to clarify the expected product properties.

Another problem is the definition of a homogenous approach concerning dependability and safety.

There are engineering models and safety or dependability related models. Each of them is evolving over several design phases from very abstract content to complex systems. There is no guidance, what dependability features should be modelled and how to integrate them efficiently in the engineering models, and advise when to add some qualitative and quantitative dependability arguments and how to combine and assess them is missing. We do not know exactly how to make use of these arguments among different design or abstraction levels. It turned out to be necessary to improve the binding between different dependability assessment and analysis methods in the development process. Finally, it becomes harder and longer to assess complex integrated systems with traditional compliance means. Thus it is also interesting to enhance existing assessment techniques or define alternative ones in order to cope more efficiently both with emerging certification objectives, current development process and increasing system complexity.

The following axes for further work can be identified: for research on systematic ways of selecting the "inputs" (including the fault dimension), as well as on how to concretely apply them to a target system. The relevant methods and tools should build on both the fault injection technology and the software testing one.

• Contribution of methods and their combinations to SW dependability assessment: In most domains, the incorporation of software in critical systems is largely based on a generic approach where an abstraction of dependability requirements is elaborated as an ordered set of criticality levels, and software assurance means are used accordingly, corresponding to an ordered set of development and validation requirements. The problem we propose to investigate concerns the definition of the contents of the assurance levels, put in front of each criticality level i.e., the definition and justification of the sets of software dependability objectives and constraints, with associated means (methods, techniques and their possible combinations). This involves an assessment of software dependability means combining the complementary skills and experience of both academic and industrial partners, exploiting both: o analytical assessment of various software dependability approaches (combining objective assessment when possible and engineer judgement), o lessons-learnt in particular from dependability properties actually observed whenever available and their possible relationships to identified software assurance means.

• Particular focus should be put, first on modelbased approaches (assurance approaches for "model-based-engineered-software", as well as "model-based-assurance approaches"), second on advanced approaches that could be proposed for COTS software.

• Secondary (though important) objectives might be to investigate the very nature of the claim supported by a criticality-based approach, and whether it can be rigorously expressed. Such a rigorous (or at least, clear enough) expression is expected to provide fruitful bases for e.g.,: o additional support to the sound definition of assurance means for each criticality level, o support to the definition of a sound approach to allocate criticality levels along the definition of a system, o support to the sound incorporation of the dependability claims related to software (based on the criticality-based approach) into the global set of system level dependability claims.

Summary

The work reported in this paper aims at analysing how to integrate dependability analyses within a seamless process adapted to model-based engineering approaches.

In a first step we analysed the entities addressed by current dependability analysis techniques, and established requirements towards model-based engineering process and tools so as to appropriately support these analyses. However dependability analyses may also benefit more directly from model-based approaches. We have therefore identified a set of proposals on which partners are now engaged towards efficient integrated model-based dependability engineering.

Figure 1 :

 1 Figure 1: DGO Functional description

Figure 2 :Figure 3 :

 23 Figure 2: DGO Functional monitoring

Figure 5 :

 5 Figure 4: Software Partitioning