
HAL Id: hal-02270284
https://hal.science/hal-02270284

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From UML to AADL: a Need for an Explicit Execution
Semantics Modeling with MARTE

Matthias Brun, Madeleine Faugère, Jérôme Delatour, Thomas Vergnaud

To cite this version:
Matthias Brun, Madeleine Faugère, Jérôme Delatour, Thomas Vergnaud. From UML to AADL: a
Need for an Explicit Execution Semantics Modeling with MARTE. Embedded Real Time Software
and Systems (ERTS2008), Jan 2008, Toulouse, France. �hal-02270284�

https://hal.science/hal-02270284
https://hal.archives-ouvertes.fr

 Page 1/7

From UML to AADL:

a Need for an Explicit Execution Semantics Modeling with MARTE

Matthias Brun1, Madeleine. Faugère2, Jérôme Delatour1, Thomas Vergnaud3

1: ESEO, 4 rue Merlet de la Boulaye, 49009 Angers Cedex - France
2: Thales Research and Technology Software Research Group, RD 128 - 91767 Palaiseau Cedex - France

3: CNES, 18 avenue Edouard Belin, 31055 Toulouse Cedex - France

Abstract:

A modeling process for real-time embedded systems
may involve the coordinated use of several
languages. Each of these languages are dedicated
to a particular phase of development (specification,
design, test, ...) and coupled with various tools
(scheduling analysis, formal verification, model
checker,...). The combined use of UML and AADL is
an increasing practice. UML and its recent MARTE
(Modeling and Analysis of Real-Time and Embedded
systems) profile seem suitable for capturing
requirements, analysis and preliminary design.
AADL is tailored for the detailed design phase and
offers linked validation and verification tools.
In order to combine UML/MARTE and AADL,
translation mechanisms between these two
formalisms have to be defined. Previous works have
defined translations between the structural concepts
of AADL and MARTE artifacts. However, the
behavioral aspect have also to be treated.
The presented work focuses on the translation of the
thread execution and communication semantics. It is
a pragmatic and on-going approach, validated in an
industrial context, on representative examples.

Keywords: UML, MARTE, AADL, thread execution
semantic

1. Introduction

In order to overcome the increasing complexity of
real-time embedded systems, the coordinated use of
several modeling languages is more and more
investigated. Indeed, different software specialists
(in analysis, software architecture, design, real-time
scheduling, test, safety...) must cooperate. For
various reasons (cultural, educative, on the
availability of validation and verification dedicated
tools...), each of these specialists could use different
modeling formalisms.

The combined use of UML and AADL is an example
of that kind of practice. UML and its recent MARTE
(Modeling and Analysis of Real-Time and Embedded
systems) profile seem suitable for capturing
requirements, analysis and preliminary design.
AADL is more tailored for the detailed design phase

and offers tools such as scheduling analyzers, code
generators.

In order to allow the use of UML/MARTE and then,
AADL, translation from UML to AADL has to be
defined. Different approaches could be considered.
We choose to work on the study of the AADL
concepts and their representations in UML/MARTE.
Different reasons explain this choice: the semantic
gap between these two formalisms could be huge
(and some UML/MARTE concepts are certainly not
present in AADL), UML/MARTE allowed different
modeling styles (Object-Oriented, Component-
Oriented) whereas AADL is a component approach,
an annex to the MARTE standard already deals with
the translation between AADL constructs
(components and features) and MARTE artefacts.

In this approach, we extend MARTE annex and
previous work initiated by Thales [3] by the
consideration of the behavioral semantics
translation.

The presented work focuses on the translation of the
thread execution and communication semantics.
These parts are those which are precisely defined in
the AADL standard. The other parts, belonging to
the behavioral aspect, are still in discussion in the
AADL standard.

After an overview of the UML/MARTE and AADL
languages, a simple example will be presented.
Based on this example, the translation of the thread
execution semantics and the communication
semantics will be detailed. Finally, we draw
conclusions.

2. UML/MARTE and AADL overviews

2.1. UML/MARTE

MARTE (A UML Profile for Modeling and Analysis of
Real-Time and Embedded systems) [1] is the new
UML profile extension for real-time and embedded
systems standardized mid 2007 at OMG (Object
Management Group). MARTE defines concepts in
terms of UML extensions needed to model and
analyze real-time and embedded systems (RT/ES).

Today, UML is a well spread and used language in
the Software Engineering Community, supported by
many commercial tools. This unified language

 Page 2/7

provides a useful abstraction to object-oriented
language and approaches, facilitating application
design as well as common and simple means of
communication between designers. With MARTE,
these capabilities are extended to real-time and
embedded domains, enabling both 1) RT
application, software platform and hardware design,
and 2) validation when coupled to verification tools
through analysis characteristics specification.

MARTE proposes different artefacts to characterize
a RTE system: 1) a non functional-property and
value specification language 2) a rich time modeling
extension allowing to explicitly design the relation of
concepts to clocks (during modeling or analysis
phases) 3) software and hardware modeling
capabilities 4) allocation capabilities providing a link
between applications and platforms, 5) support for
quantitative analysis (i.e. scheduling and
performance) [1] [2].

The benefits of using this profile for the designers
are manifold. First, this language provides a
common way to share RTE models between
designers: multiple views (functional, non-functional,
analysis, software and hardware resources,
components…) may be shared between different
actors to validate specific application aspects.
Secondly, UML/MARTE allows the modeling and
thus the capitalization of specific RT languages, and
operating systems through run-time or run-time API
modeling. Such run-time libraries greatly help the
designer to align application domain semantics to
run-time behaviours. Finally, such explicit run-time
features facilitate model transformation specification.

2.1. AADL

AADL (Architecture Analysis & Design Language) [5]
is an architecture description language (ADL)
standardized by the Society of Automotive
Engineers (SAE). It is particularly targeted at the
description of distributed real-time and embedded
systems.

The AADL standard defines both textual and
graphical syntaxes to describe architectures based
on components. Unlike UML, AADL provides a
single view (with different possible syntaxes) to
represent models. Thus, all information can be
integrated on a single diagram (or text file).

The AADL standard defines several categories of
components; each category corresponds to specific
semantics. Processes, threads, thread groups, data,
subprograms and subprogram groups are used to
model software applications. They allow for the
modeling of data structures and software topologies.
Processors, virtual processors, memories, buses,
virtual buses and devices are used to describe the
hardware environment topology on which software
applications are deployed. In addition, processors
and devices can be used to describe the hardware
elements of an application. AADL systems and

abstract components are used as containers for
other components or to allow for a certain level of
inaccuracy in the early stages of the modeling
process; they help in structuring architectures.
Components can contain subcomponents; hence
AADL architectures are hierarchical.

AADL components can have interfaces, called
"features". Features can be communication ports,
required or provided accesses to subcomponents, or
required or provided accesses to subprograms.
Thus, the AADL syntax can explicitly describe
common communication paradigms (message
passing, remote procedure calls, distributed
memory).

Component composition describes the structure of
architectures. AADL allows for the characterization
of these components: properties can be associated
with each architecture element (components,
subcomponents, features, connections, etc.). AADL
properties are used to specify constraints (e.g.
execution time, memory size) or characteristics (e.g.
period, thread dispatch policy). They can also be
used to describe configuration parameters (e.g. the
network address of a processor). AADL defines a set
of standard properties and defines semantics for
them, so that they can be interpreted by analysis
and generation tools.

AADL constructions describe application structures
that encapsulate algorithms. Algorithms can be
specified using some syntactical constructions,
through a behavior annex, or by associating source
code with AADL components. Algorithms control the
execution of the application, according to the
different parameters provided by the architecture
description (topology and execution parameters
given by AADL properties). AADL descriptions
gather all required information to define applications.
Therefore, they can be used as backbones for
various processings, including documentation
generation, simulations, formal analysis and code
generation.

Algorithms encapsulated in AADL components can
interact with the outside environment through the
component features. The AADL standard defines
semantics associated with AADL constructions.
Hence AADL specifies the actual behavior
(regarding inter-component communications and
execution) implied by the architectural constructions.
AADL tools can rely on the same asumptions for
their processings. The execution & communication
semantics defined by the AADL standard restricts
the possibilities for application design: for example, it
is difficult to describe multimedia-oriented
applications.

In counterpart, because of the implicit behavior
specifications associated with AADL constructions,
AADL models can be processed by application
generators [13] that produce source code from the
AADL components. Generated source code is linked

 Page 3/7

with algorithm source code through specified API.
AADL applications are to be executed on the top of
an AADL runtime that provides scheduling and
communication services. Such a runtime is
configured according to the architecture description.

3. A simple case study : a client/server
architecture

In order to better communicate the need to make
explicit the execution semantics of AADL
components with UML/MARTE, the simple
client/server architecture is used in this paper to
illustrate the development process of a system with
both UML/MARTE and AADL. This simple case
study aims to illustrate the positioning of AADL
relating to UML/MARTE during the development
process. It also aims to underline the impact of the
implicit concepts involved by the AADL standard.

This section introduces the case study using
UML 2.1.1 [9].

The client/server pattern involves major concepts
met in real-time systems: concurrent entities (known
as «schedulable resources» in UML/MARTE and
«threads» in AADL) and communication between
these kinds of entities.

As shown in figure 1, at the highest level of
representation, the client and the server are two
entities that communicate. This can be described in
UML. The communicated protocol are not specified
at this level.

Figure 1 : A client/server architecture.

Figure 2 details the communication describing the
response of the server to a client's request.

In this more detailed view, information flows1 could
be refined using message communication
(synchronous or asynchronous) between client and
server, or using remote procedure call (RPC)
provided by the server for the client.

1 Information flows was introduced in the supplement part
«Auxiliary Constructs» of UML.2.1.1.

Figure 2 : Client/Server communication flows.

In order to translate the UML/MARTE client/server
description to an AADL description, AADL
mechanisms (or concepts), such as AADL
concurrent entities or AADL communication, have to
be directly used during UML/MARTE modeling
phases. Making explicit the semantics of such AADL
mechanisms, with the UML/MARTE formalism,
allows to make the designer aware of these
semantics early in the development process. The
following part introduces how to take into account
(during UML/MARTE modeling phase) the AADL
components relevant to the case study and how to
make explicit their semantics using UML/MARTE
(particularly thread execution semantics). The next
part introduces the communications intended by the
AADL standard and their corresponding
UML/MARTE models.

4. AADL thread execution semantics model
with UML/MARTE

AADL concurrent entities are designed with thread
components. These components are bound to
processor components and executed within the
virtual address space of process components.

In this case study, architecture designers have then
to specify which threads execute the client and the
server. Moreover, they may have to specify the
thread allocations on the processor(s). For example,
in the case study, designers may choose to execute
the client and the server each in its own thread, on
separate processors. Without considering thread
communications, figure 3 illustrates the AADL
specification of the client/server case study with that
configuration.

Figure 3 : AADL system to specify client/server case
study (without communications)

Therefore, the UML/MARTE model of the
client/server (in the case study) express the
application according to the structure and the
semantics of the AADL components involved. To do
that, during UML/MARTE design phases, each
UML/MARTE entity corresponding to an AADL
component must follow the semantics of that
component. For example, UML/MARTE concurrent
entities semantics is regarded as AADL thread
semantics.

 Page 4/7

Regarding the structure, UML/MARTE concurrent
entities (corresponding to AADL threads) may be
specified with the swSchedulableResource that is
defined in the Software Resource Modeling package
(SRM) [3]. In addition, to match the AADL
components used in the case study with
UML/MARTE entities, in a UML/MARTE description,
the process is stereotyped with the SRM
memoryPartition stereotype and the processor is
stereotyped with both hwProcessor and Scheduler
stereotypes. The hwProcessor stereotype, provided
by the Hardware Resource Modeling package
(HRM), allows to design the hardware processor.
The Scheduler stereotype, provided by the Generic
Resource Modeling package (GRM), allows to
design the software that is responsible for
scheduling and executing threads. At last, the AADL
system may correspond to a SysML block. Figure 4
illustrates the AADL platform used for the case study
and expressed with UML/MARTE.

Figure 4: UML/MARTE description of the AADL
components for the client/server case study.

To design the application, we can either use the
AADL platform description (cf. figure 5) as a profile
(creating and using stereotypes such as
«AADL_Thread», etc.), or use directly the MARTE
profile. Figures 5 and 12 illustrate examples of the
latter approach with the client/server case study
expressed using UML/MARTE according to the
AADL concepts.

Figure 5 : UML/MARTE system to specify the
client/server case study (without communication)

according to the AADL approach.

Regarding the semantics, within the AADL standard,
discrete and temporal semantics are described by
hybrid automata notation. This notation consists of
hierarchical finite state machine notation, augmented
with real-valued variables to denote timing values.
Using this notation, application startup that involve
system, processors, processes and thread
components is specified as well as thread execution
semantics.

The application startup specified in the AADL
standard (with system, processor, process and
thread «states and actions» finite state machine)
may be explicitly represented with a UML/MARTE
sequence diagram (as described in figure 6).

Figure 6 : Application startup.

This diagram specifies the system startup that
results from processor startup, process loading and
thread initialization sequence according to the AADL
standard. Moreover, each of the system, processor
and process «states and actions» finite state
machines within the AADL standard can be
translated in a corresponding UML/MARTE state
machine.

However, AADL thread semantics describes more
complex mechanisms than AADL system, processor
or process components. It specifies the states, the
dispatch (activation), the scheduling, the execution,
the mode transition and the execution fault handling
for thread components.

 Page 5/7

Without considering modes and fault handling, a
UML/MARTE state machine (as described in
figure 7) can make explicit part of the initialization
and dispatch «states and actions» of threads
conform to the AADL standard.

Figure 7 : Thread initialization and dispatch (without
modes and fault handling).

Moreover, thread dispatch according to the dispatch
protocol and thread scheduling (within the
«compute» state) may be depicted using UML
sequence diagrams, UML state machine and action
languages. For this purpose, the runtime has to be
specified either with an improved UML profile that is
dedicated to operating system (OS) modeling, or by
adding services to the relevant entities in the
application model. We can notice that these services
are out of the scope of the MARTE profile, because
MARTE intends to model real-time embedded
applications, not to model internal runtime
mechanisms required for executing the application.
For example, the MARTE Scheduler stereotype
does not provide «resume» and «preempt» services
(for the execution or the preemption of threads)
because these services must not be available for the
application. Thus, following the MARTE approach,
specifying runtime within a separate model is a
better solution to make explicit the AADL execution
mechanisms, than specifying runtime services within
the application model.

5. AADL communication semantics model
with UML/MARTE

The AADL language allows different communication
types through messages, notifications, shared data
and services. Each communication type is
represented either by a specific AADL concept
(subprogram) or port type (event, event_data, data)
linked to a specific run-time behavior. Domain
application semantics must be in line with the run-
time execution semantics, to make sense. Moreover,
to make the validation/verification process at the

model level more relevant, run-time specific
behaviors need to be taken into account.

Different ways to use UML/MARTE to explicit AADL
communication semantics will be illustrated on the
client/server case study (presented section 3),
during a refinement process.

Although proposing some abstraction mechanism -
through abstract components and undefined ports -
to promote high level design, the AADL language is
very close to the execution platform: AADL
application components are described in terms of
AADL threads, processes, and critical regions,
exchanging information through ports. This
representation merges application design
information and run-time resource management.
This shortcut greatly simplifies the view for a well-
established and finalized design, enabling the
designer to focus on analysis and non-functional
properties, but will be a handicap for high-level
design. UML/MARTE allows separating the different
concerns like application design, software platform
modeling and hardware platform.

From a structural viewpoint, UML composite
structures enriched with MARTE Message/Flow
Ports typed by UML Signals, or interfaces
(<<bFeatureSpecification>> stereotyped interfaces)
are sufficient to distinguish AADL message/signal
exchange from service request mechanisms (as
illustrated Figure 8 and 9).

Figure 8: Event exchange through ports

Figure 9: AADL subprogram call as interface
requested services

Different implicit AADL behaviors and semantics are
associated to these ports. So, AADL event data
ports support a request/reply communication
paradigm, while AADL event ports remain for
notification. Different UML message types
(synchronous messages, calls and replies will

 Page 6/7

capture these behavioral differences) as illustrated in
the sequence diagram Figure 10 and 11.

Figure 10: UML call and reply mechanism

Figure 11: UML asynchronous call

Many AADL components and properties rely on
software platform modeling. UML/MARTE allows to
explicit the resource platform models, and
furthermore the relationships between this resource
platform and the application using MARTE allocation
and resource concepts.

Figure 12: Application to software platform
allocation.

Each component or component behavior specified
at the application design level will be executed by
one or more threads, represented in UML/MARTE as
swSchedulableResource as presented in section 4.
MARTE’s flexibility allows a fine-grain application-to-
platform allocation as pictured Figure 12.

As one of MARTE's aims is to provide a generic
language for software and hardware resource
description and run-time API characterization,
MARTE’s resource concepts integrate the most
important resource and resource management
features.

So, AADL messages sent by event data ports are
represented by MARTE MessageComResources, as
illustrated in figure 13, spooled in a queue. A part of
AADL resource properties like Queue_Size,
Queue_Processing_Protocol, Overflow_Handling_
Protocol, Dequeued_Protocol properties will be
provided intrinsically by MARTE: the
waiting_queued_policy tag stays for AADL
Overflow_Handling_Protocol, message_queue_
policy for AADL Queue_Processing_Protocol, and
waiting_queue_capacity for the AADL Queue_Size.

6. Conclusion

In this article a pragmatic approach for translating
UML/MARTE detailed design into AADL design has
been presented. We extend previous works in order
to undertake part of the behavioral semantics
translation. Rather than investigating the numerous
possible UML/MARTE designs and their possible
translations in AADL, we choose to map AADL
concepts into UML/MARTE. It appears that some
AADL concepts could not be defined in MARTE (for
instance, port message queue policies). They will be
proposed in the next MARTE version, enhancing
MARTE – AADL concept alignment.

Therefore, it implies that methodological guides for
designers have to be defined so that their
UML/MARTE designs conform to elements which
could be easily translated.

This guidance of the designer must include:
UML/MARTE pattern modeling compliant with AADL,
explicit representation of the AADL execution
semantics and translation process divided in steps.
This article presents part of this guide.

Therefore an automatic translation could be
envisaged. A prototype is currently under
development at Thales.

 Page 7/7

Nevertheless, this translation will be partial. We have
furthermore to investigate the other parts of the
behavior and the translations of non-functional
properties. Indeed, UML/MARTE allows to describe
non-functional properties such as temporal
constraints for which AADL properties have to be
translated.

7. Acknowledgement

This work is partially funded by the Topcased
project [11] of the French “Aeronautic Valley”
cluster.

8. References

[1] Object Management Group, “UML Profile for
Modeling and Analysis of Real-Time and
Embedded systems” (MARTE), Beta 1, OMG
Adopted Specification, Document: ptc/07-08-04.

[2] S. Gérard, J. Médina, D. Petriu: “MARTE: A New
Standard for Modeling and Analysis of Real-Time
and Embedded Systems”, ECRTS, Italy, 2007.

[3] M. Faugere, T. Bourbeau, R. Simone, S. Gerard,
“MARTE: Also an UML Profile for Modeling AADL
Applications”, 12th IEEE International Conference
on Engineering Complex Computer Systems, 2007.

[4] The OMG MARTE home page:
http://www.omgmarte.org

[5] SAE Standard, “Architecture Analysis and Design
Language” (AADL), document AS5506, June 2006.

[6] SAE AADL information site: http://www.aadl.info

[7] John Hudak, Peter Feiler, “Developing AADL
Models for Control Systems: A Practitioner's
Guide”,Technical Report, CMU/SEI 2007-TR-014,
2007

[8] Peter H. Feiler, David P. Gluch, John J. Hudak,
"The Architecture Analysis & Design Language
(AADL): An Introduction", Technical Note CMU/SEI
2006-TN-011, 2006

[9] Object Management Group, “Unified Modeling
Language: Superstructure”, version 2.1.1, OMG
Adopted Specification, formal/2007-02-03.

[10] F. Thomas, S. Gérard, J. Delatour , F. Terrier,
“Software Real-Time Resource Modeling”, FDL,
Barcelona, 2007.

[11] Toolkit in OPen source for Critical Applications and
SystEms Development (TOPCASED) :
http://www.topcased.org

[12] M. Brun, J. Delatour, Y. Trinquet, “Code generation
from AADL to a real-time operating system: an
experimentation feedback on the use of model
transformation”, 3rd IEEE International UML&AADL
workshop, Belfast, Northern Ireland, 2008.

[13] T. Vergnaud, I. Hamid, K. Barbaria, E. Najm, L.
Pautet, S. Vignes. “Modeling and generating
tailored distribution middleware for embedded real-
time systems”. 2nd European Congress Embedded
Real-Time Software (ERTS’06), Toulouse, France,
2006.

9. Glossary

AADL: Architecture Analysis & Design Language

GRM: Generic Resource Modeling

HRM: Hardware Resource Modeling

MARTE: Modeling and Analysis of Real-Time and
Embedded Systems

OMG: Object Management Group

RPC: Remote Procedure Call

SAE: Society of Automotive Engineers

SRM: Software Resource Modeling

SysML: Systems Modeling Language

UML: Unified Modeling Language

